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Multidimensional relationships exist in almost any discipline. There are numerous 
visualization methods that enable us to ‘see’ multidimensional relationships in an easy and 
intuitive manner for two or three variables, using 2-d and 3-d representations.  It is 
substantially more difficult, and sometimes even impossible, to visualize more than three 
dimensions – at least easily or in a way that is intuitive to the user.  In this paper, a 
visualization methodology is presented in which multidimensional relationships can be 
viewed in an intuitive and straightforward manner. Based on this visualization, it is possible 
to quickly identify regions of interest for functional relationships, optimization applications, 
or for high dimensional datasets, regardless of the complexity of space or data. The 
technology provides a new approach to visualize more than three dimensions in a way that 
looks remarkably similar to traditional 2-d and 3-d representations.  The method uses a new 
technique of ‘lossless’ dimension blending, termed the Hyper-Space Diagonal Counting 
(HSDC). The methodology developed here provides a unique way to visually represent the 
relationships for n-dimensional problems. What is described here represents a totally new 
methodology that has the potential to greatly impact numerous industries, as well as the 
educational enterprise. 

I. Introduction 
NFORMATION from complex and large datasets generated by simulations, experiments, or observations, can be 
better and quickly understood if the data is presented in an image format instead of just textual. When it comes to 

understanding the relationships in the data, throughout history, scientists, engineers, and many others have used 
simple or complex graphs to represent their data visually. While it is easy to understand relationships using two-
dimensional graphs, and sometimes even three-dimensional graphs, it is presently very difficult or sometimes even 
impossible to easily visualize more than three dimensions in an intuitive manner.  
    With the availability of incredibly powerful computational 
platforms for relatively low cost, we are seeing an ever-
increasing generation of pure data. Whether for engineering 
analysis, market trend exploration, entertainment simulation, 
or any other profession, the data exists. It then becomes a 
tremendous challenge to synthesize and process the data 
appropriately so as to derive use.  
    Coupled with the explosion of larger data sets, is the 
increasing prevalence of multidimensional data. 
Computational platform availability, along with more 
sophisticated computational algorithms  and incredible 
processing power, has resulted in a pervasiveness of data sets 
with hundreds or thousands of dimensions1. Without going 
into detail as to the specific representation, it is obvious that   Figure 1. Simple Visualization 
the visualization of Fig. 1 represents a great deal of data, thereby yielding a wealth of information.  
 Visualization of multidimensional data and relationships represents a particularly unique challenge to the 
scientific community. Two- and three-dimensional visualization is easy. Using sound, color, and/or motion might 
                                                                 
* Research Assistant, MAE Department, University at Buffalo, Student Member AIAA 
† Professor for Competitive Product and Process Design, MAE Department, University at Buffalo, Associate Fellow AIAA 

I 

44th AIAA Aerospace Sciences Meeting and Exhibit
9 - 12 January 2006, Reno, Nevada

AIAA 2006-727

Copyright © 2006 by Agrawal, Bloebaum. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 
American Institute of Aeronautics and Astronautics 

 

2 

enable us to represent five dimensions in a still somewhat intuitive way. Going beyond this, however, while 
maintaining an intuitive representation of the multidimensional data, is extremely difficult. 

Numerous methods and applications have been developed to meaningfully translate large amounts of 
multidimensional data into intuitive visual representations. The type of the multidimensional data being investigated 
for a specific application ultimately dictates the mechanism by which information and subsequent knowledge might 
be gained. For instance, we might wish to explore a multidimensional space in which the dimensionality is dictated 
by the number of design variables (i.e. independent variables) that impact a defined objective function and set of 
constraints in an engineering optimization application. Alternatively, we might wish to explore an existing dataset to 
identify relationships and trends in data. We might say that in one case we are interested in exp loring the space 
defined by the variables and their relation to the metric function, while in the other case we are interested in 
exploring an existing dataset to identify potential meaningful relationships amongst the data.  

This paper describes a new methodology, termed the Hyper-Space Diagonal Counting (HSDC) to enable 
visualization of a multidimensional data and underlying relationships. The key challenges reside in how to best 
capture all dimensional relationships and then how to present them in a visual format that will be sufficiently 
meaningful and intuitive. For visualizing the multidimensional relationships, there exist many different methods, 
which provide necessary means to visually represent the large amount of information existing in the data. However, 
with most of these methods, the visual representation results in a loss of meaning, a loss of the concept of 
neighborhood, and the subsequent loss of ability to unders tand the representation in an intuitive way. To identify 
specific issues related to the existing state-of-the-art multidimensional multivariate visualization (MDMV) 
techniques, the previous work done in this area must be reviewed. 

