
Hypervolume Visualization: A Challenge in Simplicity

C. L. Bajaj V. Pascucci
Department of Computer Sciences and TICAM

University of Texas, Austin, TX 78733

G. Rabbiolo
Department of Mathematics

Purdue University, West Lafayette, IN 47907

D. R. Schikore
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory, Livermore, CA 94550

Abstract

Hyper-volume visualization is designed to provide simple
and fully explanatory images that give comprehensive in-
sights into the global structure of scalar fields of any dimen-
sion. The basic idea is to have a dimension independent
viewing system that scales nicely with the geometric dimen-
sion of the dataset and that can be combined with classical
approaches like isocontouring and animation of slices of nD
data. We completely abandon (for core simplicity) rendering
techniques, such as hidden surface removal or lighting or ra-
diosity, that enhance three dimensional realism and concen-
trate on the real-time display of images that highlight struc-
tural (topological) features of the nD dataset (holes, tunnels,
cavities, depressions, extrema, etc).

Hyper-volume visualization on the one hand is a general-
ization of direct parallel projection methods in volume ren-
dering. To achieve efficiency (and real-time performance
on a graphics workstation) we combine the advantages of
(i) a hierarchical representations of the hyper-volume data
for multiresolution display and (ii) generalized object space
splatting combined with texture-mapped graphics hardware
acceleration.

The development of a system that implements display
techniques for multidimensional datasets requires careful de-
sign of both algorithms and user interfaces that scale linearly
with the dimension n of the input geometric space. This is
a major challenge since straightforward generalizations of
standard techniques that are suitable for display of 3D data
yield exceedingly intricate interfaces. For example, a view
manipulation graphical user interface is usually based on a
rotation of the object about Cartesian rotation axes, with pos-
sibly unit quaternions internal representations for the rota-
tion group. Unfortunately the number of independent rota-
tion axes grows quadratically with dimension(three in 3D to
six in 4D to ten in 5D to fifteen in 6D space). Going back
to the basics of parallel projections, we develop an alterna-
tive scheme that is very simple to implement and immedi-
ately gives a view manipulation graphical user interface that
scales linearly with the dimension. One can still utilize ma-
trix or quaternion or higher dimensional rotational group rep-

resentations, internally for calculations.
The main results of our paper are thus both a multi-

resolution direct rendering algorithm and scalable graphical
user interface that provides insightfull global views of scalar
fields in any dimension, while maintaining the fundamental
characteristics of ease of use, and quick exploratory user in-
teraction.

1 Introduction

We introduce a new technique for informative visualization
of scalar fields embedded in n-dimensional spaces. Exam-
ples of scalar fields defined over more than three variables,
are gated MRI volume scans of heart motion, time vary-
ing data from computational fluids dynamics, molecular van-
DerWaal energies as a function of molecular configurations
(bond angles).

Our main contributions are:

1. the design and implementation of a new graphical user
interface for interacting with parallel projections of n-
dimensional scalar fields;

2. the design and implementation of a higher dimension
generalization of the traditional splatting algorithm for
3D volume rendering of scalar fields;

This paper extends the research on visualization tech-
niques which provide “global views” of scalar fields indepen-
dent of the dimension of their embedding space. In this paper
we directly render n-dimensional views of the global scalar
field.

A number of approaches have been attempted to visualize
higher dimensional objects [16, 14, 1]. The grand tour tech-
nique [2] is based on the idea of projecting the n-dimensional
datasets onto a 2-dimensional subspace that is moved along
random or selective paths. By visually perceiving coherence
in the contiguous 2D images the user can get an idea of the
actual structure of the nD object.

Bill Hibbard et al. [13] developed Vis5D for visualizing
scalar fields defined over 4D grids. They assume that the last

1

dimension is the time evolution of the dataset, so that they
simply animate the display of the isosurface, volume render-
ing or planar slices. Hence their approach is fundamentally
to animate traditional scientific visualizations. For their pur-
pose they achieve good results but the technique cannot be
generalized for higher dimensional datasets.

Hanson and Heng [9] introduced a technique to present 3D
scalar field by means of 4D elevation models in the same way
2D scalar fields can be show as 3D terrains. Rotating the 4D
pseudocolored elevation model the user can see its structure
enhanced by the illumination scheme developed in [11]. The
approach has been later generalized [10] to be suitable for
display of more general 4D geometric objects and made more
efficient to provide the speed necessary for good user interac-
tion.

