Automated Design of Virtual Worlds
for Visualizing Multivariate Relations

Clifford Beshers

Steven Feiner

Department of Computer Science
Columbia University
New York, NY 10027

Abstract

Interactive visualization systems provide a powerful
means to explore complex data, especially when coupled
With 3D interaction and display devices to produce virtual
worlds. While designing a quality static 2D visualization
is already a difficult task for most users, designing an in-
teractive 3D one is even more challenging. To address
this problem, we are developing AutoVisual, a research
system that designs interactive virtual worlds for visualiz-
ing and exploring multivariate relations of arbitrary arity.
AutoVisual uses “worlds within worlds,” an interactive vi-
sualization technique that exploits nested, heterogeneous
coordinate systems to map multiple variables onto each of
our spatial dimensions. AutoVisual's designs are guided
by user-specified visualization tasks, and by a catalog of
design principles encoded using a rule-based language.

1 Introduction

High-performance graphics hardware and software are
beginning to become an affordable means to visualize the
large amounts of complex data that are being produced in
a variety of quantitative fields. There are significant de-
sign tasks involved in producing an effective visualization,
however, that require expertise that practitioners in these
disciplines rarely have. Designing a visualization not only
requires skill in graphic design and data presentation, but
if the visuvalization is to be an interactive one, in which
the user can dynamically manipulate the data being repre-
sented, visualization design also entails knowing something
about how to design user interfaces. Even if the designer
has these skills, design can still take large amounts of effort
and time.

As a case in point, consider our n-Vision visualization
system and the “worlds within worlds” interaction tech-
nique that it uses [3, 4]. n-Vision provides its users with
a 3D virtual world within which they can visualize and
manipulate representations of multivariate relations. The

0-8186-2897-9/92 $03.00 © 1992 IEEE

283

“worlds within worlds” technique represents relations of
an arbitrary number of variables by recursively nesting het-
erogeneous coordinate systems (worlds). An innermost co-
ordinate system typically contains an encoding object (e.g.,
line graph, height field, or volume rendering) for which
one axis of the coordinate system represents an output vari-
able and the remaining axes represent input variables. To
accommodate additional input variables, a coordinate sys-
tem can be nested within an additional coordinate system,
each of whose axes represents a new variable. The posi-
tion of a distinguished point (e.g., the origin) of the inner
coordinate system relative to the outer coordinate system
within which it is embedded, fixes values for the variables
associated with each of the outer coordinate system’s axes.
These values are used in evaluating the inner coordinate
system’s encoding object. Further variables are accommo-
dated by recursively nesting the outer coordinate system
within additional heterogeneous coordinate systems. Fig-
ure 1 shows an inner world containing a height field nested
inside a single outer world.

n-Vision supports a rich set of interactive techniques for
manipulating a visualization. We use a 3D stereo display
(StereoGraphics CrystalEyes) and a 3D input device (VPL
DataGlove) to create the feel of a virtual world within which
the user can explore their data. Different hand gestures
allow the user to scale and rotate worlds about their origins
to view them better and to translate worlds to see the effects
of changing the values of those variables represented by
the coordinate system within which the translation occurs.
Users can further examine their data by using rools, such
as a “dipstick” that displays a precise readout of the value
at a point in a height field. Figure 1 shows the dipstick in
use.

While n-Vision was intended to be flexible, the draw-
back to its flexibility is that designing visualizations for it
can be both difficult and tedious: difficult because there
are many potential ways to visualize any relation; tedious
because choosing among the many possibilities to create
a specific visualization requires making a large number of

decisions. These problems present themselves even in the
design of static presentations of low-dimensional relations.
Increasing the number of variables and adding interaction
only compounds the problem. Designing an n-Vision vi-
sualization is actually a matter of designing an interactive
virtual world that has both appearance and behavior. Inter-
activity is a particularly important issue since an interac-
tive visualization, unlike a static one, need not present all
needed information at once. The user can instead be pro-
vided with the ability to manipulate the world to obtain the
information that is not currently being presented. The goal
is to design a visualization world that makes the required
interaction as straightforward as possible.

