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Two Tricks for the Price of One:
Linear Filters and Their Transposes
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Abstract. Many image processing operations exist in pairs: a forward-mapping

version and a reverse-mapping version [Wolberg 94, Wolberg et al. 00]. In this pa-

per, we show that the forward and reverse versions of spatially-varying convolution

filters are transposes of each other. We will then show how an implementation of

a function that operates linearly on a set of variables may be transformed into an

implementation of its transpose function. This gives a mechanical procedure to

convert a reverse spatially-varying convolution into a forward one and vice versa.

Although this approach is general-purpose, we focus on one particular type of ap-

plication: applying this transformation to fast algorithms for reverse convolution

based on running sums or summed-area tables [Lewis 95, Crow 84] yielding novel

fast algorithms for forward convolution. For many practical applications, such as

simulating depth of field and motion blur, the forward convolution can often yield

more visually appealing results while the reverse-mapping algorithm has tradition-

ally been more straightforward to implement.

1. Introduction

Suppose we have a sequence of values (g(i)) for i = 0, . . . , n − 1, and we
wish to implement a function to compute the partial sums s(a, b) =

∑b
i=a g(i)

for any a and b. If we precompute a sequence (h(i)) with h(0) = 0 and
h(i+1) = h(i)+ g(i) so that the h(i)s are the running sums of the g(i)s, then
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we may compute s(a, b) as h(b+1)−h(a) in time O(1). This is the well-known
method of running sums, and it can be seen that it provides a method to allow
rapid discrete convolution1 of a sequence (g(i)) with a one-dimensional box
filter. We may also rapidly evaluate sums of the form

b∑

i=a

d∑

j=c

g(i, j)

by using the well-known 2D analogue of running sums, summed-area tables
[Crow 84], and this gives a way to convolve rapidly with a 2D box filter.
More generally, we can rapidly convolve with a wide variety of filters using
similar methods such as Heckbert’s repeated convolution [Heckbert 86] or
Sun’s polygonal smoothing algorithms [Sun 03].

Running-sum methods may also be used with more general kernels. For
example, simulated defocus can be approximated by convolution with a kernel
whose shape is the same as that of the iris of the simulated camera. The bulk
of this convolution can be computed by representing the filter as the sum of
1D filters, one for each row of the rasterization of the iris shape, and using
running sums for each row.

The above methods may be used to compute not just ordinary convolutions
but also spatially-varying convolutions. There are two approaches to defining
such filters: reverse and forward convolution corresponding to the two ways of
viewing ordinary convolution. We will use the symbols � and �, respectively,
to denote these two forms of convolution.

First, consider the usual definition of convolution:

(f ∗ g)(x) =
∑

x′
f(x − x′)g(x′).

The value of f ∗ g at each point x can be interpreted as a weighted average of
values of g “gathered” from points x′ in its neighborhood using f(x − x′) as
a weighting. Viewed this way, it seems natural to define a spatially-varying
convolution by

(f � g)(x) =
∑

x′
f(x, x − x′)g(x′),

where we have now allowed f to depend on x. We can think of f(x, x′) defining
a different kernel f(x, ·) at each point x at which we gather.

We can also view convolution in a dual manner. We can interpret f ∗ g
at x as the accumulation of values of g “scattered” from x and weighted by

1In this paper we will always be referring to the discrete convolution rather than its
continuous counterpart.
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f(x− x′). From this perspective it becomes natural to generalize convolution
to spatially-varying convolution as

(f � g)(x) =
∑

x′
f(x′, x − x′)g(x′),

where the kernel used for scattering, f(x′, .), now depends on the point from
which we scatter.