Laur and Hanrahan [15] accelerate the 3D splatting [20] al-
gorithm adopting an octree hierarchical representation of the
volume data. We generalize this approach showing also how
the relative storage overhead of the full 2n-tree hierarchy de-
creases as the dimension of the embedding space increases.

The HyperSlice approach [19] introduced by van Wijk and
van Liere uses an array of 2D slices of high dimensional data.
Various interaction approaches are applied for different user
objectives. While this approach provides intuitive user inter-
action, for higher dimensions it becomes an increasingly dif-
ficult problem to fuse the multiple slices and establish an un-
derstanding of more complex patterns in the data.

On important aspect in developing a visualization tool
for n dimensional data is the design of an interface simple
enough to make the user interaction reasonably simple and
intuitive. Duffin and Barret [6] addressed this problem by
presenting a simplified 2D user interface to specify an n-
dimensional orthonormal rotation matrix.

The approach introduced in the present paper can be con-
sidered a good complement to the previous approaches listed
above. A common aspect of all such approaches is that it can
provide a realistic and detailed representation of “local” (in
time or space) feature of the scalar field. After looking at
many sequences of pictures the trained user attempts to form
in his own mind a “global picture” of the dataset. The ap-
proach proposed here tries to avoid relying (as much as pos-
sible) on the geometric abstraction capabilities of users, pro-
viding them directly with global projections of higher dimen-
sional spaces with real time interaction in a reasonably simi-
lar way to how they would explore their own physical world.

There are two main challenges in developing such an ex-
ploratory approach to visualization:� to make the user interaction be sufficiently intuitive,

simple and “linearly” scalable with the dimension� to efficiently render such a large amount of data (note
that the size of the dataset grows exponentially with the
dimension n of the embedding space

2 Hypervolume Projection Transfor-
mation

In this section we discuss how a 2D “view” of an nD object is
geometrically defined and how such a definition impacts the
user interface for view selection. We consider parallel projec-
tions. It is well known since the last century (see fundamental
theorem by K. Pohlke and H. A. Schwarz in [7]) that given the
image of a reference coordinate axes of a parallel projection,
the projection itself is completely defined. A short informal
proof of this fact is as follows. Consider the parallel projec-
tion as in figure 1. In the (x; y) view plane we draw the pro-
jection of the reference axes (X;Y; Z) of the 3D space. The
unit vectors of the three axes are projected respectively onto
the vectors~l1;~l2;~l3 and the projection of the originO is given
by o+~lO . The projection of the pointP (a; b; c) is thus given
by: o+~lP = o+~lO + a �~l1 + b �~l2 + c �~l3: (1)

This vectorial equation defines the parallel projection as
the linear mapping �(<3 ! <2) that maps the 3D point(X;Y; Z) onto the 2D point (x; y):�(<3 ! <2) : (X;Y; Z) 7! (x; y);� x = lxO +X � lx1 + Y � lx2 + Z � lx3y = lyO +X � ly1 + Y � ly2 + Z � ly3 (2)

where lji is the jth component of the vector ~li.
In the system (2) we fix the triple (X;Y; Z) to compute the

corresponding 2D point (x; y). Symmetrically we fix a par-
ticular pair (x; y) and determine all the (X;Y; Z) that satisfy
the system (2). In the latter case the set of all the solutions is
a line parallel to the vector:~� = �������� lx1 lx2 lx3ly1 ly2 ly3 ��������~� is the direction of projection that defines the parallel projec-
tion. Note that changing the three vectors ~l1,~l2 and ~l3 in all
possible ways, we obtain all the possible parallel projections.
Moreover it is easy to show that a valid view is given by any
surjective linear mapping �. This implies that the only con-
straint that the triple ~l1, ~l2, ~l3 needs to satisfy is:rank� lx1 lx2 lx3ly1 ly2 ly3 � = 2

Simple additional linear constraints over the triple ~l1,~l2,~l3
guarantees the parallel projection to be orthographic (iso-
metric, dimetric or trimetric) or oblique (cavalier, cabinet or
generic) [17].