AutoVisual is a rule-based system that is being devel-
oped to explore how to automate the design of n-Vision’s
virtual worlds. The user specifies the visualization task,
rather than a particular visualization. AutoVisual generates
an interactive virtual world that is appropriate for the task.
Removing the difficulty of visualization design is useful for
beginning users, who do not yet understand the complexi-
ties, as well as for experienced users, who may understand
the design process, but don’t have the design expertise. Re-
moving the tedium of design is a benefit for all users. The
result is that visualizations can be constructed faster, which
is especially important in applications where the relations
being visualized and the needs of the user are constantly
changing.

There are several examples of research systems that gen-
erate visualizations of relational data. Mackinlay’s APT [8]
designs static, 2D graphs of the results of database queries.
This work has been extended by Roth and Mattis [9] to take
into account additional ways to characterize the data being
presented. Casner’s BOZ[2] also refines the paradigm used
in APT to design graphs appropriate for very specific vi-
sualization tasks. Some work has been done in generating
more complex visualizations. Senay[10] is developing a
system that will use APT’s approach to produce 3D AVS
[11] visualizations. Kochhar, Friedell, and LaPolla [7]
use a cooperative approach to generating visualizations in
which the system relies on the user to make difficult de-
sign decisions, providing a set of sample visualizations to
choose from at each choice point.

The work we describe here differs from these other ef-
forts in several ways. AuroVisual addresses the design of
interactive, rather than static, visualizations, and takes into
account how the user can manipulate individual compo-
nents in its design. Its visualizations are also unique in
addressing relations with arbitrary numbers of variables.
In addition, AutoVisual attempts to account for the cost of
user interaction time and rendering time in its rules.

284

2 Worlds within worlds

When building an automated design system, it is impor-
tant to keep the representation of the domain as simple as
possible. The worlds within worlds method, as described
above, is a medley of outer worlds, inner worlds, and tools.
In this section, we present a formalization that is both sim-
ple and homogeneous. We observe that worlds and tools
have similar functions, allowing the user to selectively re-
fine some existing graphical encoding of a relation.

Consider the similarity of the height field world and the
dipstick tool in the visualization of Figure 1. Each is a graph
that presents some subset of the relation encoded by its
parent world. The particular relation subset is determined
by the position of the graph’s origin relative to its parent.
The user can move each graph interactively throughout the
space defined by its parent. Alhough there are obvious
differences between the height field and the dipstick, such
as the type and dimension of the encoding, they operate
in basically the same manner. Thus, the most important
characteristic of worlds within worlds is that it uses graphs
as interactors.

We can now define an n-Vision virtual world as a hier-
archy of interactors. Each interactor consists of four basic
components: a set of encoding spaces, a set of encoding
objects, a set of selections, and a user interface.

An encoding space is a region where the graph is ren-
dered. In general, an encoding space may be of any di-
mension (up to three), arbitrarily positioned and oriented in
the 3D world. However, many interactors have constrained
placement; for example, the encoding space of the dipstick
is a line constrained to be within the encoding space of the
parent world and parallel to its vertical axis.

The set of encoding objects comprise the body of the
graph (e.g., a height field). An interactor may have no
encoding objects, as in the outer world of Figure 1. The
potential set of encoding objects includes almost any known
visualization technique.

A selection determines the relation encoded by the graph
interactor. It consists of a geometric subset of the encoding
space of the parent interactor. This geometric subset deter-
mines a subset of the relation encoded by the parent. The
selection may be any axis-aligned rectangular volume of a
dimension less than or equal to that of the parent interactor’s
encoding space. For example, the selection component of
the height field interactor is a point (typically the inner
world’s origin) in the coordinate system of the outer world.

Rectangular subsets can be specified with upper and
lower bounds for each variable. In addition, we allow for
a precision to be specified. Given a multivalued relation
yYm) = R(z1, ..

(yi,.. .3 Zn),

we represent the restrictions on z; with the notation:

(yl)-~-:ym) :R(zl,...,z,-[u,l,u,p],...,:c,.),

where v is a default value, ! and u are lower and upper
bounds, and p is the precision. If any of p, { or u is omitted,
a default is assumed. The value field may not be omitted,
but may contain a don'’t care value (‘="), which is used to
indicate a range. For example, z[—, 0, 1] indicates the unit
range of real numbers.