We call the former reverse mode spatially-varying convolution and the latter
forward mode spatially-varying convolution. In the case where the kernel
doesn’t vary spatially the definitions coincide. (Discussion about these two
modes of operation in the context of image warping and resampling can be
found in [Wolberg 94] and [Wolberg et al. 00].) Consider convolution with a
spatially-varying box filter i.e., one where for each value of x, f(x, x′) takes
the value 1 when x′ is inside an axis-aligned box centered on the origin and
0 outside and where the box size is a function of x. It is clear that we may
use running-sum methods to compute the reverse mode convolution as each
summation in the definition is a sum over a box. Note, however, that the
forward mode filter is much more complex. As a function of x′, f(x′, x − x′)
might not give rise to simple summations over boxes. So we appear to have
an asymmetry: we have rapid algorithms for computing the reverse filters but
not the forward filters.

In this paper, we will first show how to transform a computer program to
compute a linear function into a program to compute its transpose. Next, we
will show that the two types of spatially-varying convolution described above,
when considered as matrix operations, are the transposes of each other. Then
we will apply the former to the latter to show how to transform an algorithm
for one type of spatially-varying convolution into the other. In particular, a
fast algorithm for one becomes a fast algorithm for the other.

2. The Transpose of a Computer Program

Consider the following fragment of code in an imperative programming lan-
guage such as C: a = αa+βb+. . .+δd where α, β, . . . , δ are constants. (Actually
they don’t need to be constants, merely independent of the variables that we
are considering to be linear; see Sections 4 and 5.) We may represent this in
matrix form as the update

⎛

⎜⎜⎜⎝

a
b
...
d

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

α β . . . δ
0 1 0
...

. . .
0 0 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a
b
...
d

⎞

⎟⎟⎟⎠ .
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Code Transpose

a = 0 a = 0

a = 2*a a = 2*a

a = a+b b = b+a

a = b b = a+b; a = 0

a = 2*b-3*c b = b+2*a; c = c-3*a; a = 0

a = a+b; b = b+2*a a = a+2*b; b = b+a

Table 1. Some code fragments and their transposes.

If we consider a = αa+ βb + . . . + δd as a linear operator acting on (a, b, . . . , d),
then we may derive the transpose linear operator by taking the transpose of
the previous matrix giving

⎛

⎜⎜⎜⎝

a
b
...
d

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

α 0 . . . 0
β 1 0
...

. . .
δ 0 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a
b
...
d

⎞

⎟⎟⎟⎠ ,

which may be expressed as the code fragment d = d+δa;. . .;b = b+βa; a
= αa . Suppose, more generally, that we have a sequence of lines of code
l1; l2; . . . ; ln that may each be represented by matrices L1, L2, . . . , Ln, then the
effect of executing the lines of code in sequence is represented by the matrix
LnLn−1 . . . L1. The transpose of this matrix is simply LT

1 LT
2 . . . LT

n . So, in
order to compute the transpose function of the matrix defined by l1; l2; . . . ; ln,
we must compute the transpose of each line in turn and reverse the order in
which they are executed. (The transpose is also known as the adjoint; see
[Christensen 03] for more discussion and a rigorous definition set within the
context of rendering.)

Table 1 shows a collection of example code fragments and their transposes.
Note that the transpose of the transpose of a code fragment is equivalent to

the original code fragment. For example, the transpose of a = b is b = a+b;
a = 0; whose transpose in turn is a = 0; a = a+b which is equivalent to
a = b.

There is one slight subtlety when computing a transpose. Suppose we have
two variables a and b and simply discard b. This may be represented as

(
a
)

=
(

1 0
)( a

b

)
.

The transpose is given by
(

a
b

)
=
(

1
0

)(
a
)
,
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which represents the code fragment b = 0. In other words, the transpose of
discarding a variable is equivalent to setting it to zero. Discarding variables
is something we typically take for granted when programming, but here we
must explicitly note when we are doing this so we can generate the correct
transpose, or we must enforce that rule that a variable must be zeroed before
being discarded so that in the transpose code it is automatically zero.

3. An Elementary Example

Consider the linear mapping defined by
⎛

⎜⎜⎝

g1
g2
g3
g4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 1 0 0
1 1 1 0
0 1 0 1
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

f1
f2
f3
f4

⎞

⎟⎟⎠ .