II. Background 
The term dimensionality can be somewhat confusing, given its use in a variety of fields to mean different things. 

Multidimensional objects, for instance, are spatial objects, for which a desire exists to understand their geometry, 
while multidimensional data suggests relationships amongst numerous variables2. Terms such as hyper-dimensional, 
multid imensional and high-dimensional, have been used to mean essentially the same thing3. In this paper, the term 
multidimensional refers to two or more dimensions. 

The goal of multidimensional visualization is to meaningfully translate large amounts of multidimensional data 
into intuitive visual representations4. Numerous methods and applications have been developed to achieve this goal, 
subject to hardware and software limitations of the 2-d  or 3-d visualization space. All multidimensional visualization 
techniques attempt to transform a multidimensional problem or dataset so that it can be mapped to a 2-d or 3-d 
visual space through the use of dimension reduction. 

A. Dimension Reduction 
A standard approach that is used in multidimensional visualization is to first process the multidimensional data 

in such a way so as to reduce the dimensionality, while still preserving the integrity of its meaning. Fig. 2 shows this 
implementation. 

 
Figure 2.  Procedure for implementing dimension reduction 

This is a particularly important step for visualization, as the associated complexity of the problem or dataset is 
significantly reduced. One of the most comprehensive resources for discussion of dimension reduction techniques 
can be found in Carreira-Perpinan5. As pointed out in this paper, dimension reduction techniques assume that 
reduction is possible for two reasons: 1) Some of the variables are actually irrelevant in that they have variations 
smaller than measurement noise, and 2) Some variables can be correlated with each other. 
Dimension reduction is accomplished in a variety of ways in different fields, including projection techniques6, 7, 8, 
data compression9, feature extraction10, and regression and smoothing techniques11, 12, among others. One of the 
most widely used dimension reduction techniques is Principal Component Analysis (PCA) 13, 14, 15, wherein some 
number of principal components is found through a symmetric regression approach. Projection techniques are 
computationally expensive and are most suitable only for linear structures, which represents a significant drawback. 
These techniques all have various drawbacks that ultimately limit their applicability to a wide range of problems. 
Further, many of these result in losses of dimensions in the new representation. This is problematic for a variety of 
reasons, the most important being that one never really knows what secondary and tertiary effects might be lost 
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through the elimination of a dimension considered potentially unimportant. In the HSDC method developed in this 
work, all dimensions are represented and preserved through blending, rather than the traditional dimension reduction 
approaches. The next section briefly reviews existing techniques for multidimensional visualization. 

B. Multidimensional Visualization Techniques 
Most multidimensional visualization techniques that depend on dimension reduction in some way result in a loss 

of meaning, and a loss of ability to understand the representation in an intuitive way. Multidimensional visualization 
techniques can be categorized in a number of different ways. Possible criteria for such a categorization include the 
goal of visualization, the type and/or dimensionality of the data, the use of color, the use of animation, and the 
dimensionality of the visualization technique, amongst many other possibilities. Two broad categories4 summarized 
below provide an overview of the best-known multidimensional visualization techniques. 
1) Techniques designed for fixed number of variables  

In this class of methods, color is generally used as a fourth dimension and time is used as an animation parameter 
to represent a fifth dimension. This includes fitted curves, reference grids, and banking. 

2) Techniques designed for any number of variables  
Here, symbols, and matrices of views are often used as a key to the representation. One of the best-known 
methods is the scatter plot matrix, where n dimensions are projected onto n*(n-1) scatter plots, in which each 
pair of dimensions has two scatterplots showing their relation4. HyperSlice16 and HyperBox17 can be considered 
extensions of scatterplot matrices, in which color and interactivity provide for greater insight into the problem. 
Another is Chernoff Faces18 and, more broadly, the use of glyphs19, 20, to represent characteristics of relationships 
and the space in question. Hierarchical axis21, 22, Dimension Stacking23, and World within Worlds24, 25 all use the 
concept of a hierarchical representation in some way for the dimensional relationships. Parallel Coordinates26, 27, 

28 has become an extensively used approach in a variety of fields and applications. In this approach, a point in n-
dimensional space is equivalent to a polyline through ‘n’ parallel coordinates. 

 
Scatterplot Matrix4 

 
Chernoff Faces18 

 
Parallel Coordinates26 

 
Animated Mesh4 

Figure 3. Representative visualizations associated with key MDMV techniques 
These represent only a small number of methods that have been proposed for multidimensional visualization, but 

are probably the most widely recognized. Each of the techniques listed under the two broad categories above have 
advantages and limitations. Some of them are somewhat difficult to understand, some of them are computationally 
expensive, and some are just awkward. A few of the more widely used techniques are shown in Fig. 3. This paper 
will attempt to demonstrate the great potentials of visualization based on the Hyper-Space Diagonal Counting 
(HSDC) method developed in this work. 