The user interface component of an interactor consists
of bindings between user actions and properties of the inter-
actor. The height field world has bindings for translation,
scaling and orientation in 3-space. The dipstick only has
bindings for translation, because its size and orientation are
determined by its parent,

All examples in this paper describe interactors with only
one selection, encoding space and encoding object. An ex-
ample of an interactor with multiple selections is a compar-
ison tool that redisplays several parent interactors in one
space. Alternatively, an interactor with multiple encod-
ing spaces may provide redundant encodings of the same
relation using different encoding methods.

3 Visualization tasks

Visualizations are always created with some purpose: to
illustrate an idea; to explore some unknown data; to find
parameters that yield an interesting curve; to compare two
functions. We call this the visualization task or visualiza-
tion goal. The user interacts with AuroVisual by specifying
visualization tasks to be performed on a set of relations.
The overall task is taken as the conjunction of all these
tasks. Thus, AutoVisual must ensure that there exists some
visualization that satisfies each task specification.

‘We use a two-part task specification: task selections and
task operators. Task selections are closely related to the se-
lection component of an interactor, in that they specify sub-
sets of a relation. Task operators are applied to task selec-
tions to refine the purpose of the visualization further. Cur-
rently, we allow operators for exploration, directed search,
and comparison. These operators correspond roughly to
Bertin’s summary, elementary, and comparative readings
respectively [1].!

Task selections

The user specifies the potential subsets of interest for a
particular task through simple constraints on the variables

1A summary reading involves viewing many values at once, while
an el tary reading dete s the value of a relation for a single set
of input parameters. A comparative reading determines the relationship
between different subsets of a relation.

285

of a relation. The syntax for task selections is similar to
that used for interactor selections. The primary difference
is that task selections allow dynamic values, not just con-
stants. A dynamic value is simply a variable, specified
as a symbol preceded by a question mark (e.g., z[2c]). A
dynamic value indicates that the user needs interactive con-
trol of that field. For example, x[2.5] specifies a specific
value, and z[—, 2, 7u, 0.01] specifies a range with dynamic
bounds.

The variable names are included in the notation so that
the restrictions may be specified in any order. In addi-
tion, any omitted variable is assumed to have the default
constraints.

Note that specifying a constant value does not prohibit
AutoVisual from representing a variable with some interac-
tor. It simply indicates that the variable has a low priority
for the user in the context of a particular task. Similarly,
specifying a range does not guarantee that AuroVisual will
provide an axis encoding that range, because there may be
no resources to do so if too many such ranges are specified.

Task operators

A task operator indicates what the user wishes to do with
a task selection. We support exploration, directed search,
and comparison operators.

Exploration has the form ezplore(S), where S is a task
selection. A user would typically choose exploration if
the relation is unfamiliar. An appropriate visualization
provides a summary reading, allowing the user to view the
entire selection as quickly as possible.

Directed search has the form search(Sgoat, Scontest)s
where Sgo41 and Scontert are both task selections. Sgoqr U
Scontert fOrm the complete context, i.e., the set of variables
that should be considered for binding to axes. If Scontert
is omitted, the context is the entire relation. The task is to
locate a particular subset of the relation, specified by the
selection Sgoal.

Comparison has the form compare(S), ..., Si), where
k > 2. The task is to study the relationship between selec-
tions. The visualization must allow comparison to be done
easily, ensuring that all selections are encoded in the same
space, or perhaps juxtaposed spaces, and that all encodings
are visible. The comparison task presents the most difficult
design challenge of any of the tasks.

4 Automated design

Design as search

We follow the method used by Mackinlay in APT[8],
formulating the synthesis of a visualization as a state space

search implemented with a rule-based language. Unlike
APT, however, AutoVisual focuses on combining “ready-
made” graph types using the worlds within worlds ap-
proach, rather than on designing the internals of each graph
by composition.

Each state represents a possible interactive visualization
world and is a directed acyclic graph of interactors. The
state change operators simply add interactors or modify
those already in the graph, producing the final visualization
by incremental refinement. When necessary, backtracking
is employed to undo a design path that will not be success-
ful. The selection of operators is driven by a rule-base of
visualization design principles, taking into account the task
to be performed, the interactors available, and the current
hardware.

