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Abstract

Scalar functions of three variables, w = f(z,y, ),
are common in many types of scientific and medical
applications. Such 8D scalar fields can be understood
as elevation maps in four dimensions, with three in-
dependent variables (z,y,z) and a fourth, dependent,
variable w that corresponds to the elevations. We show
how techniques developed originally for the display of
3-manifolds in 4D Euclidean space can be adapted to
visualize 3D scalar fields in a variety of ways.

1 Introduction

We examine the problem of visualizing scalar func-
tions of three variables, or 3D scalar fields. We adopt
the point of view that, just as scalar functions of one
and two variables can be viewed as elevation maps in
2D and 3D Cartesian coordinate systems, scalar func-
tions of three variables are elevation maps in a 4D
coordinate system, where the value of the function is
identified with the fourth dimension.

That is, if we can visualize y = f(z) as a curve in
a 2D Cartesian plane, and z = f(z,y) as a 3D surface
viewable from oblique angles in 3D space, then the
function w = f(z,y,2) should be representable as a
4D volume (technically, a 3-manifold embedded in 4D
Euclidean space) viewable from oblique angles in 4D
space.

Previous Work. Surfaces of the form z = f(z,y) in
3D space may be represented graphically in a variety
of ways, including contour plots in a plane, elevation-
keyed pseudocolor plots in a plane, oblique views of
rectangular grids projected onto the surface, oblique
views with elevation-keyed surface pseudocolors, and
shaded surface rendering. For volume data of the
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form w = f(z,y, z), extensive attention has been paid
to the 3D analogs of 2D contour plots and pseudo-
color maps: see, for example, various methods for
constructing isosurfaces [11, 1], viewing color-coded
density data [14, 12, 6], making easily visible pseudo-
color maps [13], and exploiting transport theory [10)].
However, except for some exploratory efforts (see, e.g.,
[4, 9]), the analogs of elevation maps for 3D scalar
fields have not been pursued to their logical comple-
tion.

The purpose of this paper is to extend methods de-

veloped for the rendering of mathematical 3-manifolds
embedded in 4D Euclidean space [3, 15, 7, 8] to cre-
ate a more complete family of volumetric analogs of
the standard elevation map techniques used for surface
representation.
Approach. We suggest that new insights into the
properties of 3D scalar fields can be achieved by utiliz-
ing the information redundancy present in 4D-rotated
pseudocolor volume grids, and by rendering the cor-
responding 3-manifolds using 4D lighting and shading
rules. In particular, the following features of the 4D
treatment of 3D scalar fields do not seem to have been
fully exploited previously:

¢ Grid Planes. Grid lines in 3D plots corre-
spond to the lines (x = constant, y = constant)
that divide the surface z = f(z,y) into square
patches. The 3-manifold w = f(z,y,z) is anal-
ogously divisible into cubic patches by the grid
planes, (z = const, y = const, z = const).

Just as tilted grid lines are useful in standard 3D
grid plots to give depth cues in 3D, the distortions
of the grid planes resulting from 4D rotation of
the viewpoint provide strong geometric cues.



¢ Hidden Volume Removal. Clarity is enhanced
in 3D by removing hidden surfaces, so that sur-
faces nearer to the viewpoint occlude those far-
ther away. This is equivalent to making the sur-
face stretched between grid lines opaque and car-
rying out z-buffered rendering. In 4D, the grid
planes enclose volumes rather than areas. Thus,
the equivalent procedure in 4D is to use 4D depth
buffering (w-buffering) relative to a 4D viewpoint
to carry out hidden volume removal. This will
cause various pieces of volumes to disappear from
the voxel array after 4D rotation because they
become occluded by nearer neighbors.

¢ Shading Using 4D Light. There is intrinsic
information present in a 3D scalar field viewed as
a 4D elevation that is not revealed by projecting
level sets to 3D and using 3D lighting. By ap-
plying 4D lighting, shading, and specularity algo-
rithms in the manner of [7, 8] while projecting to
the 3D voxel array, we can produce a uniquely in-
formative set of shading patterns. In particular,
portions of the hypersurface that face in similar
directions in 4D can be clearly perceived, so infor-

mation about derivatives can be visualized more
readily.

In the remainder of the paper, we first give graph-
ical examples of a number of standard methods for
handling 2D scalar fields that we will refer to when
constructing analogies for 3D scalar fields. We then
describe 4D analogs of 3D methods for viewing ele-
vation grids, outline 4D shading methods, and show
some examples.