III. Hyper-Space Diagonal Counting (HSDC) 
 The concept of counting 
originated with the famous German 
mathematician from 19th century, 
Georg Cantor, who recognized that 
for every point of a surface, there is a 
corresponding point of the line and, 
conversely, for every point of the 
line there is a corresponding point of 
the surface. The result of this 
observation is that there is a one to 
one correspondence of points on the 
interval [0, 1] and points in an n 
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Array of points on a surface    Path through all the points 
Figure 4. Graphic proof of Cantor’s theory 

dimensional space. It is this correspondence which provides the basis for the development of the Hyper-Space 
Diagonal Counting (HSDC) method. Cantor's discoveries in set theory rest upon a very simple idea – that even 



 
American Institute of Aeronautics and Astronautics 

 

4 

though you may not be able to count something, you can equate it with something else that has the same cardinality 
(i.e. the same number of elements). Two infinite sets can be shown to have the same cardinality by finding a one-to-
one mapping between the elements of each set. The very famous proof for Cantor’s theory of mapping points from a 
2-dimensional space on a line can be represented visually in Fig. 4. Consider an array that includes points from a 2-d 
surface in an order and then make a path through all the points in the diagonal way shown. In this way, every single 
point can be mapped to one (and only one) point on a line. Hence, for every point on a 2-dimensional surface there 
is a corresponding point on a line that is unique. 

This concept of counting, which represents a very small portion of Cantor’s contributions to the field of 
mathematics, is the key to understanding the Hyper-Space Diagonal Counting (HSDC) method developed here. A 
path can be created along the points in an n-dimensional space and each point can subsequently be mapped to a 
single point on a line. 

In this work, Cantor’s work on counting has been extended to enable 
mapping points in an n-dimensional space to a line. This mapping of points 
from an n-dimensional space to a line has been termed the Hyper-Space 
Diagonal Counting (HSDC) method. 
     Cantor has already provided a proof for 2-d and what remains is a 
matter of making an array of nth ordered comb inations of all the points in 
an  n-d space and then creating a path through all the points  to get a 
sequence. An extension of Fig. 4 to show a mapping for 3-d points is given 
in Fig. 5. This can be extended to n-dimensions. We can create a path by 
counting each point in the n-dimensional space and subsequently mapping 
each of those points to the points on a line, which forms the basis of the 
HSDC approach. In order to understand how this counting is generalized 
for n-dimensions, consider Table 1, where the counting has been extended 

 
Figure 5. Path for counting in 3-d 

to a Hyper-Space Diagonal Counting 
in four dimensions, by observing vital 
trends from 2-d and 3-d counting 
described above. First, the indices of 
the points counted in 2 and 3 
dimensions are laid out in a tabular 
format. Shades of grey signify the 
diagonals (in 2-d and 3-d) or the 
hyper-diagonal in 4-d. Indices of 
points in the same shade grey band 
represent the points on the same level 

Table 1. Counting Extended to 4-d 
2-d Counting 3-d Counting Extended to 4-d 
D1 D2 D1 D2 D2 D1 D2 D3 D4 
1 1 1 1 1 1 1 1 1 
1 2 1 1 2 1 1 1 2 
2 1 1 2 1 1 1 2 1 

2 1 1 1 2 1 1 
 

 

 

 

2 1 1 1 
Different shades represent different diagonals   

(diagonal/hyper-diagonal). Listing the points in the tabular format (shown in Table 1), reveals important trends in 
the counting identified as follows. 
1) The sum of all the indices at a particular level remains constant, which is one less than the sum of the level and 

dimensions we are looking at. For instance, in 2-d counting at diagonal 2 (dark grey), all the indices sum to 3 
(i.e. 2+2-1=3). Similarly, in case of 3-d counting, at diagonal 2, all indices sum to 4 (i.e. 2+3-1=74), which is 
clear in the table. This holds true for counting in higher dimensions. 

2) If we look at 2-d and 3-d counting, we observe that the number of points at a particular diagonal in 3-d  counting 
is equal to the total number of points up to the same diagonal in 2-d counting. For instance, at the second 
diagonal in 3-d counting there are 3 points, which is the same as the total number of points up to the second 
diagonal in 2-d counting. This also holds true for counting in higher dimensions. 

