
COMPLEXITY OF 4-MANIFOLDS

FRANCESCO COSTANTINO

Abstract. We define and study a notion of complexity for smooth, closed and orientable 4-
manifolds. This notion, based on the theory of Turaev shadows, represents the 4-dimensional
analogue of Matveev’s complexity of 3-manifolds. We classify complexity 0 and 1 four manifolds
and provide examples of manifolds of higher complexity.
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1. Introduction

A natural notion of complexity of a PL n-dimensional manifold is the minimal number of highest-
dimensional simplexes in a triangulation of the manifold. Such a complexity is an integer valued
function and is finite (for each k ≥ 0 there are only finitely many manifolds whose complexity is
up to k). In order to find all the n-manifolds of complexity k, one has to identify all the possible
ways of gluing k copies of the n-simplex such that the link of each point is a n− 1-sphere. Hence,
producing lists of low-complexity n-manifolds can be a difficult task if n ≥ 3 because of the sphere
recognition problem. In dimension 3, S. Matveev ([13]) defined an alternative notion of complexity
which, for “most” 3-manifolds is equivalent to the above defined one. Matveev’s complexity is based
on a combinatorial description of 3-manifolds by means of 2-polyhedra (their “spines”) and turns
out to be strictly related to the topological properties of the manifolds: for instance, it is additive
under connected sums and is finite when restricted to irreducible manifolds. Its combinatorial
nature, makes it a computable invariant: using the stratification of the set of 3-manifolds induced
by Matveev’s complexity it is possible to produce a list of 3-manifolds up to complexity 10 by
means of computer-based computations ([16]). More than this, the new techniques and tools set
up ([14]) to study the topology of 3-manifolds in order to produce these lists, allowed the creation
of computer programs “recognizing” 3-manifolds ([15]).
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2 COSTANTINO

On the other side, the existence of “exotic” spaces makes smooth topology of 4-manifolds an
intriguing and still rather mysterious subject. It is our hope that a combinatorial “complexity-
based” approach could produce new examples of 4-manifolds, sufficiently “simple” to be studied
directly. Hence, we define a notion of complexity of 4-manifolds based on the theory of Turaev’s
shadows ([18]), which represents an analogue in dimension 4 of Matveev’s complexity. Roughly
speaking, shadows of 4-manifolds can be viewed as simple polyhedra equipped with integer colorings
on the regions, which can be canonically thickened to smooth (or, equivalently, PL) 4-manifolds.
To clarify the reasons why we use shadows instead of triangulations in order to define a complexity
of closed 4-manifolds, let us note that a triangulation contains a full description of a handle
decomposition of the manifold itself, while it is known that the union of the handles of index up
to 2 is sufficient to reconstruct the manifold. Hence, in a sense, the information contained in a
triangulation is redundant; on the contrary, it can be shown that a shadow of a 4-manifold encodes
combinatorially only the union of handles of index up to 2. Moreover, as in the 3-dimensional
case with Matveev’s complexity, it is straightforward to prove that shadow complexity is sub-
additive under connected sum; whilst the same is not obvious a priori for the triangulation-based
complexity.

In Section 2 we recall the basic definitions and results on shadows which we will need later;
no new result is proved in that section. In Section 3, we introduce two notions of complexity of
a closed 4-manifold X : the complexity, denoted c(X) and the special complexity, denoted csp(X).
The former represents the direct analogue of Matveev’s complexity and has the drawback that
infinitely many 4-manifolds have complexity 0: this is related to the problem of restricting to
irreducible (in a smooth sense!) manifolds; further comments on these aspects will be provided in
Section 3. On the other-side special complexity, obtained by restricting the set of shadows used
to encode 4-manifolds, turns out to be finite. In particular we prove the following (Theorem 3.10
below):

Theorem 1.1. If a closed, smooth and orientable 4-manifold X has 0 special complexity then X

is diffeomorphic to one of the following manifolds: S4, CP
2, CP

2
, CP

2#CP
2
, S2 × S2, CP

2#CP
2,

CP
2
#CP

2
. Moreover, there are no closed 4-manifolds with special complexity 1.

It is interesting to stress that, because of Freedman’s Theorem, from the point of view of
classification up to homeomorphism, the above statement is not surprising since low complexity
special polyhedra carry only low-rank homology. So, the non-trivial content of the above result
is given by the fact that it proves that no exotic versions of the complexity 0 manifolds exist
in complexity 1. In Subsection 3.3 we provide examples of higher-complexity and estimate the
complexity of the elliptic surfaces E(n). We then use this to provide upper estimates for the
answer to the following:

Question 1.2. What is the minimal (special) complexity of a pair of homeomorphic but non-
diffeomorphic 4-manifolds with/without boundary?

where the complexity of a pair is defined as the maximum between the complexities of the two
manifolds composing the pair.

Acknowledgments. I wish to express all my gratitude to Bruno Martelli with whom many of
the ideas and results of the present paper were created and discussed.

2. A crash course on shadows of 4-manifolds

In this section we recall the basic definition and results about shadows; no new result is proven.
For a more detailed account, see [18] and [3].
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Figure 1. The three local models of a simple polyhedron.

Figure 2. How to build up a special polyhedron from its local models.

2.1. Simple polyhedra.

Definition 2.1. A simple polyhedron P is a 2-dimensional CW complex whose local models
are those depicted in Figure 1; the set of points whose neighborhoods have models of the two
rightmost types is a 4-valent graph, called singular set of the polyhedron and denoted by Sing(P ).
The connected components of P − Sing(P ) are the regions of P . A simple polyhedron whose
regions are all discs is called special1. The complexity of a simple polyhedron P , denoted c(P ), is
its number of vertices.

Standard polyhedra can be described in a combinatorial way by decomposing them into the
blocks of Figure 1. One can always “build up” a special polyhedron as exemplified in Figure 2: the
central block corresponds to the rightmost block of Figure 1, the curved blocks to the central one
of Figure 1 and the regions are discs glued along the boundary of the resulting polyhedron. The
resulting diagram, unambiguously defines the initial special polyhedron, but different diagrams
could encode the same polyhedron. In Figures 7 and 8, we draw all the possible special polyhedra
having at most one vertex (in the figures, discs are to be glued along the boundary components of
the polyhedra in order to get special polyhedra).