2.1 The general mapping�(<n ! <2)
In the previous section we have discussed the methodology
for defining a parallel projection from 3D space to the 2D

2

(a)

P (a; b; c)view plane

view plane

(b)

~l1~l2~l3 P (a; b; c)b~l2 c~l3a~l1 xyo~lo ~lp ~�
Figure 1: Parallel projectiondefinition from 3D to 2D. (a) Re-
lationshipbetween 3D and 2D coordinates of a point. (b) Par-
allel projection of the 3D reference system onto the 2D view
plane.

view plane. In this section we show how this allows gener-
alization of parallel projection transformation from nD space
to a 2D plane. We also show how one can grow the dimen-
sion n of the object space without increasing the complexity
of the parallel projection definition scheme.

Let f~e1; : : : ; ~eng denote the canonical basis in the n-
dimensional object space <n. The parallel projection�(<n ! <2) : (X1; : : : ; Xn) 7! (x; y)
is a linear transformation and is therefore completely de-
termined by the n vectors ~li = �(~ei); i =1; : : : ; n: In fact by linearizing the image under � of a pointP (X1; : : : ; Xn) = ~e1 �X1+~e2 �X2+ � � �+~en �Xn is given
by:�(P) = �(~e1 �X1 + ~e2 �X2 + � � �+ ~en �Xn)= �(~e1) �X1 +�(~e2) �X2 + � � �+�(~en) �Xn)= ~l1 �X1 +~l2 �X2 + � � �+~ln �Xn
As in the 3D case, the mapping defines a system of two linear
equalities:� xy � = � lx1 � � � lxdly1 � � � lyd �0B@ X1

...Xn 1CA (3)

Changing the vectors ~li we obtain all the possible projec-
tion matrices. For a projection matrix to be “valid” it is suf-
ficient that it is full rank (otherwise we would project onto a
line or onto a point). Changing the vectors ~li in all the valid
ways we produce all the possible 2D views of the dataset.

To grow the dimension n of the object space means to add
new ~li vectors and hence columns to the projection matrix.
What in the 3D case is called the “direction of projection” is
in general the kernel K of the mapping �. Since the projec-
tion is given by a full rank 2 � n matrix the kernel of � is a(n� 2)-dimensional linear space. In 3D we have that points

aligned along the direction of projection are projected onto
the same 2D point. In the nD space we have that two points
are projected onto the same 2D point if and only if they are
contained in the same (n� 2)-dimensional affine space par-
allel to the kernel of the projection �.

2.2 Occlusion

The nice property of the 3D case is that the kernel of the map-
ping� is a 1-dimensional affine space. Hence, one can define
a total order among the 3D points projected onto the same
point in 2D. This automatically yields a sound definition of
occlusion (or visibilityordering) between points in 3D space.
A point P1 occludes a pointP2 if (i) �(P1) = �(P2) and (ii)
and P1 is “nearer” than P2 or more formally P1 has smaller
rank thanP2 in the order within their common projection ray.
For dimensions four or higher, a unique total order cannot be
defined at least in a sound geometric sense and independent
from the selected coordinate system. Artificial (partial) or-
ders can be easily imposed on the pointsof the (n�2)-flat that
is projected onto a single 2D point. Moreover, in 3D, given a
direction of projection, one can define two alternative occlu-
sion orders that give two views of an object in a fixed posi-
tion, say front view and a back view. In 4D or higher dimen-
sions things get immediately more intricate since one needs
to define a coordinate system within the kernel of the map-
ping � to define a certain occlusion order. This involves two
main difficulties:� Already in 4D, one gets an infinity of different occlusion

orders, each giving a different view of the object (keep-
ing the position of the object fixed). This implies addi-
tional degrees of freedom to explore and hence longer
interaction times.� One needs to define a reference system within the ker-
nel, but by definition, the entire kernel is projected into
a single point. So we need either some separate view
that “shows” the kernel or a numerical interface to con-
trol the occlusion order.

Apart from the complexity introduced by an occlusion or-
der, the more fundamental issue is the meaning of such an
occlusion and what enhancement if any, the occlusion yields
to the images displayed. In the 3D case, occlusion certainly
enhances the realism of the images and better highlights sil-
houettes of the viewed objects. However a case can be made
is that it also hides important features of the dataset. In our
case, since we are looking especially at scalar fields to pro-
vide views that displays its topological structure, we have
chosen not to provide an occlusion information in our ren-
dering.