3) Finally, the way the counting progresses has a trend in itself.  
These observations allow us to easily extend the 2-d and 3-d counting into the Hyper-Space Diagonal Counting, 

as shown by the counting extended to 4-d in Table 1. The same procedure can be followed for counting beyond 4-d. 
In fact, this can be extended to any number of dimensions. To automate the counting for n-dimensions, the following 
terms have been defined. The variable ‘n’ is used to denote the number of dimensions, ‘l’ is used to represent the 
diagonal on which a particular point falls (i.e. which diagonal/hyper-diagonal out from the origin), ‘El‘ is the 
number of points (i.e. points) on a particular diagonal, ‘TEn

l‘ are the total number of points up to diagonal l, ‘il
n‘ is 

the index of an point for a particular dimension on a diagonal, ‘S l‘ is the sum of all the indices of a point on a 
particular diagonal in an n-dimensional space, and ‘ilmax‘ is the maximum value of the index for any dimension at a 
particular diagonal. There are several equations (1 through 6) that have been developed in order to be able to 
automate the counting in n-dimensional space. These are presented on the next page. 
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1) The equation for the total number 
of points at a particular diagonal: 
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2) The equation for the total number 
of points up to a particular diagonal: 
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3) The equation for the points at a 
diagonal in terms of points at the 
previous diagonal: 
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4) The equation for the total number 
of points up to a diagonal in terms of 
points at that diagonal; 
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5) The equation for the sum of all the 
indices at a particular diagonal: 

( )1...321 −+==++++ lnSiiii l
l
n
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6) The maximum value of the index 
for any dimension at a particular 
diagonal: 

li l =max  

At this point, many people might be wondering what any of this has to do with visualization. To clarify and 
present the proper context, the next sections show how the HSDC can be used for visualization of multidimensional 
space and exploration of datasets, in order t understand the underlying relationships and reveal hidden patterns. 

IV. HSDC’s Application to Visualize Multidimensional Functional Relationships  
Multidimensional functional relationships exist in almost any discipline.  An example would be how the width, 

length, and thickness of a piece of material directly affect the overall volume of an object.  This is a functional 
relationship.  There are numerous visualization tools that exist on the market to enable one to ‘see’ such 
relationships in an easy and intuitive manner for 2 variables and 3 variables, using 2-d and 3-d representations.  It is 
substantially more difficult, and even impossible in most cases, to visualize more than 3-dimensions – at least easily 
or in a way that is intuitive for the user. The HSDC can be used to visualize multidimensional functional relations in 
a way that looks remarkably like that of traditional 2-d and 3-d representations.  

Consider the single objective unconstrained minimization problem with six design variables given below. 

Minimize: ( )( ) ( )( )
2
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The above problem is a seven dimensional test problem with six of the variables (X’s) contributing a dimension 
each and the function value (F) contributing one dimension. To ‘see’ the relationship between the function and the 
variables, one way would be to freeze five variables (i.e. make them constant) and plot the function with respect to 
just one variable, as shown in Fig. 6 (a).  
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(c) 

Figure 6. One variate visualization of 1-, 2-, & 3-dimensional representations 

In part (a) of Fig. 6, we see the result of setting five variables at constant values and plotting the 6
th 

variable in 
HSDC space (i.e. x-axis represents the index value) versus the objective function value. This however does not show 
the complete picture of the variation of all the variables with respect to the function value. What is depicted is 
nothing but a two-dimensional cut of the function and the graphical image depends on the constant values of the 
frozen variables used to determine the cut. This could be highly misleading in context of an optimization as different 
values of the frozen variables can give completely different picture of the section being shown. Fig. 6 (b) shows the 
plot generated by mapping the points in dimensions X1 and X2 to the X-axis using the HSDC counting scheme, 
while freezing the rest four variables. The ‘F’ value is plotted on the Y-axis. The plot clearly gives a better picture of 
the functional relationship as two of the variables are varied simultaneously and mapped on to a line using a 
sequence as discussed previously. It shows the internal bell shaped behavior along with the overall concavity 
depicted in the previous figure. With an optimization point of view and with such behaviors clearly depicted using 
this representation, one can easily point out the maximum and minimum values of the function, without any trouble. 
Fig. 6 (c) shows the plot generated by mapping the points in dimensions X1, X2 and X3 to the X-axis using the 
HSDC counting scheme, while freezing the remaining three variables. The ‘F’ value is still plotted on the Y-axis. 
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This plot gives an even better picture with three of the variables being varied simultaneously and mapped on a line 
using a sequence of points in three dimensions. We can practically map all the six dimensions to the X-axis and get 
and overall picture of this 7-dimensional problem using this approach. It would be a complete representation of the 
function’s relationship with all the variables. We can make certain observations from parts (b) and (c) of Fig. 6 such 
as: 1) trends can be identified in relation to indices; 2) minimum points can be easily identified, even for the n=3 
case; and 3) neighborhoods are identifiable.  
 The variability introduced as a result of 
counting along the hyper-diagonal, which means 
there are inherent jumps in function value along a 
hyper-diagonal, can be ameliorated by a 
representation as shown in Fig. 7.  Here, the red 
line is a representation of Fig. 6b, through index 
number 15, while the purple line shows the same 
data, grouped by level (which corresponds to the 
x axis). This representation is valuable since the 
localized variability on each level is smoothed so 
that the overall trend of the data is more easily 
understandable. Such a representation is easily  