2 Three-Dimensional Shape Plots

Functions of the form 2 = f(z,y) can be displayed
using standard software packages such as NCSA Im-
age, Mathematica, gnuplot, etc., to show the shape of
the function. Here, by way of introduction to the 4D
methods, we show a family of standard 3D plotting
methods generated by the PAW package [2].

Let us take as examples the equations

z = y/max(0,1 — z% — y?) (1)

for a hemisphere plotted in the range —1 < r < 1 and
-1<y<1,and

2= exp(=2" — %) + S exp(~(e +37 = (s +3)%) (2)

for a double Gaussian bump plotted in the range —5 <
z<2and -5<y<2

Then, as shown in Figures 1, 2, and 5, we can plot
the hemisphere (Equation (1)) in the following ways:

85

¢ Contours and Icons. In Figure 1(a), we show

the “straight-down” view of the hemisphere con-
tour plot. The only cues we have for the depth
are the labels or styles of the contour lines. A re-
lated method, shown in 1(b), plots icons (e.g.,
squares) whose size is keyed to the z-value at
equally spaced (z, y) grid points.

Surface Grids. In Figures 1(c) and (d), we show
oblique views of a block or “lego” representation
and of a grid-line plot with hidden surfaces re-
moved. These approaches provide additional clar-
ity to the viewer because only the nearest block
tops or patches of the tilted checkerboard pattern
are visible; areas lying on the grid behind a fore-
ground patch are hidden from view. In 1(d), the
distorted projections of individual outlines that
are perfect squares in the straight-down view (see
5(c)) also give additional depth information.

Pseudocolor Contours. Representing the con-
tours as color areas instead of grid lines, as in
Figure 5(a), makes it easier to distinguish limited
ranges of elevation if the color map is carefully
chosen. No geometric cues are present.

Oblique Pseudocolor Contour. In Figure
5(b), we combine the information in the pseudo-
color contour plot with the geometric cues of an
oblique view of the colored surface without a grid.
This provides very useful redundant cues for the
function values, since both the color and the 3D
aspect of the image contain similar information
about z.

Pseudocolor Straight-Down Grid. In Figure
5(c), we superimpose a straight-down view of the
grid outline, seen obliquely in Figures 1(d) and
5(d), on the pseudocolor contours. Again, no ge-
ometric cues are present.

Pseudocolor Oblique Grid. However, if we
make an oblique view, as in Figure 5(d), we get
additional information, now triply redundant: the
color, the hidden surface effect, and the distortion
of the grid lines. This image is the richest we can
construct because it exhibits the shape informa-
tion to the viewer in multiple modes with little
ambiguity.

Shaded Specular Surface. In Figure 2, we
show how the shaded hemisphere would appear
from an assortment of viewpoints. As we move
from the straight-down viewpoint Figure 2(a),



.. - . -

spoo0D0DOG
-0p00000D0GoD -
s000000000DO
000000000000
00000000000000
«000000¢°

an [ an |

o000000000000¢0

» 000000000000«
c0p00000006ao
-opoOo000O0O -

»
]

-
D
~
-~
(- K]
-~

Figure 1: Line-drawing approaches to displaying the 3D structure of a hemisphere, a simple example of a 2D
scalar field given by Equation (1). (a) Straight-down contour map. (b) Straight-down variable-size icon map. (c)
Oblique block or “lego” map. (d) Oblique grid line elevation map. (PAW images {2].)

which has no occlusion, to a very oblique view-
point Figure 2(d), we see the hemisphere “rising
out of the background,” in a manner of speaking.
The most oblique view has the most occlusion,
and also shows the profile of the highest elevation
points dramatically. The regions with high spec-
ular reflection give additional cues about surface
orientation.

Next, we show in Figure 6 a similar sequence of
displays for the double Gaussian bump, Equation (2).

¢ Grid. As shown in Figure 6(a), we can get a
very good image of the 3D structure using just the
oblique perspective of the bare grid with hidden
surfaces removed.

¢ Pseudocolor. Adding pseudocolor to a perspec-
tive view with no grid structure as in Figure 6(b)
gives dual cues — the oblique view of the eleva-
tion with hidden surfaces removed, and the re-
dundant color assignment of each elevation con-
tour.

¢ Pseudocolor Grid. The distortion of the grid
squares in the oblique projection adds a third cue,
as shown in Figure 6(c).