It can be thought of as representing the code

g1 = f1+f2;
g2 = f1+f2+f3;
g3 = f2+f4;
g4 = f4;

The transpose code fragment is then

f1 = 0; f2 = 0; f3 = 0; f4 = 0;
f4 += g4; g4 = 0;
f2 += g3; f4 += g3; g3 = 0;
f1 += g2; f2 += g2; f3 += g2; g2 = 0;
f1 += g1; f2 += g1; g1 = 0;

This clearly implements the linear mapping,
⎛

⎜⎜⎝

f1
f2
f3
f4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 1 0 0
1 1 1 0
0 1 0 0
0 0 1 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

g1
g2
g3
g4

⎞

⎟⎟⎠ ,

and we can see that the matrix is clearly the transpose of the original matrix.
We can describe these operations diagrammatically. The flow of data in

the original linear mapping is represented in Figure 1. Figure 2 represents
the transpose linear mapping and is essentially the original diagram inverted.
Referring to the implementation of the original function, consider the line g2
= f1+f2+f3. It can be considered to be “gathering” values from locations
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f1 f2 f3 f4

g1 g2 g3 g4

Figure 1. The data flow in the first linear map

g1 g2 g3 g4

f1 f2 f3 f4

Figure 2. The data flow in the second linear map

1, 2, and 3 into location 2. In the transpose code, the corresponding line
f1 += g2; f2 += g2; f3 += g2; g2 = 0; can be seen as “scattering” the
value in the second location into locations 1, 2, 3. Computing the transpose
swaps gathering and scattering operations. We will use this duality when we
investigate spatially-varying convolution by forward and reverse mapping.

4. Transposes and Spatially-Varying Convolution

Consider again the two definitions of spatially-varying convolution. If we write
mf (x, y) = f(x, x − y), then we get

(f � g)(x) =
∑

y

g(y)mf(x, y),

(f � g)(x) =
∑

y

g(y)mf ′(y, x),

where f ′(x, y) = f(x,−y). In other words, if we consider the discrete points
x and y to be indices and mf(x, y) to be a matrix indexed by x and y, then
reverse spatially-varying convolution is precisely the transpose of the corre-
sponding forward spatially-varying convolution with the kernels transformed
by x → −x.
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4.1. Example Application

We now have a prescription for computing the transpose of any linear function.
Given an implementation of a forward spatially-varying convolution, we may
convert it to the code for the reverse spatially-varying convolution (with the
kernels spatially reversed) by reversing the order of all of the linear operations
in it and replacing each one with its transpose. In order to illustrate the
method we will apply this method to implement running-sums to compute
spatially varying 1D box filters:

0 void ReverseBoxBlur(int n,float *data,int *radius)
1 {
2 float *sum = new float[n+1];
3
4 //
5 // Familiar ’summed-area’ algorithm...
6 //
7 sum[0] = 0;
8 for (int i = 1; i<=n; ++i)
9 sum[i] = sum[i-1]+data[i-1];

10
11 for (int i = 0; i<n; ++i)
12 data[i] = sum[i+1+radius[i]]-sum[i-radius[i]];
13
14 for (int i = 0; i<=n; ++i)
15 sum[i] = 0;
16
17 delete[] sum;
18 }

There are some important points to note about this code. For clarity of
exposition, it assumes that the values stored in radius are such that there
will be no out-of-bounds array accesses at line 12. We have chosen a filter
that is symmetric under x → −x so that the kernel of the transpose filter
doesn’t need to be spatially transformed in this way. It is only linear in the
array data, and we may consider n and the elements of the array radius to
be constants. At lines 14 and 15, we have explicitly zeroed out the array sum
before it is discarded as noted above. Obviously in production code this may
be omitted.