Termination conditions are a necessary part of any
search algorithm. AutoVisual uses two criteria to establish
that it has found a satisfactory visualization: potential ex-
pressiveness and potential effectiveness. These are Mackin-
lay’s expressiveness and effectiveness criteria, modified for
interactive visualization. An expressive graph encodes all
relevant information and only that information. An effec-
tive graph presents that information clearly. We say that
an interactive visualization is potentially expressive, if it
has the potential, under user control, to display all the in-
formation over time. Similarly, an interactive visualization
is potentially effective if its use over time can present the
information sufficiently clearly. (Note that no single static
view need be sufficiently effective and expressive by itself.)

Finally, we note two issues that influence the potential
effectiveness of a dynamic visualization. First, the design
should limit the amount of interaction time that it takes
to accomplish a particular visualization task. Second, the
visualization must have low response time. High-speed
interactivity is a key component of worlds within worlds.
We have found that when using a 3D input device, slow
frame rates make the visualization unpleasant to use.

Search strategy

Because the space of possible visualizations is expo-
nential, some intelligent strategy must be used to prune the
search. We use a greedy, incremental refinement approach.
We divide the search into two major phases: defining the
connectivity of interactors, and instantiating interactors.
The first phase effectively specifies the composite type of
the visualization, defining which type of interactors com-
prise each level and how they connect together. The second
phase instantiates the visualization by creating interactors.
‘We briefly outline each phase here. The following sections
detail the criteria used for making decisions at each step.

Design of the visualization structure begins by defin-
ing the hierarchy of worlds, working outward from the

286

innermost worlds. The assignment of variables to axes in
each world is accomplished by first determining a priority
among the relation variables. As each world is selected, it
is assigned the variables of highest priority. Next, tools are
selected that are useful for examining the innermost worlds,
ensuring that elementary readings of all values are possi-
ble. Finally, tools are chosen that may be used to examine
arbitrary parts of the hierarchy (e.g., a zoom tool).

Once the design is complete, the visualization must be
instantiated by creating interactors and linking them to-
gether, AutoVisual decides how many instances of each
interactor type to create, and adjusts attributes such as po-
sition, size and color. Instantiating a visualization need not
imply actually instantiating many interactors. AutoVisual
creates at least one of every type of selected interactor as
a way of documenting the structure and capabilities of the
world.

Task dependent design

The visualization task affects decisions made throughout
the design process. This section describes how choices are
made for the exploration and search tasks.

Given an exploration task, AutoVisual considers a visu-
alization to be potentially effective if the user can survey
the entire selection space quickly. If the selection space
covers many variables, this implies a tradeoff of quality
for quantity. Thus, AutoVisual attempts to present as many
samples along as many axes as possible, emphasizing the
number of values encoded, rather than the quality of encod-
ing. Hence, when selecting the innermost world, priority is
given to interactors that encode many variables. For exam-
ple, a gray-scale point cloud has priority over a height field
for the exploration task, because it encodes an additional
variable. Furthermore, when instantiating a visualization
designed for exploration, AutoVisual creates worlds at each
level of the hierarchy, ensuring that all variables in the
selection are sampled. This reduces the interaction time
required to view the entire selection.

Given a search task search(Sgoat, Scontest), AutoVisual
gives priority to encoding the goal selection. Variables in
Sgoar have higher priority than those found only in Scontest,
forcing the goal selection to be localized to the innermost
axes. Interactors with less effective encoding techniques
are restricted from consideration for use as the innermost
world, because the user must be able to recognize the selec-
tion easily. If no interactor encodes the entire goal selection,
priority is given to interactors that encode more variables.
However, if more than one interactor can present the entire
goal selection, the one with the most effective encoding is
selected. In this case, the encoding of the selection goal is
entirely within the innermost world.

Assigning priority to variables

Clearly, binding a variable to an axis in an outer world
produces a very different effect from binding it to an inner
world. Thus, the mapping of variables to axes may have
a great effect on the quality of the visualization. When
there are multiple inner worlds, it is easiest to perceive
the effects of variables encoded by the innermost worlds.
To follow the effects of a variable bound to an outer axis,
the eye must skip between the inner worlds. The higher
up in the hierarchy a variable is bound, the more difficult
it is comprehend its effect on the value of the relation.
Therefore, it is important to determine a priority among
variables that determines a useful permutation.