2.3 The graphical user interface

¿From the general mapping defined in the previous section,
we derive the a graphical user interface for n dimensional ob-

3

ject exploration that differs from the classical rotation-based
interface. usually the basic view transformation that allows
one to change the view of an object is rotation (see sec-
tion 8.2.6 of [8]), since translation and scaling allow one to
only change the “focus” of a view, keeping the display sub-
stantially the same. from a users perspective interaction with
rotations has two main difficulties:� since one rotation is defined by 2 coordinate axes (the

axes that span the rotation plane) we have that in nd
space the number of independent coordinate rotations
are
�n2�. when one looks at a simple rigid body configu-

ration space of a 3d object where the number n of coor-
dinate axes is six (three translations plus three rotations)
one needs to explore 15 different planes of rotation.� the user is usually provided with the ability to rotate
an object in the coordinate planes so that a rotation in
a generic (non-coordinate) plane needs to be obtained
by combination of the elementary transformations. this
task gets really confusing in more than three dimension
since one cannot rely on navigation experience acquired
in physical 3d space.

A classical rotation-based interface grows quadratically
with the dimension n of the embedding space getting quickly
unsuitable for simple and fast interaction if n > 3. we em-
ploy an alternative approach that scales linearly with the di-
mension nmaking the interface more suitable for a higher di-
mensional approach (in the next subsection we show how this
interface can be enriched with rotational interaction when
needed). The main idea is that the user can modify the image
of the reference system instead of changing the positionof the
object in the embedding space. As shown in the previous sec-
tion, this approach provides sufficient degrees of freedom to
explore all the possible views of the object. in the same time
the approach reduces substantially the number of parameters
that the user needs to deal with.

Consider the reference system of a five-dimensional space
as in figure 2(a). The user can select with the mouse any
of the axes (highlighted in red) and then rotate/stretch it in
any position. For more accurate interaction, some buttons
and sliders are provided, allowing the user to perform the
same operation even if there are overlapping axes or the pre-
cision required cannot be achieved with a simple pick-and-
move operation. In this way the user can explore all the pos-
sible view with much less redundancy. Since the user deals
with one axis at a time the complexity of the interface is only
equal to the dimension n of the embedding space. In a six
dimensional configuration space the user just needs to adjust
the length and orientation of the six vectors ~l1 ~l2 ~l3 ~l4 ~l5 and~l6 projections of the embedding space unit vectors. This is
simpler that rotating in fifteen possible planes. It also may be
more intuitive for axes that do not correspond to the physical
extent of the object (e.g. time or rotational degrees of free-
dom). Of course when the user needs to rotate the object s/he

(a)

(b)

Figure 2: (a) User interface for selection of viewing pa-
rameters. The axes on the left can be directly selected and
stretched or rotated. The image of the standard splat is show
on the right. The sliders on top allow fine adjustment of the
stretching and rotation parameters. (b) User interface for se-
lection of transfer function parameters.

can still do that directly as in the classical approach, as de-
tailed next.

2.3.1 Rotation

In this section we show how one can easily integrate in our
image-space approach the classic object-space rotation. Con-
sider (without loss of generality) a rotation in the X;Y plane
by an angle �. It maps the X;Y coordinate to X 0; Y 0 by the
rule:(X;Y) 7! (X 0; Y 0) : � X 0 = cos � �X � sin � � YY 0 = sin � �X + cos � � Y

(4)
while all the other n� 2 coordinates remain unmodified. To
obtain the equivalent transformation in our image-based pro-
jection definition, we substitute equation (4) into the gener-
alization of (2) to obtain:�(<n ! <2) : (X;Y; Z; : : :) 7! (x; y);

4

Figure 3: 5D interaction energy scalar field (Red=attraction,
Blue=repulsion, Green=free movement). The axes configu-
ration is reported on the bottom left (the stretched axis corre-
sponds to a rotational degree of freedom).8>><>>: x = lxO + lx1 � (cos � �X � sin � � Y)+lx2 � (sin � �X + cos � � Y) + lx3 � Z + � � �y = lyO + ly1 � (cos � �X � sin � � Y)+ly2 � (sin � �X + cos � � Y) + ly3 � Z + � � �

(5)
that can be rewritten as:8>><>>: x = lxO + (lx1 � cos � + lx2 � sin �) �X+(�lx1 � sin � + lx2 � cos �) � Y + lx3 � Z + � � �y = lyO + (ly1 � cos � + ly2 � sin �) �X+(�ly1 � sin � + ly2 � cos �) � Y + ly3 � Z + � � �

(6)
Hence we provide a slider to control the rotation parameter� and at each rotation step replace ~l1 with ~l01 and ~l2 with ~l02
where:(~l01 = (lx1 � cos � + lx2 � sin �; ly1 � cos � + ly2 � sin �)T~l02 = (�lx1 � sin � + lx2 � cos �; �ly1 � sin � + ly2 � cos �)T

(7)
In this way, the user is provided with the same intuitive

ability to rotate objects as in a classical 3D user interface.