2.2. Decorations on polyhedra. We describe now the basic decorations we need in order to
thicken to a 4-manifold a special polyhedron P , for a more detailed account see [18]. Let us denote
Z

2 the group of integer multiples of 1
2 . There are two canonical colorings on the regions of P , i.e.

1According to our definition a polyhedron can be special even if it does not contain any vertices.
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Figure 3. The picture sketches the position of the polyhedron in a 3-dimensional
slice of the ambient 4-manifold. The direction indicated by the vertical double
arrow is the one along which the two regions touching the horizontal one get
separated.

assignments of elements of Z2 or Z
2 (the integer multiples of 1

2 ), the second depending on a flat
embedding of P in an oriented 4-manifold. They are:

The Z2-gleam of P , constructed as follows. Let D be a (open) region of P and D be the natural
compactification of the (open) surface represented by D. The embedding of D in P extends to
a map i : D → P which is injective in int(D), locally injective on ∂D and which sends ∂D
into Sing(P ). Using i we can “pull back” a small open neighborhood of D in P and construct
a simple polyhedron N(D) collapsing on D and such that i extends as a local homeomorphism
i′ : N(D) → P whose image is contained in a small neighborhood of the closure of D in P . When
i is an embedding of D in P , then N(D) turns out to be homeomorphic to a neighborhood of D
in P and i′ is its embedding in P . In general, N(D) has the following structure: each component
of ∂D is glued to the core of an annulus or of a Möbius strip and some small discs are glued along
half of their boundary on segments which are properly embedded in these annuli or strips and cut
transversally once their cores. We define the Z2-gleam of D in P as the reduction mod 2 of the
number of Möbius strips used to construct N(D). This coloring only depends on the combinatorial
structure of P .

The gleam of P , constructed as follows. Let us now suppose that P is flat in an oriented
4-manifold M , with D, D and i : D → P as above. Pulling back through i a small neighborhood of
i(N(D)) in M , we obtain a 4-dimensional oriented neighborhood B of N(D) over which we fix an
auxiliary riemannian metric. Since N(D) is locally flat in B, N(D)−D well defines a line normal
to D in B along ∂D and hence a section of the projectivized normal bundle of D (see Figure 3).
Let then gl(D) be equal to 1

2 times the obstruction to extend this section to the whole D; such an

obstruction is an element of H2(D, ∂D; π1(S
1)), which is canonically identified with Z since B is

oriented. Note that the gleam of a region is integer if and only if its Z2-gleam is zero.
Using the fact that the Z2-gleam is always defined, Turaev generalized [18] the notion of gleam

to non-embedded polyhedra as follows:

Definition 2.2 (Gleam). A gleam on a simple polyhedron P is a coloring on the regions of P with
values in Z

2 such that the color of a region is integer if and only if its Z2-gleam is zero.

2.3. The canonical thickening procedure. We now describe how any simple polyhedron equipped
with gleams (P, gl) can be canonically thickened to a smooth 4-manifold collapsing on it. From
now on, all the 4-manifolds will be smooth, compact and orientable and all the polyhedra will be
flatly embedded unless explicitly stated. Let P ′ be the the regular neighborhood of Sing(P ) in P ;
when P is special, P ′ is obtained by puncturing P once along each region. To thicken P :
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(1) Thicken P ′ to a (possibly non-orientable) 3-manifold L collapsing on it.
(2) Thicken L to an oriented 4-manifold H made up only of 0 and 1-handles.
(3) Glue suitable blocks to H corresponding to the regions of P .

Step 1. To thicken P ′ and get L, glue copies of the two rightmost blocks of Figure 4 according
to the combinatorics of P ′. The result is a pair (L, P ′) where P ′ is a properly embedded copy of
P ′ in L.

Figure 4. In this picture we show the blocks used to thicken a polyhedron to a 3-manifold.

Step 2. To thicken L and get H , one takes the total space of the determinant fiber bundle of
L: for instance if L is orientable, H = L × [−1, 1]. More in general, fix an arbitrary orientation
on each of the blocks of Figure 4 and glue their products with [−1, 1] using the attaching maps
of L along the blocks ×{0} and gluing the fibers by multiplying them by −1 iff the gluing maps
between the 3-dimensional blocks are orientation preserving.

The resulting manifold H is canonically oriented (it admits an orientation reversing diffeomor-
phism), collapses over P ′ (which is properly embedded in it), and so, in particular is made of 0
and 1-handles. Moreover ∂P ′ is a link in ∂H and has a canonical framing induced by its regular
neighborhood in ∂L ⊂ ∂H . Indeed such a neighborhood is a union of bands collapsing on ∂P ′

so that any curve running parallel to a component c of ∂P ′ can be described by an integer if the
neighborhood of c in ∂L is an annulus and by an half-integer otherwise.

Step 3. To each region Ri we associate the block Ri × D2 (if Ri is not orientable one chooses
the twisted disc bundle over Ri, which is unique since Ri collapses on a graph). Then we glue
it along ∂Ri × D2 on ∂H , by sending ∂Ri × {0} into the corresponding component of ∂P ′. The
gluing map is then completely described once one determines how many twists the image of the
framing ∂Ri × {1} performs with respect to the framing of ∂P ′ ⊂ ∂H , and this is specified by the
gleam of Ri.

The above thickening procedure proves part of the following:

Theorem 2.3 (Turaev [18]). Let P be a simple polyhedron and P ′ be the regular neighborhood of
Sing(P ) in P . It is possible to canonically thicken P ′ to an oriented 4-manifold M(P ′,∅) composed
of 0 and 1-handles in which P ′ is locally flat and properly embedded. If P is equipped with gleams
gl, it is possible to extend the thickening to P in a canonical way obtaining a flat embedding in an
oriented 4-manifold M(P,gl) collapsing on P . Moreover, if P is embedded in a 4-manifold M , and
gl is the gleam induced on P by its embedding (see Subsection 2.2) then M(P,gl) is diffeomorphic
to a neighborhood of P in M .