The task may help determine an order, as described
above. Another relevant factor that AutoVisual considers is
the cardinality of a variable’s domain. We hypothesize that
domains with low cardinality should be given lower priority
when selecting axes. If the domain set is small enough, it
may be sampled completely by instantiating sub-worlds for
each value.

Resources

The quality of a visualization design depends upon the
the particular computing environment. We have identified
four resources that affect the evaluation of whether a partic-
ular visualization is potentially expressive and potentially
effective:

Interactor rendering time. If a dynamic visualization
takes too long to render, interaction with it will not be ef-
fective. Some encoding techniques take too long to render
on particular hardware under any circumstances. Others
may be just fast enough to allow only a few interactor
instances. Thus, a particular encoding technique may be
useful in small visualizations, but not large ones.

Relation computation power. Even if an interactor ren-
ders quickly, the relation may be expensive to sample. Us-
ing interactors that sample fewer variables helps reduce the
computation time. Reducing the sampling rate along each
will improve performance but may cause aliasing. If the
task is exploration, the preference is given to interactors en-
coding more variables at lower sampling rates. For search,
the preference is for higher sampling rates.

Display area. The visualization design must ensure that
interactors are legible. Legibility requires that the interactor
be allocated enough screen space to ensure that the encoded
values can be perceived. When instantiating worlds, Auto-
Visual ensures legibility by requiring a minimum size for
an interactor.

Space in the virtual world. Interactors that are too large
may overlap, disrupting each other’s presentation. Thus,
when increasing the size of multiple interactors instantiated

287

at the same level to improve legibility, AutoVisual ensures
that space is left between interactors.

Even if interactors do not overlap in 3-space, their pro-
jections on the viewplane may. If the closer interactor is
opaque, it will obscure the other. If the closer interactor is
sparsely populated with encoding objects, such as a point
cloud, or is transparent, the other will be visible. However,
the further interactor may provide a poor background for
viewing the closer one.

Rather than attempting to calculate a configuration of
worlds that ensures that visibility is always good, AutoVi-
sual assumes that the user will adjust the view appropri-
ately. Therefore, AutoVisual considers whether the selected
interactors are likely to have visibility problems. We define
the predicate viewable(ly, I, placement), where I; and
I, are interactors and placement is one of {equal, before,
behind}. For example, viewable(Iy, I, before) is true if
I; is in front of I, and the user can perceive I; easily.
The background of the scene is considered to be a spe-
cial interactor lyackground. Each interactor I must satisfy
viewable(I, Iyackground, before) at all times.

AutoVisual gives lower priority to interactors that con-
flict with the current set. Unfortunately, interactors of the
same type are not always viewable against each other. For
example, point clouds have this problem. In these cases,
AutoVisual will include a zoom interactor that redisplays
the interactor in a different space but with a good back-
ground.

5 Implementation

The version of AutoVisual described in this paper rep-
resents our first attempt at automated generation of mul-
tivariate visvalizations. We avoided supporting the full
complexity of n-Vision by restricting the class of possible
virtual worlds. The encoding techniques available to Auto-
Visual are limited to a 1D dipstick, 2D line graph, a height
field, and a 3D gray-scale point cloud. As well, only inter-
actors with a single selection, encoding space and encoding
object are used. The curent implementation does not yet
put labels or tickmarks on the line graph tool’s axes.

AutoVisual and n-Vision are implemented with C+ and
AutoVisual’s rules are encoded in the CLIPS production
system language [5], running on a Hewlett-Packard 9000
Series 380 workstation with a TurboSRX graphics acceler-
ator.

6 Example designs

We now give some examples of automated design of
virtual worlds applied to a simple financial application.

Given a relation and a visualization task, we step through
the design process, demonstrating how the system applies
the guidelines of visualization design discussed above in
order to create visualizations suited to each task.

The relation of interest is the Black-Scholes formula for
computing the value of a European option to buy foreign
currency [6]. An option is a contract that gives the holder
the right (but not the obligation) to buy something at a
specific price (striking price) on a specified date (maturity
date). In this case, foreign currency is being purchased.
The Black-Scholes formula for foreign currency options
has the following form:

Opt(Sy a, ty K: idz Ifs M):

where S is the current (spo?) trading price of the currency,
o is the standard deviation of S over the previous year, ¢
is the time (date), K is the striking price, i and i 1 are the
risk-free interest rates in the domestic and foreign markets
respectively, and M is the maturity date. M and ¢ are in
units of years and are normalized so that O represents the
creation date of the contract. Each of these is specified with
a default value and range.