3 Hyper-Volume Splatting

This section first provides a working example of the Hyper-
Volume splatting approach and then details the splatting al-
gorithm that we have implemented with the three following
properties:� the use of a transfer function that highlights the basic

structural features of the scalar field;� the use of a multiresolution hierarchical approach to
speed up the drawing when is provided a user specified
bound on the tolerated error;� the use of a splatting algorithm that takes advantage
from texture mapping graphics hardware.

Figure 4: 5D interaction energy scalar field (Red=attraction,
Blue=repulsion, Green=free movement).
Same view as is figure 3 but highlighting only some of the
energy components.

3.1 Example of Hyper-Volume Splatting(5D
Molecular Interaction Potential)

Consider a pair of molecules, a small ligand (methanol) and
a large receptor (Ecballium Elaterium Trypsin Inhibitor1), of
which one wants to study the possibility of docking. At this
purpose one needs to understand how the interaction energy
between them changes as they change relative position. In
particular we regularly sample the configuration space of the
ligand translations along the x,y,z axes and rotations around
the x and y axes (assuming rough symmetry of the ligand
with respect to the z axis). For each sampled position of this
five dimensional space one gets a particular value of the in-
teraction energy (sum of electrostatic interaction and Van der
Waals interaction components) defining a scalar field sam-
pled over a 5D regular grid. Figure 3 shows the direct ren-
dering of the 5D scalar field highlighting in Red regions of
attracting energy, in Blue region of repulsion energy and in
Green region in free movement of the ligand. The display is
performed directly by projection form 5D space to 2D space
without any slicing/isocontouring stage so that the informa-
tion contained in the dataset is preserved in its globality. The
axes reported on the bottom left of the picture show how one
of the degrees of freedom (a rotation) is stretched more than
the others to enhance better its influence with respect to the
overall scalar field structure. In this case it is clear from the
two large red spots that correspondingly to high and low val-
ues of that degree of freedom we get more attraction values
than for intermediate values (such rotation are probably more
advantageous for a docking of the ligand with the receptor).

Progressively removing all the color but the red as shown
in figure 4 one can also see how these two large red regions
are connected by a narrow tunnel. Deeper understanding of
the scalar field structure is of course provided by interac-
tive navigation in the dataset structure. For example figure 5
shows a second view of the dataset of figure 3 in which the
axis corresponding to the second rotational degree of free-
dom is also stretched (as in the reference system on top).
From this view one can see that the two large red regions are
in turn divided each into two. On the left picture one can no-1The Ecballium Elaterium Trypsin
Inhibitor can be found in the file 2eti.pbd available form the Protein Data
Bank http://pdb.pdb.bnl.gov/

5

Figure 5: 5D interaction energy scalar field (Red=attraction,
Blue=repulsion, Green=free movement).
Same scalar field as in figure 3 but from a different view.

tice an interesting small site in green where the ligand can
move along the interface with the receptor without being sub-
ject to a repulsion force. Again one can show only the at-
traction component (in red) and see clearly that in the central
region the energy is completely repulsive (see right image).
Note that this kind of check by partial color removal is neces-
sary because some red spots might be hidden within the blue
region.

3.2 Transfer Function

The definition of a “good” transfer function is highly depen-
dent on the type of scalar field displayed and the features that
one needs to highlight. In low dimensional cases interesting
techniques have been developed to support the automatic se-
lection of transfer functions which emphasize the important
structures of a scalar field [12, 4]. In our current implemen-
tation we use the three color components to highlight regions
of the field that encompass values in different ranges. Using
the interface component in figure 2(b) one can interactively
select the range of the scalar field values associated to each
color and the relative intensity of each color component. The
user clicks on one color button to select the currently modi-
fied component and then uses the sliders to determine the as-
sociated range in the scalar field and scale factor in luminos-
ity. Interactively the view is updated accordingly to the mod-
ified parameters. In a particular the image generation is de-
fined as follows. The red color component R(p) in the pixelp of the image is given by the integral:R(p) = Lr Zp+K Frdk
where the domain of integration K is the kernel of the pro-
jection � (in 3D is the projection ray through p), dk is then� 2 dimensional differential element, Lr is the luminosity
of the red component and Fr is the scalar field value normal-
ized in the (minr ;maxr) range associated to the red color
component. Similar formulas can be written for the blue and
green component providing the complete coloring scheme
for a given view.