Example 2.4. If P is a spine of an orientable 3-manifold N , its mod 2 gleam is zero. By performing
the construction above, using as gleam on P the 0 gleam over all the regions, we get the manifold
N × [−1, 1].
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Example 2.5. To construct a surgery presentation of the pair (∂M(P ′,∅), ∂P ′) it is sufficient to
start from a diagram of P constructed as explained in Subsection 2.1, choose a maximal tree
T in Sing(P ) = Sing(P ′), and encircle with 0-framed meridians all the three-tuples of strands
running over edges not belonging to the tree (see Figure 5). It is remarkable that the choice of the
over/under crossings in the construction does not affect the resulting pair. If P is special, ∂M(P,gl)

is then obtained by integral Dehn surgery over the so-constructed pair.

0

0

0

Figure 5. How to pass from a diagram of P ′ to a surgery presentation of (∂M(P ′,∅), ∂P ′).

Remark 2.6. All the 4-manifolds obtained by thickening the polyhedra equipped with gleams
as in Theorem 2.3 are 4-handlebodies, i.e. admit a handle decomposition containing no handles
of index greater than 2. It can be shown that also the reverse holds: any 4-handlebody can be
obtained by applying Theorem 2.3 to a suitable polyhedron equipped with gleams (see [4]) .

Definition 2.7 (Shadows of 4-handlebodies). A polyhedron equipped with gleam (P, gl) is a
shadow of a 4-manifold M if M is diffeomorphic to the thickening M(P,gl) of (P, gl) obtained
through Theorem 2.3.

2.4. Shadows of closed 4-manifolds. By Remark 2.6, shadows can be used to describe combi-
natorially only a subset of all the smooth 4-manifolds not including closed ones. To obviate to this
apparent weakness of the theory, let us recall the following result due to F. Laudenbach and V.
Poenaru ([11]):

Theorem 2.8. Let M be an oriented, smooth and compact 4-manifold with boundary equal to S3

or to a connected sum of copies of S2 ×S1. Then, up to diffeomorphisms, there is only one closed,
smooth and oriented 4-manifold obtained by “closing M”, that is, by attaching to M some 3 and
4-handles.

Roughly speaking, the above result states that when a manifold is “closable”, then it is in a
unique way. This allows us to describe all the closed 4-manifolds by means of polyhedra with
gleams: given a closed manifold equipped with an arbitrary handle decomposition, considering the
union of all handles of index strictly less than 3 we get a new manifold M which admits a shadow
and can be described combinatorially as explained in Subsection 2.3. The initial manifold can be
then uniquely recovered from M because of Theorem 2.8. With a slight abuse of notation, we then
give the following definition:

Definition 2.9 (Shadows of closed manifolds). A polyhedron with gleams (P, gl) is a shadow
of a closed 4-manifold X if and only if X can be obtained by attaching 3 and 4-handles to the
4-manifold M(P,gl) obtained from P through the reconstruction map of Theorem 2.3.
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±1±1

00

± 1
2 ± 1

2

∓ 1
2

Figure 6. Two simplifying tricks removing a vertex.

Hence a necessary and sufficient condition for a pair (P, gl) to be a shadow of a closed 4-manifold,
is that ∂M(P,gl) is either S3 or a connected sum of copies of S2 × S1.

We will often use the three simplifying moves of Figure 6 whose effect on a polyhedron P is
to produce a simpler polyhedron (possibly with boundary and hence retractible on some sub-
polyhedron) whose thickening is diffeomorphic to M(P,gl). The first one produces a region with
boundary which can then be collapsed, the remaining two region are locally capped with two 0-
gleam discs. The other two, delete a region with gleam ± 1

2 changing the gleams of the neighboring
regions by the amounts prescribed in the rectangular boxes. The idea of the proof of the fact that
these moves do not change the 4-thickening of the polyhedra is based on the observation that the
local patterns to which the moves apply may be viewed as the mapping cylinders of the projections
into a disc D2 ⊂ B4 of some strands of links contained in S3 = ∂B4; stated using Turaev’s notation
[18], these patterns are the shadows projections in D2 of the strands of the links. Then, the first
move corresponds to the application of the second Reidemeister-move to the strands while the
other two are instances of the first Reidemeister-move.

3. Complexity of 4-manifolds

Definition 3.1 (Complexity of closed manifolds). Let X be a closed, orientable, smooth 4-
manifold. The complexity of X , denoted c(X), is the least number of vertices in a shadow of X .

The above definition is quite natural and represents the straightforward translation to the 4-
dimensional case of Matveev’s complexity of 3-manifolds ([13]), based on spines. One of its funda-
mental properties is indeed shared by this notion:

Proposition 3.2. Complexity is sub-additive under connected sum, that is if X1 and X2 are closed
4 manifolds then c(X1#X2) ≤ c(X1) + c(X2).

Proof of 3.2. Let (Pi, gli), i = 1, 2 be shadows of Xi. Connecting them through an arc whose
endpoints are in the interior of two regions and then “pushing our fingers along the arc”, we
produce a new (connected) shadow, called P1 +P2 from Turaev ([18]) and containing c(P1)+ c(P2)
vertices. It is not difficult to guess what the gleam of P should be and to prove then that M(Pgl) =
M(P1,gl1)#∂M(P2,gl2) (where #∂ is boundary connected sum), so that closing M(P,gl) produces

X1#X2. 3.2
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We will prove that CP
2 has 0-complexity; infact, it can be easily proved that any product

F ×S2 or F ×̃S2 with F orientable surface or F ×̃S2 (with F non orientable) has complexity 0. As
a consequence, the following holds:

Corollary 3.3. There are infinitely many non-diffeomorphic 4-manifolds of complexity 0.

Remark 3.4. The fact that c(CP
2) = 0 also implies that complexity cannot be additive under

connected sum: indeed, for each closed 4-manifold X , there exists an integer k such that X#kCP
2

is diffeomorphic to nCP
2#mCP

2
for some n, m, and c(nCP

2#mCP
2
) = 0.