Consider first the task of exploring the value of an option
for fixed maturity:

ezplore(opt(S[-], o[-],t[—,0, en], igl-], 4[], K[-])).

(Note that the maturity M assumes its default value because
it is omitted.) The design process begins by assigning pri-
ority to the variables of the selection. The interest rates
have the lowest cardinality and hence lowest priority. All
other parameters have similar cardinality, and are selected
in the order presented. The point cloud interactor is se-
lected for the innermost world because it encodes the most
independent variables of any interactor available, and is
thus suited to the task of exploration. The variables S, o
and ¢ are bound to the axes of the point cloud world. The
search now proceeds to outer worlds. Variables K, i; and
tq are bound to the x, y and z axes of a 3D outer world,
respectively. We do not describe how tools are selected, as
this is discussed in detail for the following examples.

The design proceeds to the instantiation phase. Follow-
ing the rules for exploration, multiple point cloud worlds
are created, sampling along each axis in the outer world.
The size of the worlds is initially set so that the point cloud is
legible in its default configuration, and then increased until
the space between worlds reaches the minimum acceptable
value. This configuration of interactors is determined to
have acceptable rendering time. The sampling rate of the
point clouds is then adjusted so that the computation time
is acceptable. The resulting world is shown in Figure 2.

Now consider two directed search tasks. The option
variables can be divided into two categories: S, o, iz and

288

iy are characteristics of the market; K and M are features
of the contract. Thus, two questions that are commonly
asked are:

1. Given an option with a fixed K and M, under which
market conditions will that option perform well?

2. Given an expected market, what values of K and M
will yield high profits?

Consider question 1, the search for good market condi-
tions:

search(opt(S[-], a[—], t[-], is[-], ia[-]),
opt(K[ck])).

Here, the striking price K is explicitly specified to obtain a
different value than the default. The priority of K decreases
in this example. Thus, for this task the priority ordering
is S, 0, t, iy, ia, K. The point cloud is again selected for
the innermost world: the gray-scale encoding is consid-
ered suitable for the search task, no interactor encodes five
independent variables, and the point cloud encodes more
variables than any other available interactor.

Tools are then selected to examine the point cloud in
more detail to allow elementary readings of values. Au-
toVisual considers all possible hierarchies of tools where
each level decreases in dimension. For example, a point
cloud may be probed using a height field, a line graph, or
a dipstick. However, AutoVisual assumes that only line
graphs and dipsticks provide satisfactory elementary read-
ings. Thus, any tool tree with a height field at the root must
have an additional level of interaction. AutoVisual gives
priority to the shallowest trees of tools. Among these, the
one with the root tool of highest dimension requires the
least interaction, so it is selected. In this case, the result of
the search is a tool tree containing only a line graph. The
1D selection space of the line graph is represented as a line
parallel to the x-axis of the point cloud. The selection may
be moved freely about the yz-plane of the point cloud.

Only one instance of each world is created when this de-
sign is instantiated. The single point cloud does not conflict
with other worlds, so it is made much larger, improving its
legibility. The result is shown in Figure 3.

In the search task of question 2, we include a context
selection, assuming a fixed domestic interest rate and date
of maturity:

search(opt(t[—,0, cumr), K[-]),
opt(S[-], o[-, is[-])).

The goal selection has many fewer variables than in the
previous task, which causes a height field to be chosen for
the innermost world. A height field is the only interactor
that encodes exactly the number of variables in the goal;

the point cloud encodes more than are needed. Tool se-
lection and instantiation proceed almost exactly as in the
previous example, yielding the design in Figure 4. The
only difference is that the graphical representation for the
selection geometry of the line-graph tool has changed to a
plane to indicate that there is no degree of freedom along
the vertical axis of the height field.