3.3 Efficient Splatting

The splatting algorithm is particularly simple and efficient in
the case of parallel projections since all the splats have the
same shape: they differ only in color intensity and eventually
in scale factor (see the hierarchical representation in the next
subsection). In this case the display algorithm has two main
stages:

1. compute the shape of the standard splat or footprint;

2. draw each voxel by copying the standard splat scaled by
color intensity and size.

Note that we are not considering the ordering the voxels to be
splatted since we do not perform occlusion between voxels
with overlapping images.

3.3.1 Splat Computation

The input data we are displaying is a decomposition of the
space in elementary volume regions or voxels. At the center
of each voxel the scalar field is sampled and assumed con-
stant within the voxel. In this framework each splat is the
projection of a n-dimensional cube (the voxel) of constant
transparency value (the scalar field value) onto the 2D image
space. From spline theory we get that the luminositydistribu-
tion of the splat is a bivariate box spline [5]. This fact allows
us to compute the splat luminosity distribution exactly or to
control the error of an approximated version we might use in-
stead. In particular we observe that the splatting algorithm
applied to a volume of constant intensity is indeed an approx-
imation of a bivariate box spline. The level of approximation
depends on what splat one uses and on the number of voxels
in which the value is decomposed. This allows use to pursue
a bootstrapping technique by using the splatting algorithm to
generate a good splat to be used in the actual rendering of
the scalar field. Note that this approach, again transforms the
problem of drawing a good splat by projecting a cube (in this
case n-dimensional), into a simple reuse of the splatting al-
gorithm. Of course in the initial splat drawing stage instead
of an exact splat we may use a simple square. To obtain an
exact drawing of the initial splat we would need a square of
size equal to one pixel (see [5]) but in practice a fairly larger
one is sufficient since in the successive use of the splat its ini-
tial footprint will be shrunk to the necessary size. Figure 6
show the splat obtained for different axes configurations in
four, five and six dimensional spaces.

Note also that in the case of the hierarchical approach the
splats of any level in the hierarchy have exactly the same
shape. They need only be scaled in size and color intensity.

3.4 Hierarchical Representation

One major problem that arises while dealing with multidi-
mensional scalar fields is that the size of the dataset grows
exponentially with the dimension of the embedding space.

6

(a) (b) (c)

Figure 6: Standard splat footprint for different axes orienta-
tions in four dimensions (a), five dimensions (b) and six di-
mensions (c).

For example, an n-dimensional scalar field sampled on reg-
ular grid with k samples in each dimension one has kn sam-
ples. A regular grid in the 6-dimensional rigid body config-
uration space with only 64 samples in each direction has al-
ready 236 ' 68 billion samples.

To deal with such large datasets we adopt a 2n-tree hierar-
chical representation where n is the dimension of the embed-
ding space. We build the hierarchy in a bottom up coarsening
scheme by merging at each step groups of 2n adjacent voxels
and averaging their function values, with precomputed error
bounds. In the display stage we recursively visit the 2n-tree
nodes in a Depth First Traversal from the coarser level and
stop when the user specified error bound is satisfied (the error
value is set by the user with the help of the top slider in the in-
terface shown in figure 2(b)). In this way, the user is allowed
to trade accuracy for speed in a fully controlled manner.

3.4.1 Hierarchy Storage Overhead

There are at least two possibilities in storing the 2n-tree hier-
archy: (i) store the complete 2n-tree in an array, independent
from the sample values (ii) store the 2n-tree in a 2n-linked list
to avoid multiple storage for neighboring voxels with equal
sample value. In general it is not clear which approach is
more convenient. It could be even better to have, instead of
a 2n tree, a bin-tree where each binary division is performed
along one of the n coordinate directions [21, 18]. Our choice
to store the full 2n-tree is derived from the following consid-
erations that show how the full hierarchy storage overhead
decreases as the dimension of the dataset increases.