We stress here that the non-finiteness above described is common to Matveev’s complexity.
Indeed, in dimension 3, there are infinitely many manifolds having 0 complexity, e.g. any connected
sums of L(3, 1) with himself. The main problem is that in dimension 3 it makes sense to restrict
to irreducible 3-manifolds, while in dimension 4, smooth irreducibility is a not yet completely
understood property (see [17]). In order to keep complexity finite, the proof of Proposition 3.2
suggests to restrict to special polyhedra. In dimension 3, this is a consequence of restricting to
irreducible manifolds, so we ask the following:

Question 3.5. What is the class of 4-manifolds admitting a minimal shadow which is special?

Even if one restricts to special shadows, it is not obvious that there are only a finite number of
4-manifolds having a fixed complexity. Indeed, a priori, there could exist infinitely many gleams
on the same polyhedron P such that ∂M(P,gl) = S3#kS2 × S1, and this is indeed the case! But,
fortunately, the following remarkable result of B. Martelli [12] ensures finiteness of complexity on
special polyhedra:

Theorem 3.6. Let N and N ′ be two closed 3-manifolds and L ⊂ N a framed link. Up to diffeo-
morphism, there exist only finitely many cobordisms from N to N ′ constructed by gluing 2-handles
to N along L.

We stress here that the above result does not claim that there are finitely many slopes on L
surgering over which produces N ′: it only claims for finiteness of the resulting 4-cobordisms.

Corollary 3.7. Let P be a special polyhedron, P ′ be the polyhedron obtained by puncturing once P
over each region; let furthermore be (N, L)

.
= (∂M(P ′,∅), ∂P ′). There are only finitely many closed

4-manifolds admitting a shadow whose underlying polyhedron is P .

In what follows, we restrict to special shadows of 4-manifolds and classify all the 4-manifolds
admitting a special shadow with 0 or 1 vertex (Theorem 3.10 below).

Definition 3.8 (Special complexity). Let X be a closed and oriented 4-manifold. The special
complexity of X , denoted csp(X) is the least number of vertices of a special shadow of X .

Theorem 3.9. If a closed 4-manifold X has a shadow with k vertices and r regions which are not
discs and whose total Euler characteristic is e, then csp(X) ≤ k+2(r+2e). Moreover the following
holds:

(1) For each integer k there exists only a finite number of smooth, closed and oriented 4-
manifolds having special complexity ≤ k.

(2) If X1 and X2 are closed, oriented 4-manifolds, then csp(X1#X2) ≤ csp(X1) + csp(X2) + 4.
(3) csp(X) = csp(X), where X is X with the opposite orientation.

Proof of 3.9. The first statement is a standard fact: it is sufficient to apply some local modifications
called “0 → 2-moves” to the initial shadow in order to split the non disc regions into discs. Each
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of these moves creates 2 vertices, and the total number of these moves is bounded above by r +2e.
Fact 1 is a direct consequence the result of Corollary 3.7 and of the fact that there are only finitely
many special polyhedra with no more than k vertices. To prove Fact 2, it is sufficient to repeat the
construction of the proof of Proposition 3.2 and add two “lune moves” producing 4 new vertices,
to ensure that the final polyhedron is special. Fact 3 is a direct consequence of the fact that, if

(P, gl) is a shadow of M then, (P,−gl) is a shadow of M . 3.9

The main reason why it is interesting to restrict to special shadows is that the number of special
polyhedra with less than k vertices is finite for every k. In particular, Figures 7 and 8 summarize
respectively the complexity 0 and 1 special polyhedra.

0.1 0.2 0.3

Figure 7. The three complexity 0 special polyhedra.

1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

Figure 8. The twelve complexity 1 special polyhedra.

Theorem 3.10. The only closed, smooth 4-manifolds having 0 special complexity are S4,CP
2,

CP
2
, S2×S2, CP

2#CP
2
, CP

2#CP
2 and CP

2
#CP

2
. Moreover, there are no manifolds with special

complexity 1.
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Remark 3.11. If one restricts to simply-connected manifolds viewed up to homeomorphism, it
is not surprising that there are no new ones in complexity 1: indeed, by Freedman’s Theorem,
these manifolds are classified up to homeomorphism by their self-intersection form. Hence, since
the second homology of a shadow of a 4-manifold surjects onto the second homology of the 4-
manifold, and the maximal second Betti number of a special-complexity 1-polyhedron is 4, the
possible intersection forms obtainable using complexity one polyhedra are those already carried by
complexity 0-manifolds. What is interesting is that no exotic structure on complexity 0-manifolds
has been found in complexity one.

To prove Theorem 3.10, for each polyhedron P of Figures 7 and 8, we find all the gleams such
that ∂M(P,gl) is S3#kS2 × S1 for some k ≥ 0. Then, for each of these gleams, we prove that the
closed 4-manifold obtained by closing M(P,gl) belongs to the list above. To do that, we use a series
of results ranging from classical topology, to hyperbolic geometry to quantum topology. The next
subsection is devoted to recall these results, suitably adapted to our needs.

3.1. Useful tools.

3.1.1. “Classical” facts.

Proposition 3.12. Let (P, gl) be a polyhedron, (Ri, gli), i = i . . . n be its regions equipped with
gleams and oriented arbitrarily, and let M = M(P,gl). The following holds:

(1) H∗(P, Z) ∼= H∗(M, Z), π∗(P, x0) ∼= π∗(M, x0), for each basepoint x0 ∈ P .
(2) If H2(M ; Z) = 0, and Tors(H1(M)) 6= 0 then ∂M 6= S3, #kS2 × S1.
(3) If H2(M ; Z) = 0 and H1(M ; Z) is free then H1(∂M ; Z) ∼= H1(M ; Z).
(4) Each element of H2(M ; Z) can be represented in a unique way as a sum

∑

i kiRi, with
ki ∈ Z.

(5) Given a basis of c1 . . . ck of H2(M ; Z) with cj =
∑

1≤i≤n cj
iRi, the self-intersection form

of M can be represented by an integer matrix Q(P, gl) whose (j, l)-th entry is given by
∑

1≤i≤n gl(Ri)c
j
i c

l
i.

(6) Suppose that H1(P ; Z) = 0; then, if det(Q(P, gl)) 6= 0 then #H1(∂M ; Z) = |det(Q(P, gl))|,
otherwise H1(∂M ; Z) is infinite.