 
Figure 7. HSDC-based visual representation by level 

extensible to greater dimensions. 
Alternatively, we can map a few dimensions on the X-axis, a few on the Y-axis and the objective function on the 

Z-axis. This would result in a hyper-surface representation as shown through a 6-d hyper-surface in Fig. 8. The 
objective function used for this problem is the equation of a six-dimensional plane )654321 XXXXXXF +++++= , 

where Xi>= 0.0, for i=1,6. Color is used in a traditional temperature scale with red indicating a large value of the 
function and blue a low value. 
 Although, in reality this is 
not a true surface, as we have 
mapped points from different 
dimensions to a single axis, it 
does reflect an image of the 
functional relationship in the 
form of a hyper-surface. Such a 
hyper-surface is much better 
than having no visual 
representation at all, or one 
which is not at all intuitive. 
This  illustrates the powerful 
potential of applying counting 
to achieve multidimensional  

 
Figure 8. HSDC-based visual representation 

visualization. It is obvious that there are issues such as non-uniformity in mapping of points on the axis , scalability 
of the approach, etc. but the HSDC approach has great promise for providing a method to obtain an intuitive and 
meaningful representation of multidimensional multivariate data and relationships. 

The most important point that must be realized is that using the HSDC-based mapping, as we progress from left 
to right on the mapped axis, there is an overall increment in the values of the indices mapped from multidimensional 
space. Although the indices themselves (in counted space) increase and decrease at particular diagonals, by virtue of 
the counting itself, we still have an overall increase from left to right. This is very important in the sense that it is the 
overall increase of the indices that gives the intuitive understanding to the representation (i.e. the increase from a 
low to high on the mapped axes). 

A. Test Case 1 – Six Variable Product 
The objective function used for this problem is the product of all the variables in six dimensions given by: 

( )654321 XXXXXXF ×××××= , where Xi>= 0.0, for i=1,6.  This is a very simple functional relationship for which 

we know both the maximum value (i.e. all X at infinity) as well as the minimum value (i.e. all X at 0.0).  Although 
we intuitively understand this, we would have no easy way of visualizing such a relationship. 
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 The HSDC approach 
enables us to group 3 variables 
per axis and then represent the 
hyper-surface associated with 
this problem in indexed space 
as we see in Fig. 9. As with the 
introductory problem above, 
we can now easily see which 
indices correspond to the 
lowest value of F and which 
correspond to the largest 
value(s) of F.  We can easily 
trace these indices back to the 
associated X values. 

 
Figure 9. HSDC-based visual representation 

 The periodic behavior 
observed in this figure is once 
again due to the fact that we 
count in hyper-diagonals (per 
level) so that there is inevitably 
a discontinuous jump in 
function value as we increase 
the index number by a single 
value (i.e. observed most easily 
in Fig. 4). However, since the 
HSDC approach is a lossless 
representation, associated with 
discretized multivariate space, 
every piece of data is  

 
Figure 10. HSDC-based visual representation 

represented. 
 One can zoom in on regions of interest and click on 
any point, which would then result in the associated 
indices from which the multivariate values can be easily 
obtained.  In Fig. 10, we can see images associated with 
zooming in on both the minimum function values for 
this problem, as well as the maximum. It is easy to see 
that the (0,0) indices correspond to the smallest F value 
and one can also identify the indices (741,741) as a 
maximum.  The (0,0) indices corresponds, in this case, 
to all X’s with a value of 0.0.  The (741,741) indices 
corresponds to all X’s with a value of 5, and a 
discretization of each variable of 6.  Another rotated 
view of the representation is shown in Fig. 11, wherein it 
is easier to identify the index of 741 associated with the 
X4X5X6 HSDC Axis. The function value associated 
with the maximum point shown here is 15, 625.  The 
HSDC representation, due to its very simplicity, enables 
interactive selection of indexed points so that the X and  

 
Figure 11. HSDC-based visual representation 

B. Test Case 2 – Six Variable Sum of Squares 
The objective function used for this problem is the product of all the variables in six dimensions given by: 