We now transform this code into the following form. The lines 7, 9, 12, and
15 perform linear operations and become lines 41, 37/38/39, 31/32/33, and
28, respectively. The loops at lines 8, 11, and 14 become the loops at lines
36, 30, and 27, respectively.
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19 void ForwardBoxBlur(int n,float *data,int *radius)
20 {
21 float *sum = new float[n+1];
22
23 //
24 // Less familiar ’render derivative of result’
25 // algorithm...
26 //
27 for (int i = n; i>=0; --i)
28 sum[i] = 0;
29
30 for (int i = n-1; i>=0; --i) {
31 sum[i+1+radius[i]] += data[i];
32 sum[i-radius[i]] -= data[i];
33 data[i] = 0;
34 }
35
36 for (int i = n; i>=1; --i) {
37 sum[i-1] += sum[i];
38 data[i-1] += sum[i];
39 sum[i] = 0;
40 }
41 sum[0] = 0;
42
43 delete[] sum;
44 }

Note that the final code may be optimised, for example there is some re-
dundancy in lines 36-41.

It is interesting to re-examine the transformed code. Lines 36–40 sum the
data in the array sum. So lines 30–34 are rendering what is essentially the
finite difference of the image. The finite difference of the box filter kernel has
two non-zero values, 1 and -1 at the leading and trailing edge. We can see
that lines 30–34 perform a convolution with the finite difference of the box
filter and lines 36–40 sum this result to convert it to the convolution with the
undifferenced box filter. So clearly this code does in fact specify an algorithm
for fast forward convolution with a spatially-varying box filter.

5. Discussion

We have given a simple example but the principle applies to any linear filter
that is expressed as a sequence of basic linear operations. A wide variety of
filters may be expressed in this way. Our particular example application of
computing the transpose also suggests some interesting rendering algorithms.
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If we are rendering images into an accumulation buffer it may, for certain types
of rendering, be more efficient to instead render the derivative of the image and
then perform a final sweep at the end integrating it. For example, arbitrary
transparent constant color shapes may be efficiently rendered additively by
rendering suitable values along their boundary and integrating at the end.
This is the transpose to the more usual technique of filtering scanlines using
running sums. More complex primitives such as Gouraud-shaded triangles
may be rendered as second derivatives and then integrated twice. Algorithms
such as polygonal-smoothing methods also yield fast forward spatially-varying
convolutions [Sun 03].

Like the original running-sums algorithm, the transpose algorithm may be
subject to numerical error. For example, each of the terms computed in line
38 above is the sum of many terms accumulated at lines 31, 32, and 37 and
hence may accumulate many small rounding errors. One common way to deal
with these errors is to copy a technique used for ordinary running-sums: work
with values that are integers modulo N where N is typically 2b and b is the
computer word size in bits and rearrange our algorithm to ensure that at each
stage we use only integer addition and multiplication. If we know that the
final results must lie within the range 0, . . . , N − 1, then the result of the
final computation will be exactly correct even if intermediate results caused
overflows outside this range.

The described method of transforming code into its transpose is not novel.
However, there appear to be very few references to the method in the pub-
lished literature. Jon Claerbout discusses it with examples in his online book
[Claerbout and Black 01]. It is closely related to adjoint mode automatic dif-
ferentiation [Griewank 89]. In fact, applying an adjoint mode differentiation
algorithm to a linear filter effectively computes the transpose filter [Pearlmut-
ter].

We haven’t discussed the “constants” represented by α, β, . . . , δ above. In
practice these need not be constant but merely independent of the variables
that are being linearly transformed. Unfortunately, if the computation of
these constants is itself complex, it can happen that reversing the order of
the transpose code fragments can interfere with this computation. A well-
studied example of this is in reverse mode automatic differentiation which is
the transpose of forward mode automatic differentiation. In this case, the non-
linear evaluation must take place once in forward mode followed by another
transpose linear pass in reverse mode, similar to the methods used in adjoint
mode automatic differentiation. However, for straightforward linear filters
these issues are unlikely to arise.

There may be many other applications of this technique in the field of
rendering where many of the computations are linear in the input data such
as lighting and textures. Any time we have a fast linear algorithm, there is
the possibility that there exists a fast transpose counterpart.
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