Proof of 3.12. Facts 1 and 4 are a consequence of the fact that M retracts on P and P is
a CW-complex without 3-cells. Facts 2 and 3 result from H3(M ; Z) = 0 (P contains no 3-
cells), H1(M, ∂M ; Z) = 0 (P has codimension 2 in M), from the isomorphism H2(M, ∂M) ∼=
Free(H2(M)) ⊕ Tors(H1(M)), and from the exact homology sequence of the pair (M, ∂M):

0 → H3(M, ∂M) → H2(∂M) → H2(M) → H2(M, ∂M) → H1(∂M) → H1(M) → 0

Fact 5 was proved by Turaev ([18]), and the last is a consequence of 2) and of a classical result of

Fox ([6]). 3.12

We will also use the following strong result due to Gordon and Luecke for the part regarding
S3 ([8]) and to Gabai ([7]) for the part regarding S2 × S1.

Theorem 3.13. No integer Dehn filling on a non trivial knot in S3 produces S3 or S2 × S1.

3.1.2. Hyberbolic 3-manifolds and shadows. Let P be a special polyhedron containing at least one
vertex and let P ′ be the regular neighborhood of Sing(P ) in P . By Theorem 2.3, P ′ can be
thickened (without the need of any gleams!) to a 4-manifold M(P ′,∅) diffeomorphic to a regular

neighborhood of a graph in R4 so that ∂P ′ ⊂ ∂M is a link in ∂M ∼= #kS2 × S1 (for a suitable k).
For each component of ∂P ′ we define its Z2-gleam to be the Z2-gleam of the region of P containing
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the component and its valence to be equal to the number of vertices of P ′ touching that region.
The following was proved by the author and D.P. Thurston ([5]):

Theorem 3.14. (1) The 3-manifold ∂M(P ′,∅) is a connected sum of 1−χ(P ′) copies of S2×S1

in which the link ∂P ′ has hyperbolic complement whose volume is 2|χ(P ′)|V oloct, where
V oloct is the volume of the regular hyperbolic octahedron.

(2) There is a maximal set of sections of the cusps of ∂M(P ′,∅) − ∂P ′ such that the torus
corresponding to a component of ∂P ′ whose valence is q is the one depicted in the left part
of Figure 9 if its Z2-gleam is zero and in the right part otherwise.

(3) The manifold M(P,gl) is obtained by attaching 2-handles to M(P ′,∅) along ∂P ′, and hence
∂M(P,gl) is obtained by an integer Dehn filling of ∂M(P ′,∅) − ∂P ′.

2

2
2

q

q

Figure 9. The shapes of the section of a cusp of ∂M(P ′,∅) − ∂P ′.

Let us recall the following results of I. Agol ([1]) and M. Lackenby ([10]):

Theorem 3.15. Let N be a hyperbolic 3-manifold with cusps and let c be a fixed section of a cusp
of N . Gluing a solid torus to c through an homeomorphisms sending the meridian of the torus to
a geodesic whose length is > 6, produces a 3-manifold N ′ which is hyperbolike.

Theorem 3.16 ([1]). Let N be a hyperbolic 3-manifold with cusps, Ci, i = 1, . . . n be embedded
sections of all the cusps cutting out of N volumes v1, . . . vn and sli, i = 1, . . . n be minimal length
geodesics in Ci. Let s be any subset of {1, . . . n} and Ns be a Dehn filling on N along the cusps
Ci, i ∈ s. If for each i ∈ s the distance between the i-th slope of the Dehn filling and sli is greater
than 18

vi
then Ns is hyperbolike.

The following was proved in [2] as a corollary of Theorem 3.14 and Theorem 3.15:

Corollary 3.17 ([2]). Let (P, gl) be a standard shadow such that for each region R of P it holds
|gl(R)| + v(R) ≥ 6. Then the manifold ∂M(P,gl) is Haken or word hyperbolic, and hence is not S3

or #kS2 × S1.

3.1.3. State-sum quantum invariants. Given a shadow (P, gl) it is fairly easy to compute Reshetikhin-
Turaev invariants of ∂M(P,gl) as combinatorial state sums. Instead of plunging into the theoretical
aspects of these invariants we limit ourselves to define these invariants through explicit coefficients

in C (see [18] for a complete account). Let r ≥ 3 be an integer and t
.
= e

2πi
r ∈ C; for each n ∈ N

let:

[n] =
tn − t−n

t − t−1
, [0] = [1] = 1

[n]! =
∏

0≤i≤n

[i]

Let us define complex-valued functions on N

2 as follows:

wj = (
√
−1)2j

√

[2j + 1]
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We say that a triple (i, j, k) of elements of N

2 is admissible if the following conditions are satisfied:

i + j ≥ k, i + k ≥ j, j + k ≥ i

i + j + k ≤ r − 2, i + j + k ∈ N

For any triple of elements of N

2 we define

∆(i, j, k) =

√

[i + j − k]![i + k − j]![j + k − i]!

[i + j + k + 1]

if the triple is admissible and zero otherwise. Finally, for any 6-tuple of elements of N

2 we define
its 6j-symbol as follows:

(

i j k
l m n

)

=
∑

z∈Z

(
√
−1)−2(i+j+k+l+m+n)∆(i, j, k)∆(i, m, n)∆(j, l, n)∆(k, l, m)(−1)z[z + 1]!