( )2
6

2
5

2
4

2
3

2
2

2
1 XXXXXXF +++++= , where Xi>= 0.0, for i=1,6.  Again, we have a counting of X1-X3, and X4-X6 on 

the x and y axes, respectively, with the function value on the z axis.   
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     The same periodic behavior 
is observed in Fig. 12 for this 
problem.. Again, we can easily 
identify ‘large’ values of the 
function, as well as ‘small’ 
values of the function. We can 
easily see where the largest 
value of F is as well as the 
smallest value.  By identifying 
the indices of interest, we can 
immediately determine the 
associated X values for all 
variables. The image can be 
rotated and we can ‘zoom’ in  

 
Figure 12. HSDC-based visual representation 

on any region, as with the previous problem.  While this is another problem for which we intuitively understand the 
maximum and minimum, it is illustrative of the ease with which HSDC can be used for such multivariate 
visualization.   

C. Test Case 3 – Six Variable Golinski’s Speed Reducer Optimization Problem 
One application of the HSDC would be for optimization problems.  We can ‘see’ the objective function or 

constraints in however many dimensions we have associated with the problem. Consider a standard test optimization 
problem of the Golinski’s Speed Reducer. Here, there are 7 design variables, and 25 constraints, with the objective 
of finding the minimum gearbox volume. The objective functions for this problem is given by: 

)(7854.0)(4770.7)(5080.1)0934.439334.143333.3(7854.0 2
75

2
64

3
7

3
6

2
7

2
613

2
3

2
21 xxxxxxxxxxxxxF +++++−−+= . 

The full problem statement for this problem can be found in reference [32]. Here, for simplicity, design variable ‘7’ 
was set a priori at its known optimal value, leaving a 6 design variable problem.  
     The Hyper-Space Diagonal 
Counting Method was applied 
to this problem, yielding the 
representation for the objective 
function as shown in Fig. 13.  
Here, since only the objective 
function is being represented in 
the hyperspace visualization, 
we see that the lowest set of 
indices corresponds to the 
smallest objective. However, 
this representation does not 
take constraints into 
consideration.  In Fig. 13, 
indices for each variable vary 
from 1 to 16, resulting in a 
relatively smooth hyper-surface 
as shown.  In Fig. 14, indices 
vary from 1 to 9, resulting in a 
much coarser discretization of 
the space. A discussion of 
impact of discretization on 
HSDC representation can be 
found in reference [31]. 
     By considering only those 
function values which 
correspond to feasible points in 
the original design space, the 
representation of Fig. 15 is 

 
Figure 13. HSDC-based visual representation for speed reducer problem 

 

 
Figure 14. HSDC-based visual representation for speed reducer problem 
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obtained.  A quick rotation of 
the image yields the smallest 
feasible value of F of 3089, 
which corresponds to indices 
(1,69).  From this information, 
the associated design variable 
values are very easily obtained. 
Here, then, we have been able 
to easily visualize a constrained 
optimization problem with 6 
design variables and quickly 
identify the minimum feasible 
function value.  

Figure 15. HSDC-based visual representation for speed reducer problem 
 This example problem demonstrates the potential use of the HSDC for either preprocessing prior to an expensive 
formal optimization or even replacement of an optimization altogether.  Hypothetically, any number of variables can 
be blended on a single axis.  Reference [31] has investigated blending of up to five variables per axis for MOP 
problems. Certainly, a more in-depth study of the viability of the HSDC for larger-scale problems is warranted. 

V. HSDC’s Application to Explore Multidimensional Datasets  
Not only can the HSDC Method be used to explore multidimensional design spaces, but it can also be used 

equally well to highlight relationships or trends amongst existing high dimensional data. High dimensional datasets 
are used in everything from business to health care and engineering. The HSDC method allows for the bundling, or 
blending, of many dimensions into one contiguous, discrete space which is then mapped to an axis.  Using a three 
dimensional representation, and assuming there are n dimensions to visualize, then some subset of dimensions can 
be mapped to the X axis, while the remaining dimensions can be mapped to the Y axis.  It should be recognized that 
data comprising the type of dataset discussed here would not have an overarching functional relationship.  Typically, 
data mining techniques would be used to answer questions of interest. Using the HSDC visualization approach, no 
explicit questions are asked at all. The data, such as it is, is presented in a hyperspace representation. The resulting 
representation can then be used to ask questions, rather than the reverse, as in data mining. 

In order to be able to use the HSDC to visualize multidimensional datasets, we would need an index based 
approach to represent the data. Some metric, such as histogram, can then be plotted in the Z axis. The index based 
approach that has been developed to represent data using HSDC method is summarized below.  