¢ Shaded Specular Surface. In Figure 6(d), we
assume a reflective surface, introduce 3D light-
ing, and use standard shading techniques [5] to
create a shaded scene rendering. This image has
a very natural aspect, and contains information
about the shape of the surface that is compelling
for most viewers. This shaded view contains in-
formation about the surface orientation that is
more explicit than in the other methods.
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3 Four-Dimensional Shape Plots

Figures 1(a), 1(b), 2(a), 5(a), and 5(c) are the sim-
plest examples of 2D scalar field representations. The
data plots were generated by looking “straight down”
at the data and visualizing the values of the eleva-
tions in various ways with this constraint. Analogs
of each of these depictions can be constructed for 3D
scalar fields as well. For example, contour lines for
3D scalar fields are basically nested shells produced
by an isosurface construction algorithm [11, 1]. If we
add pseudocolor to indicate where the level sets are lo-
cated within the volume, we can use the “tiny cubes”
algorithm of Nielson et al. [13] to make the interior
voxels of the cube visible.

3.1 Pseudocolor 4D Hemisphere
We can easily define a 4D analog of the hemisphere
we used for illustration in Figures 1, 2, and 5 as

w = y/max(0, 1 — 22 — y2 — 22) . 3)

The 4D analog of the 3D method used to pro-
duce Figure 5(c) gives the cubic representation of the
“hemispherical” 3D scalar field shown in the upper
left of Figure 7. Here the pseudocolored cubic lattice-
work is an undistorted “3D checkerboard,” just as the
straight-down view of the square checkerboard grid is
undistorted in Figure 5(c). We may of course choose
to alter the 3D viewpoint, but this does not alter the
actual lattice geometry.

3.2 4D “Transparent” Volume Grids

If we now rotate in 4D before projecting to 3D, we
introduce a distortion in the apparent form of the cu-
bic lattice that persists regardless of how we change
the 3D viewpoint. The image in Figure 3 shows this
effect without attempting to distinguish whether one



Figure 2: Four 3D viewpoints of the hemispherical 2D scalar field given by Equation (1). (a) is straight down, and
has no occlusion. (b) and (c) show the hemisphere as it rises from the background as we rotate the 3D viewpoint;
we begin to see some occlusion. Finally, in (d) we see a very oblique view with extensive occlusion and a profile
explicitly showing the elevation of the hemisphere above the background. (PAW images [2).)

lattice cube hides another in 4D. Figure 3 treats the
small 4D cubes making up the grid volume as trans-
parent in 4D, but opague once projected to 3D; this
makes the resulting image easier to interpret as a 3D
structure. This image is the analog of Figure 1(d) if
we displayed the surface using small tilted quadrilat-
erals with open space around the edges and did not
remove back-facing surfaces.

3.3 4D Pseudocolor Grid

By assigning a pseudocolor map to the values in
the voxel array, we can generate a volume image with
scalar values coded by color. Rotating the grid in 4D
causes these colored regions to shift in such a way
that a redundant value cue is produced, as we show in
Figure 7. The pseudocolor attached to any particular
volume element remains fixed to a particular element,
just as it did when we rotated in 3D to make the tran-
sition from Figure 5(c) to Figure 5{d). The lower right
image in Figure 7 is similar in spirit to Figures 5(d)
and 6(c) due to the three-fold redundancy of the in-
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formation display.

3.4 Hidden Volume Removal in 4D

The grid can now be rendered using 4D depth
buffering to eliminate confusion between overlapping
volumes, just as we used hidden surface elimination in
3D to make the image of Figure 1(d). A typical result
from a 4D viewpoint is shown in Figure 8. Now we see
a very strange phenomenon from the point of view of
an observer accustomed to 3D mesh plots: instead of
having tilted rectangles hidden by other tilted rectan-
gles in the foreground, we have distorted cubes that
are truncated by other opaque distorted cubes that sit
in front of them in 4D.

4 4D Illumination and Shading

Our final method is the 4D analog of the 3D shading
method used in Figures 2 and 6(d). We use lighting
and shading in four dimensions to reveal geometric
characteristics of the 3D scalar field’s elevation map.
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Figure 3: An image of a 4D hemisphere represented as a bare grid without removing hidden 4D volumes, but
treating solid cubes in the 3D projection as opaque. We show four stages in the 4D rotation.

In particular, this method provides a quick insight into
regions of the elevation map that have similar 4D nor-
mals. The details are given in Hanson and Heng [7, 8];
we provide a brief overview here for completeness.