[z−i−j−k]![z−i−m−n]![z−j−l−n]![z−k−l−m]![i+j+l+m−z]![i+k+l+m−z]![j+k+m+n−z]!

where the sum is taken over all z such that all the arguments of the “quantum factorials” in the
denominator of the r.h.s. are non negative. Let furthermore:

W
.
=

√
2r

t − t−1
S

.
= W−1

∑

0≤i≤ r−2
2

(wi)
4e2π

√−1(i− j(j+1)
r

)

We define a coloring on a special polyhedron (P, gl) as an assignment of an element of N

2 to each

region of P . Given a coloring on P , for each region R let w[R]
.
= wje

2π
√
−1gl(R)(i− i(i+1)

r
) where

j is the color of Ri; similarly, to each vertex we associate its 6j-symbol where (i, j, k, l, m, n)
are the colors of the regions around the vertex and (i, l) (j, m) and (k, n) are the pairs of colors
corresponding to regions which, near the vertex, intersect only in the vertex itself. Finally, let
sign(P, gl) be the signature of the self intersection form of H2(M(P,gl); Z), and nul(P, gl) be the
dimension of the maximal real subspace of H2(M(P,gl); R) contained in the annihilator of the form.
The state sum of (P, gl) is:

|(P, gl)|r = W 1−χ(P )−nul(P,gl)S−sign(P,gl)
∑

colorings

∏

regions

w[R]
∏

vertices

(

i j k
l m n

)

Theorem 3.18 (Turaev [18]). Let N be a 3-manifold and (P, gl) be such that N = ∂M(P,gl).
Then |(P, gl)|r is an invariant of N denoted |N |r: if (P ′, gl′) is another polyhedron such that
N = ∂M(P ′,gl′) then |(P ′, gl′)|r = |(P, gl)|r. Moreover, if N = S3#kS2 × S1 for some k ≥ 0 then
|N |r = 1, ∀r ≥ 3.

Remark 3.19. (1) The normalization we used, slightly differs from Turaev’s original one to
better suit our need of identifying polyhedra with gleams describing “closable” 4-manifolds.

(2) The gleam of P is irrelevant for the selection of the admissible colorings so that the explicit
form of the state sum |(P, gl)| does not change if one changes gl. This allowed us to perform
extensive computer based calculations of Reshetikhin-Turaev invariants of ∂M(P,gl) for a
fixed polyhedron with varying gleams.

3.2. Classification of low-complexity 4-manifolds.
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3.2.1. 0-complexity 4-manifolds. In this subsection we prove the first part of Theorem 3.10 by
means of a case by case analysis. More precisely, for each polyhedron P of Figure 7 we will list all
the possible gleams such that ∂M(P,gl) = S3#kS2 × S1. Then for each of these gleams we identify
the 4-manifold obtained by closing M(P,gl).

Case 0.1. In that case π1(P ) = Z3 and H2(P ) = 0, so, by Proposition 3.12, ∂M(P,gl) cannot

have the form S3#kS2 × S1 for any gleam on P .
Case 0.2. In that case P has two regions: let R1 be the one passing once over Sing(P ) and R2

the other one; let moreover P ′ be a regular neighborhood of Sing(P ) in P and P ′
i the polyhedra

obtained by gluing the regions Ri to P ′. It can be checked that if R1 is equipped with gleam gl1
(necessarily an half integer) then the pair (∂M(P ′

1,gl1), ∂P ′
1) is (S3, T (2gl1, 2)), where T (p, q) is the

(p, q)-torus knot. In particular, ∂P ′
1 is a trivial knot in S3 only if gl1 = ± 1

2 and so by Theorem

3.13, if (P, gl) produces a “closable” 4-manifold, then gl(R1) = ± 1
2 . Hence let us now suppose that

gl(R1) = 1
2 (up to reversing the orientation of M(P,gl) we can do that); notice that H2(P ; Z) = Z

and is generated by the cycle represented by 2R1 + R2 whose self intersection is gl(R2) + 4gl(R1)
(see Proposition 3.12). Hence by Fact 6 of Proposition 3.12 it must hold: 2 + gl(R2) = ±1 or
2 + gl(R2) = 0, and so gl(R2) is in {−1,−2,−3}. It is not difficult to check that in these cases,
using the tricks of Figure 6, P can be simplified to a sphere with gleam respectively 1, 0,−1. Such

spheres are shadows respectively of CP
2, S4 and CP

2
. Hence P with gleam (1

2 ,−1) is a shadow of

CP
2, with gleam (1

2 ,−2) of S4 and with gleam (1
2 ,−3) of CP

2
.

Case 0.3. Let R1, R2 and R3 be the regions of P oriented so that R1+R3 and R2 +R3 are cycles
and gli, i = 1, 2, 3 be their (integer) gleams. It can be checked that ∂M(P,gl) is the Seifert manifold

S2(gl1, 1)(gl2, 1)(gl3, 1), which, according to the classification of Seifert 3-manifolds, can be S3 or
S2 × S1 only if |gli| ≤ 3 ∀i. Moreover, in the chosen basis of H2(M(P,gl)) the self intersection
matrix of M(P,gl) is (see Proposition 3.12):

(

gl1 + gl3 gl3
gl3 gl2 + gl3

)

Hence, by Fact 4 of Proposition 3.12, it must hold (gl1 + gl3)(gl2 + gl3) − gl3
2 = ±1, 0. In

particular it turns out that, up to symmetries of P and multiplication by −1 of gl (which changes
the orientation of M(P,gl)), the only cases are: (k, 0, 0), (1,±1, k), with k ∈ {−3,−2,−1, 0, 1, 2, 3}.
A case by case study shows that in the first family, k has to be in {−1, 0, 1} producing respectively

CP
2
, S4, CP

2; the only interesting cases of the second family turn out to be (1,−1, 1) and (1,−1, 3)

which give S2 × S2, (1,−1, 0) and (1,−1, 2) which give CP
2#CP

2
, (1, 1, 0) and (−1,−1, 0) which

give CP
2#CP

2 and CP
2
#CP

2
respectively.

3.2.2. Complexity 1 four manifolds. Let us first clarify the general strategy we follow for each
polyhedron P of Figure 8. Let R1, . . . Rn be the regions of P , P ′ the regular neighborhood of
Sing(P ) in P and, for each subset s of {1, . . . n}, let Ps be the polyhedron obtained by gluing to
P ′ each region Ri with i ∈ s. By Theorem 3.14 the manifold ∂M(P ′,∅) is hyperbolic with n cusps
and gluing back a region Ri to P ′ corresponds to performing an integer Dehn filling along the i-th
cusp. We want to list all the possible gleams on P such that ∂M(P,gl) is S3#kS2 × S1 for some
k ≥ 0: this brings us produce a finite list of non-hyperbolic (possibly partial) Dehn fillings of P ′

by recursively applying Theorem 3.16; our main tool is Jeff Week’s Snappea [20]. So, starting from
the hyperbolic manifold ∂M(P ′,∅) (s = ∅), we iterate the following algorithm:
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(1) Choose sections Ci, i /∈ s of the given hyperbolic manifold, let vi, i /∈ s be the volumes
they cut out of the manifold and let gi, i /∈ s be the gleams on the regions Ri corresponding
to integer Dehn fillings along shortest geodesics in Ci.