1) Identify minimum and maximum values for all the variables for the data to establish a range. 
2) Divide these ranges into some finite number of compartments, resulting in small bins for each variable. 
3) Group the variables into two sets and ‘count’ each set  using HSDC, producing indices for each. 
4) The indices of the bins can be plotted on a line and thus we can have indices for the bins of some variables on 

one axis and indices for the bins of some other variables on the other axis.  
5) Determine what combination of indices corresponds to which bins that contains a data point. Each data point 

will fall under some combination of these bins that are plotted using their indices on the X and Y axes.  
6) The points can be represented as a unit cylinder along the vertical axis. This will result in a 2-d histogram 

that represents all dimensions for the multidimensional data. 
7) Multiple points might fall under the same set of indices, resulting in some bins that contain more than one 

data point. 
The test cases discussed below demonstrate the use of HSDC along with the binning approach (to create an 

index based representation) to visualize multidimensional datasets.  

A. Test Case 1 – Department of Labor Data 
 The following data set (Table 2) is readily 
available from the US Department of labor website 
(http://www.dol.gov). Four categories were 
downloaded for a five year period (1998-2003). 
The four attributes are CPI (Consumer Price 
Index), ML (Mass Layoffs), UN (Unemployment), 
and WS (Work Stoppage). Minimum and 
maximum values were identified within each of  

Table 2. Department of Labor Data 
CPI ML UN  WS  Year  Month 
162 428 8.6 16 1998 1 
162 154 8.7 38 1998 2 
162 106 8.4 21 1998 3 

162.2 189 8.2 0 1998 4 
162.6 208 8 72 1998 5  
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these categories to establish a range for each. Each of these ranges (associated with the categories, which are the 
dimensions) was then subdivided into 50 compartments, each of which formed an index along that dimension. Fig. 
14 shows the HSDC plot for the data. What is surprising about the visualizations in Fig. 16 is that we see two very 
clear locations (shown by data values in boxes) for which all four attributes are large simultaneously (where large is 
undesirable for these types of attributes).  
 When we investigate 
further, we discover that the 
two points in the figure on the 
left correspond to the time 
period November and 
December 2001. This occurs 
one and a half months 
following the attacks of 
September 11, 2001. The 
second set of points (in the 
figure on the right) correspond 
to the time period December 
2002 and January 2003. This is    

Figure 16. Two variate visualization of 4-d database 
one and a half months following the passing of the Iraq Resolution of War in the U.S. Congress. The country knew 
war was imminent and awaited only the final declaration by the President. The visualization is confirming 
something that, in retrospect, makes quite a bit of sense. That mass layoffs, unemployment, work stoppage, and 
consumer price index were all uniformly high during these periods of great strife in the United States – periods of 
time in which the U.S. economy was hard hit. The HSDC method, coupled with the visualization approach shown, 
was able to find these relationships without any bias. This is quite remarkable and demonstrates tremendous 
potential for investigating databases of nominal data.  Recall that no explicit question was asked here, but rather the 
data was just visualized.  By seeing the outliers associated with both axes simultaneously, the two sets of data 
discussed above were identified. One could also easily see which months would correspond to large values in 
CPI/UN and associated low values in ML/WS by merely following the x axis out to the maximum index.  Other data 
can be explored equally well. 

B. Test Case 2 – Public Use Micro Data 
 The second dataset (Table 3) used 
in our study was obtained from the 
United States Census Bureau website 
(http://www.census.gov).  The data 
represents topcode values for various 
statistics about the housing and person 
variables.  Specifically, they are ELEP 
(Electricity, monthly cost), GASP 
(Gas, monthly cost), WATP (Water, 

Table 3. Public Use Micro Data Used for HSDC Data Mining 
STATE ELEP GASP WATP FULP RNTP MRGP 

AL 428 450 2431 4650 1458 3886 
AK 457 460 3825 4676 1858 3855 
AZ 464 372 3068 5718 2596 4865 
AR 463 439 2178 2885 2142 3332 
CA 516 367 3630 4152 3285 6922 
CO 491 355 3054 2537 2123 4753  

yearly cost), FULP (House Heating Fuel, yearly cost), RNTP (monthly rent), and MRGP (Mortgage Payment, 
monthly amount).  The data is  broken down into values for all the states .  Each row represents one time -coincident 
set of values  (year 2004).  In other words, each row represents the values of the six indicators for a given state in the 
year 2004. In this example data set, we are interested in visually displaying what relationship these indicators have 
with each other.  We have removed the state element from the data, and now simply want to plot the coincident 
ranges (i.e. how many times did these values fall into a specific set of ranges?).  