Four-dimensional shading models with specularity
can be introduced by computing the normals at each
vertex, either by taking the gradient of the equation
defining the 3-manifold, taking the cross-product of
the three tangents to a grid point on the 3-manifold
in 4D, or averaging the normals to the volumes sur-
rounding the point. For parametric volumes, this com-
putation involves computing the three tangent four-
vectors (P,Q, R) emerging from the grid point in
“right-handed” order. The four-vector that is perpen-
dicular to this family of tangents has components that
are the cofactors of the first column of the following
determinant, which is the generalization of the cross.
product to 4D:

T A Q1 R
§ P Q: R

Det 5 Py Qs Ry (4)
w Py Q4 Ry
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To compute the normal at the grid point, we nor-
malize the four-vector N given by the coefficients of
(£,9,2,w) in Equation (4) and call that N. If all we
know are the tangents to the volumes surrounding the
vertex, we compute all the volume normals using a de-
terminant of this same form, normalize the resulting
normals, average them, and normalize again to get the
grid-point normal N.

However one finds the normal at each 4D vertex
point, the result is then used in the standard shading
equations (see [5] for 3D and [7] for additional 4D dis-
cussion). The smooth shaded term with normalized
lighting vector L,

IG=I()L'N, (5)

is added to the specular term,
. .k
Ip=1|B-N|, (6)

where B is the normalized average of the direction to
the camera and the direction to the light source. The



intensity in either term is generally set to zero if the
corresponding dot product is negative.

One then projects volume elements from the tessel-
lated 3-manifold in 4D space to a 3D view volume of
voxels, interpolates the normals from voxel to voxel,
applies the selected shading algorithm, and renders
the resulting intensity into the voxel array. Such view
volume images are 4D analogs of the 3D view plane im-
ages in Figure 2. The voxel data must itself be volume
rendered to produce an ordinary image. In Figure 4,
we apply this approach to render the hemisphere-like
3-manifold given by Equation (3).

5 Example Applications

To illustrate the application of some of our methods
to real data, we first show in Figure 9 a comparison
between two ways of rendering a set of astronomical
binary star density data. On the left is a standard vol-
ume rendering produced by the AVS “tracer” module
[16]. On the right, we show a shaded rendering of
the same data using our 4D lighting technique. Note
that our actual rendering is a volume image, which
must itself be volume rendered to produce this 2D
image; a rotating animation or a stereographic im-
age would show the internal structure of our depiction
more clearly. Previously invisible features, basically
corresponding to regions with similar 4D gradients,
are revealed by our approach.

Next we repeat the same comparison for a data
set describing the electron density of the hydrogen
molecule. The left image in Figure 10 shows a stan-
dard AVS volume rendering. On the right, we show for
comparison a 4D shaded rendering of the density ele-
vation plot. Again, we see suggestive additional struc-
ture in our 4D rendering. We have proposed many
other related 4D visualization methods as well, but
cannot present further examples of them all here; the
fundamental feature of our other methods is the sys-
tematic exploitation of redundant geometric cues in
four dimensions, as exemplified by Figures 7 and 8.

6 Remarks: 3D Fields as 4D Images

Since one of the main techniques introduced in this
paper was the creation of a volume image from 3D
scalar field elevation maps using 4D lighting and shad-
ing methods, one might imagine reversing the process.
That is, one might consider the 3D scalar field data
itself to be the result of a 4D imaging process. Given
some reasonable assumptions about what 4D lighting
parameters produced the data, one could in princi-
ple reconstruct some information about what sort of
4D object could have produced the observed image.
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Unfortunately, just what constitutes a “reasonable”
assumption is extremely ambiguous, so that we have
not been able to systematically deduce relevant inter-
pretations of 3D scalar fields as images of 4D objects
(unless, of course, the fields happen to be derived from
a 4D imaging process). This nevertheless remains an
intriguing additional approach related to the ones pre-
sented in this paper, and one which might be of use in
some special circumstances.
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Figure §: 2-D scalar field of equation (1): (@) stralght- Figure 6: Oblique views of 2-D scalar field of equation
down pseudocolor map; (b) oblique view: (c) with (2): (a) grid lines alone; (b) pseudocolor alone; (¢)
grid lines:; (d) oblique view. (PAW images (2).) both: (d) shaded 3-D rendering. (PAW images (2).)

Figure 7: 4-D rotations of pseudocolored 4-D Figure 8: Oblique view of 4-D hemisphere with
gerr&isphere. The color of each small cube remains pseudocolor grid and hidden volume elimination.
xed.

Figure 9: (Left) volume rendering of binary star Figure 10: (Left) AVS volume rendering of the
density data using the AVS tracer' module. (Right) electron density field of a hydrogen molecule.
our 4-D shaded rendering of the data. (Right) our 4-D shaded rendering of the same data.

{See color plates, p. CP-11.)
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