7 Conclusions and future work

We have described AutoVisual, an experimental visual-
ization design system that synthesizes interactive 3D virtual
worlds customized for particular relations and visualization
tasks. We provided an overview of AutoVisual’s architec-
ture and its underlying approach, including:

¢ a general method for specifying complex visualiza-
tions by composing simple components;

¢ a simple syntax for specifying visualization tasks;

¢ a design algorithm based on search of a visualization
space;

e a catalog of visualization design criteria that can be
expressed as rules to guide the search.

We reviewed a set of examples generated by the system
that indicate its current capabilities.

AutoVisual is an early prototype and a number of issues
remain unaddressed. We have barely considered aspects of
the relation during the design. For example, the smoothness
of the relation affects whether a filled height field is an
appropriate encoding technique. If a variable is a measure
of something, such as mass or time, this information could
be used by AutoVisual to make more informed decisions.
We will be expanding AutoVisual’s rule-base to take some
of these issues into account.

We anticipate that the incremental design algorithm will
readily allow for incremental modification of visualiza-
tions. Our hope is to be able to respond to changes in
visualization tasks by reusing or modifying an existing vi-
sualization, rather than creating a new one. The result
would involve fewer context changes and be less jarring
for the user.

One key benefit of automated design is the ability to
create widely different virtual worlds quickly, making in-
teractive experimentation possible. We intend to use this
facility to explore the space of n-Vision visualizations more
thoroughly.

289

Acknowledgments

This work is supported in part by the New York State
Center for Advanced Technology under Contract NY SSTF-
CAT(91)-5, the Center for Telecommunications Research
under NSF Grant ECD-88-11111, and an equipment gift
from the Hewlett-Packard Company. Earlier work on n-
Vision was also supported by a gift from Citicorp.

References

[1] Jacques Bertin. Semiology of Graphics. The University of

Wisconsin Press, 1983. Translated by William J. Berg.
[2

—

Stephen M. Casner. A task-analytic approach to the auto-
mated design of graphic presentations. ACM Transactions
on Graphics, 10(2):111-151, April 1991.

3

—_—

Steven Feiner and Clifford Beshers. Visualizing n-
dimensional virtual worlds with n-vision. Computer Graph-
ics, 24(2):37-38, March 1990.

Steven Feiner and Clifford Beshers. Worlds within worlds:
Metaphors for exploring n-dimensional virtual worlds. In
Proc. ACM SIGGRAPH Symposium on User Interface Soft-
ware and Technology (UIST '90), pages 76-83, October
1990.

(41

[5] JosephC. Giarratano. CLIPS user’s guide. Artificial Intel-
ligence Section/NASA, Lyndon B. Johnson Space Center,

1988.
6

—_—

John Hull. Options, Futures, and Other Derivative Securi-
ties. Prentice Hall, 1989.

[7

—

Sandeep Kochhar, Mark Friedell, and Mark LaPolla. Coop-
erative, computer-aided design of scientific visualizations.
In Proceedings IEEE Visualization '91, pages 306-313.
IEEE Computer Society Press, October 22-25, 1991.

[8] Jock Mackinlay. Automating the design of graphical pre-
sentations of relational information. ACM Transactions on

Graphics, 5(2):110-141, April 1986.

[9] Steven Roth and Joe Mattis. Data characterization for in-
telligent graphics presentation. In Proc. CHI '90, pages

193-200. ACM Press, April 1-5, 1990.

—_—

[10] Hikmet Senay and Eve Ignatius. Compositional analysis
and synthesis of scientific data visualization techniques. In
N. M. Patrikalakis, editor, Scientific Visualization of Phys-
ical Phenomena (Proc. CG International '91), pages 269-

281. Springer-Verlag, Tokyo, 1991.

[11] Craig Upson, Thomas Faulhaber, Jr., David Kamins, David
Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz,
and Andries van Dam. The Application Visualization Sys-
tem: A computational environment for scientific visualiza-
tion. IEEE Computer Graphics and Applications, 9(4):30—

42, Tuly 1989.

Strike
80

?g?!erﬂy 608

oo opolatilty
OQf38
oﬁgreign

Figure 1: n-Vision virtual world with dipstick being
used to examine a height field.

Foreqn
207

Dbmestic

Figure 3: Visualization generated for the search for

market conditions.

Bdmestic

Figure 2: Visualization generated for exploration of
an option.

Figure 4: Visualization generated for the search for
option parameters.

(See color plates, p. CP-31.)

290