The first step again is to discretize each of the ranges of data. Once they've been discretized, we simply use the 
binning approach discussed previously to enumerate the possible combinations of different ranges  for these variable 
and map them on axes using the HSDC method. We then walk the entire data set, shown in Table 3 (sample only), 
and keep a count for each of these combinations. Using the HSDC method, we blend the first three variables on the 
X axis (ELEP, GASP, and WATP) and remaining variables on the Y axis, and plot the histogram of all possible sub 
range combinations in Z.  Fig. 17 shows the representation. The common attribute of all of these indicators is that 
higher numbers imply worse conditions. So, any points  near the upper right corner indicate that all six of these 
values are toward the "high" end of the scale.  The figure clearly shows a few outliers.   
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 Upon further inspection of 
the data, the four outliers in 
Fig. 17 correspond to the states 
of Connecticut, New York, 
New Jersey, and Washington 
DC.  The data shows that these 
states have relatively high 
values for these housing 
variables, reflecting a relatively 
high cost of living; where as 
the state of Idaho has the 
lowest overall values for these 
housing variables.  

Figure 17. Two variate visualization of 6-d database 
Here, if some of these variables were considered to be more important than others, a regrouping of the data could 

be easily implemented.  The HSDC approach is very flexible in this regard.  Again, as with the first test case, no 
questions were explicitly asked here.  

C. Test Case 3 – Application to Multiobjective Optimization 
Multiobjective Optimization Problems (MOPs), in contrast to single objective problems, involve a set of 

objectives that might be cooperative, competitive or have no relationship. Typically, the case of competitive 
objectives is the most interesting, since the choice of an ‘acceptable’ or ‘best’ solution depends on the preferences 
on, compromises between, and trade-offs of the objective functions. Most engineering design problems can be 
categorized as being multi-objective problems. When the objectives in an MOP are conflicting, the set of optimal 
solutions is known as the Pareto set, wherein no one solution is superior to the others. The region defined by the 
Pareto optimum is called the Pareto Front. Being able to visualize the Pareto frontier in a performance space with 
more than three objective functions has been a great challenge to the optimization community. The visualization of 
any performance space is currently limited to three dimensions (three objective functions). There are some other 
developments that integrate more than three dimensions using colors, shapes, glyphs, and other visual cues 29, 30, 31. 
However, with these methods the users must be able to keep track of a sometimes complicated legend that correlates 
a visual cue to an attribute. Parallel coordinates26, 27, 28 has been one of the leading approaches used in industry to 
assist in ultimately choose leading design candidates to explore further, but remains unwieldy for large numbers of 
functions.  
     With MOPs, the HSDC can 
be applied to visualize the 
performance space, just as we 
visualize any dataset (such as 
in the previous two test cases). 
Consider a four-objective 
problem29, 30, 31 for which a 
total of 1384 Pareto points (i.e. 
design concepts) were 
obtained. A Hyperspace Pareto 
Frontier (HPF) 31, shown in 
Fig. 18, was generated by 
grouping the first and second   

Figure 18. Hyperspace Pareto Frontier 
objective on the X-axis and the third and fourth objective on the Y-axis , using the binning approach. The details of 
the HPF can be found in reference [31], which discusses the application of the HSDC to visualize the results of 
multiobjective optimization (resulting in the HPF representation). This reference also provides  some strategies to 
incorporate a designer’s preferences into the representation, so as to allow an easy and efficient mechanism for 
concept selection in a multiobjective optimization environment. The HPF serves essentially the same purpose as a 
Pareto frontier for two objectives. Just as a two objective Pareto frontier can provide insights into design concepts as 
well as implicit trade-offs between functions, so can the HPF.  The reader is encouraged to read reference [31] for a 
detailed description of the application of the HSDC to multiobjective optimization problems. 



 
American Institute of Aeronautics and Astronautics 

 

12 

VI. Conclusion 
In this paper, a visualization methodology is developed and presented that enables the visualization of 

multidimensional relationships in an intuitive and straightforward manner.  The method presented is termed the 
Hyper-Space Diagonal Counting (HSDC) method for multidimensional visualization. It was demonstrated that the 
HSDC-based visualization method makes it possible to quickly identify ‘good’ regions of the multidimensional 
design space (for an optimization application) as well trends and outliers from multidimensional datasets , regardless 
of the complexity of the space or dataset. The HSDC method described in this paper enables a lossless approach to 
visualize multidimensional problems with more than three variables. The end result is an efficient and reliable 
mechanism to investigate relationships between multiple dimensions of problems with large number of variables, 
with minimal effort. The HSDC method described in this research requires no dimension fixing. The method 
overcomes the issues of awkwardness and dimension fixing that are so prevalent in the other existing visualization 
strategies. This is because the HSDC-based approach is a lossless representation, in which every single dimension is 
represented in a 2- or 3-D visual representation that is intuitive and easy to understand.   
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