(2) For each cusp Ci, i /∈ s, perform the following steps. Let si = s ∪ {i} and for each integer
j such that − 18

vi
≤ j ≤ 18

vi
, let gl(Ri) = gi + j and glsi

be the set of gleams on the regions

with indices in s ∪ {i}:
• If ∂M(Psi

,glsi
) is not hyperbolic, add (Psi

, glsi
) to the list of non-hyperbolic fillings of

M(P ′,∅).
• If it is hyperbolic and has non empty boundary, apply Step 1 to ∂M(Psi

,glsi
) otherwise,

if j < 18
vi

increase j, otherwise choose another cusp Ck with k ∈ {1, . . . , n} − i and
follow Step 2.

The result of the above algorithm will be in general a finite list of non hyperbolic 3-manifolds
possibly with boundary. If all the manifolds in the list are closed, one has a finite number of
cases to check: in particular, we did it using Theorem 3.18. In what follows, a clever use of the
tools of Subsection 3.1 allowed us to treat the cases when some element of the list has non-empty
boundary and show that in fact if a 4-manifold has a complexity 1 special shadow, then it also has
a complexity 0 one. It is worth to note that the above general algorithm was necessary only in few
cases since most of the polyhedra of Figure 8 can be studied “by hand”: let us then start from the
easiest cases.

Cases 1.1-. . . -1.5. In all these cases H1(P ) is a finite, non-trivial group an so by Proposition
3.12 there is no gleam on P such that ∂M(P,gl) = S3#kS2 × S1 for some k ≥ 0.

Cases 1.6-1.7. In these cases P has only one region whose valency is 6. By Corollary 3.17
there is no gleam on P such that ∂M(P,gl) = S3#kS2 × S1.

Case 1.8. Let R1 be the region whose valency is 5, R2 the other one and gli, i = 1, 2 their
gleams. Since the Z2-gleams of R1 and R2 are respectively 1 and 0, then gl1 ∈ Z

2 and gl2 ∈ Z.
Following the general algorithm, we obtain a finite list of pairs (gl1, gl2) such that M(P,gl) is
closed and non-hyperbolic and only one non-closed case: (P ′

2, gl2 = 0). Using our state-sum
formulation using Reshetikhin-Turaev invariants with r = 5, 7, 9 (see Theorem 3.18) we excluded
all the closed cases. The non-closed case corresponds to the infinite family of gleams on P of the
form gl = (gl1, 0), gl1 ∈ Z

2 all of which can be simplified by the upper trick of Figure 6 obtaining

a contractible shadow of S4.
Case 1.9. This case is similar to the preceding one. Let R1 and R2 be respectively the

valency 5 and 1 regions of P , and gli, i = 1, 2 be their gleams (note that in this case gli ∈
Z, i = 1, 2). The general algorithm gives a list containing only two non-closed non-hyperbolic
manifolds and a finite number of closed ones. As in the preceding case, using Theorem 3.18 we
excluded all the closed ones. The first non closed non-hyperbolic manifold is ∂M(P ′

2,0) whose

Dehn fillings correspond to pairs (P, gl) with gl = (gl1, 0), gl1 ∈ Z which can be simplified
to a contractible shadow of S4 using the upper trick of Figure 6. The second non-hyperbolic
manifold is ∂M(P ′

1,0); using S. Matveev’s Recognizer [15], we checked that this manifold has JSJ-

decomposition D2(2, 1)(3,−2)∪ N2 ∪ D2(2, 1)(3,−2), and contains two incompressible tori which
can be compressed only if the Dehn-filling on the boundary corresponds to the 0 gleam on R2. But
since S3#kS2 × S1 are atoroidal, gl2 = 0 which falls in the preceding case.

Case 1.10. Let R1 be the valency 4 region, R2 and R3 the remaining two (they are exchangeable
through a symmetry of P ). It is easy to check that H1(P ; Z) = 0 and H2(P ; Z) = Z with generator
represented by R1. By Proposition 3.12, it must hold gl1 = 0 or gl1 = ±1, then, up to multiplying gl
by −1, we reduce to study two manifolds: ∂M(P ′

1,0) and ∂M(P ′

1,1). Using S. Matveev’s Recognizer,
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one sees that the first one has JSJ decomposition N2 ∪ N2 (where N2 is the product of a thrice
punctured sphere with S1), and contains two incompressible tori, which can be compressed only if
at least one of gl2 and gl3 is zero, in which case (P, gl) can be simplified using the upper trick of
Figure 6 obtaining a shadow which is a sphere equipped with a gleam equal to gl1. On the contrary,
∂M(P ′

1,1) is hyperbolic and can be treated using the general algorithm. The result is a finite list of
closed non-hyperbolic manifolds which can be excluded using Theorem 3.18, and two non-closed
non-hyperbolic manifolds corresponding respectively to (P ′

1,2, (1, 0, ∅)) and (P ′
1,3, (1, ∅, 0)) which

can be simplified using the tricks of Figure 6.
Case 1.11. Let Ri i = 1, 2, 3 be the region of valency i in P . The 4-manifold M(P,gl) has a

handle decomposition induced by P such that the two 1-handles induced by the edges of P are
annihilated by the two 2-handles corresponding to R1 and R2. Hence ∂M(P ′

1,2,(gl1,gl2,∅)) is the

complement of a knot k in S3, so, by Theorem 3.13, we search for the cases when k is the trivial
knot. To do this, we calculated the Alexander polynomial of k using gl1 and gl2 as parameters
and Turaev’s surgery formulas for Reidemeister torsion ([19]). It holds:

∆(k) =
t + t2 + t3c1 + t(3c1+2c2+1) + t(6c1+2c2−1) + t(6c1+2c2)

(1 + t)(1 + t + t2)

c1
.
= gl1 +

1

2
, c2

.
= gl2 −

1

2
It is easy to check that the above fraction defines an element of Z[t, t−1] well defined up to products
by t±1. Then, to find the cases when k is an unknot we study when ∆(k) = tr for some r. To do
that, we associate to ∆(k) its span, that is, the (well defined) difference between the highest and the
lowest degree in any of its expressions as an element of Z[t, t−1]. It is simple to see that this span
depends on gl1 and gl2 as a piecewise affine function; a careful analysis of all the possible combina-
tions of (gl1, gl2) shows that span(∆(k)) = 0 only in four cases: (− 1

2 , 3
2 ), (− 1

2 , 1
2 ), (1

2 ,− 1
2 ), (1

2 ,− 3
2 ).

But in each of these cases |gl1| = 1
2 , hence, using the lower-left trick of Figure 6, the polyhedron

can be simplified obtaining the polyhedron 0.2 of Figure 7.
Case 1.11. Let R1 and R2 be the two valency 2 regions of P and R3 and R4 the remaining two:

it is easy to see that there are symmetries of P exchanging them in pairs. If either gl3 = ± 1
2 or

gl4 = ± 1
2 then P can be simplified obtaining the special complexity 0 polyhedron, hence, we exclude

from now on all the quadruples of gleams satisfying one of the above equalities. The application of
the general algorithm produces again a finite list of closed non-hyperbolic Dehn fillings of ∂M(P ′,∅)
and of non-closed ones. The former can be shown to be different from S3#kS2 × S1 by means
of Theorem 3.18. To exclude that the latter have integer Dehn fillings of that form, we use the
following facts:

(1) If S is a Seifert 3-manifold having the homology of S3 (S2×S1), then S = S3 (S = S2×S1)
iff its base orbifold is S2, its singular fibers are not more than 3 and their degree of
singularity is at most 3.

(2) The determinant of the self-intersection matrix of M(P,gl) is (gl1 + gl3 + gl4)(gl2 + gl3 +

gl4) − (gl3 − gl4)
2 and, by Proposition 3.12, it has to be either 0 or ±1.

(3) gl1, gl2 ∈ Z and gl3, gl4 ∈ Z

2 .

Up to symmetries of P and multiplication of gl by −1, the list of (partial) non-closed non-hyperbolic
Dehn-fillings is encoded by the following quadruples of gleams on P : (0, ∅, ∅, ∅), (2,−2, ∅, ∅),
(1, ∅, ∅, ∅), (2, ∅,− 3

2 , ∅), (2,−3,− 5
2 , ∅), (2,−3, 3

2 , ∅), (3, 3,− 3
2 , ∅), where we denoted by ∅ the non-

filled regions. Using S. Matveev’s Recognizer, one sees that the integer Dehn fillings of the first
two quadruples are S2(gl2,−1)(2gl3,−gl3 + 1

2 )(2gl4,−gl4 + 1
2 ) and S2(2, 1)(2gl3, 2)(2gl4, 2) respec-

tively. Using the above three facts, one can show that these Dehn fillings are “closable” if and only
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if either gl3 = ± 1
2 or gl4 = ± 1

2 which we excluded from the beginning. Similarly, a Dehn filling

corresponding to (1, gl2, gl3, gl4) gives D2(gl3 + 1
2 ,−1)(gl4 + 1

2 ,−1) ∪ D2(2, 1)(gl2 + 1, 1) which

contains an incompressible torus unless either gl3 or gl4 are ± 1
2 . The quadruples (2, gl2,− 3

2 , gl4),

(2,−3,− 5
2 , gl4), (2,−3, 3

2 , gl4) satisfy the equation of Fact 2 above, only in a finite number of cases,

all of which can be excluded by means of Theorem 3.18. The last quadruple (3, 3,− 3
2 , gl4) satisfies

the determinant equation for all gl4, but it can be checked that H1(∂M(P,gl); Z) has always torsion

unless gl4 = − 3
2 or gl4 = − 5

2 ; these two cases can then be excluded by means of Theorem 3.18.

3.3. Higher complexity manifolds and exotic pairs. Let us provide some examples of 4-
manifolds having higher special complexity. Some “trivial” examples can be obtained by applying
Theorem 3.9: each connected sum of a pair of special complexity 0 manifolds has special complexity

at most 4; more in general, the special complexity of kCP
2#hCP

2
is bounded above by 2k + 2h.

A first non-trivial example is RP
2×̃S2: his special shadow with 2-vertices can be constructed by

applying Theorem 3.9 to its non special shadow whose underlying polyhedron is obtained from 0.3
of Figure 7 by gluing two discs with gleams ±1 and one Möbius strip. More in general, if F is a
genus g-surface, the manifold F ×S2 has special complexity bounded above by 4g if F is orientable
and by 4g + 2 otherwise. Defining the complexity of a pair of manifolds as the maximum between
the complexities of the two manifolds, the following natural question arises:

Question 3.20 (Complexity of exotic pairs). Which is the pair of homeomophic but non diffeo-
morphic closed/non-closed 4-manifolds with the lowest complexity/special complexity?

We now produce upper estimates to the answer of the above question in the case of non-special
complexity for closed manifolds and in the case of special complexity for non-closed ones.

It is not difficult to provide upper estimates for the non-special complexity of a class of notable
closed 4-manifolds: the elliptic surfaces E(n). Using a Kirby-calculus presentation of these mani-
folds (see [9], Theorem 8.3.2), one can check that c(E(n)) ≤ 6n + 2. Then, an example of “exotic”

4-manifold with non-special complexity ≤ 14 is E(2)#CP
2

which is homeomorphic but not diffeo-

morphic to 3CP
2#20CP

2
(whose complexity is 0). Hence an upper estimate for the answer of the

above question in the closed case for the non-special complexity is 14; we expect such an estimate
to be non-optimal and that lower complexity examples will be found.

In sharp contrast with the empty boundary case, examples of homeomorphic but non diffeomor-
phic 4-manifolds with boundary are much easier to provide: the 4-thickening of the polyhedron
1.10 of Figure 8 equipped with gleams (−1, 1, 2) (using the notation of Subsection 3.2.2) admits a
non-diffeomorphic model having a special shadow with 3-vertices (see [9], Theorem 11.4.8). Hence,
in particular an upper estimate for the answer of the above question is 3 even in the case of special
complexity.
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