Consider a regular grid of total size M embedded in thenD space. Assume for simplicity that the grid has the same
number m of samples in all the n directions (we have M =mn) and m = 2h for some h. Note that the assumption
made simplify the following formulas without altering the re-
sult that we shell derive. Since the coarsening stage from one
level to the next in the hierarchy is based on grouping 2n adja-
cent cells we have that the number of cells is reduced at each
level by a factor of 2n. Overall the storage M� of the com-

plete 2n-tree is:M� = hXi=0 �2h�n(2n)i = hXi=0 (2n)h�1 = hXj=0 (2n)j
Using a geometric series formula2 we have that the relative

storage overhead is given by:M��MM = (2n)h+1�1(2n�1) �(2n)h(2n)h = (2n)h+1�1�(2n)h(2n�1)(2n)h(2n�1) =(2n)h�1(2n)h(2n�1) < (2n)h(2n)h(2n�1) = 1(2n�1)
The overhead due to the hierarchical representation can

be bounded by a term that decreases exponentially with the
dimension n so that the hierarchy storage overhead is very
small with respect to the input dataset especially for n > 3.

3.5 Hardware Acceleration

Once the standard splat is computed we store its image in the
texture map memory. Each splat is then rendered as a 2D tex-
tured polygon. In this way we take full advantage from the
hardware acceleration of modern graphics workstations. We
can render a large number of splats quickly achieving almost
interactive rates for fairly complex datasets. In our hierarchi-
cal implementation we also need to compute different splats
for different levels of resolution. To perform this operation
we use mipmaps so that we automatically obtain the best scal-
ing in size of the splat simply by drawing a larger textured
polygon onto the screen.

The ability to interactively view and manipulate three di-
mensional textures (available on high end graphics worksta-
tions) could also be potentially used. The general mapping� : <n ! <2 can easily be modified to a map � : <n ! <3
to produce hypervolume splats, which can be then be inter-
actively explored. The full potential of this exploration will
however be only realized when true volumetric displays be-
come available.

4 Further Enhancements and Future
Directions

In addition to the coupling with classical visualization tech-
niques such as isocontouring and slicing, we are also ex-
ploring the enhancement of the hypervolume view with ad-
ditional computed structural information such as the scalar
topology diagram, a one-dimensional roadmap of the nD
scalar field [3]. Due to the high-dimensionality of the data,
it remains an open issue how to highlight fundamental struc-
tural feature of the scalar field without occluding a large por-
tion of the displayed view. This problem may be cast into anD embedded graph simplification problem. We are also in-
vestigating automated colormap definition techniques driven
by the goal of identifying topologically interesting features.2Remember that

Pki=0 xi = xk+1�1x�1
7

References

[1] ANDREWS, D. F. Plots of high-dimensional data. Biometrics
28 (1972), 125–136.

[2] ASIMOV, D. The grand tour: a tool for viewing multidimen-
sional data. SIAM Journal on Scientific and Statistical Com-
puting 6, 1 (Jan. 1985), 128–143.

[3] BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. Visual-
ization of scalar topology for structural enhancement. In Pro-
ceedings of IEEE Visualization ’98 (to appear) (1998).

[4] BERGMAN, L., ROGOWITZ, B., AND TREINISH, L. A rule-
based tool for assisting colormap selection. In Visualization
’95 Proceedings (Oct. 1995), G. M. Nielson and D. Silver,
Eds., pp. 118–125.

[5] DE BOOR, C., HÖLLIG, K., AND RIEMENSCHNEIDER, S.
Box Splines. No. 98 in Applied Mathematical Sciences.
Springer-Verlag, 1993.

[6] DUFFIN, K. L., AND BARRETT, W. A. Spiders: A new user
interface for rotation and visualization of N-dimensional point
sets. In Proceedings of the Conference on Visualization (Los
Alamitos, CA, USA, Oct. 1994), R. D. Bergeron and A. E.
Kaufman, Eds., IEEE Computer Society Press, pp. 205–211.

[7] FIEDLER, G. Die darstellende Geometrie. XXX, 1871.

[8] FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES,
J. F. Computer Graphics: Principles and Practice, 2nd ed.
Addison-Wesley, Reading MA, 1990.

[9] HANSON, A., AND HENG, P. Four-dimensional views of 3D
scalar fields. In Proceedingsof IEEE Visualization ’92 (1992),
pp. 84–91.

[10] HANSON, A. J., AND CROSS, R. A. Interactive visualization
methods for four dimensions. In Proceedings of IEEE Visu-
alization ’93 (San Jose, CA, Oct. 1993), G. M. Nielson and
D. Bergeron, Eds., IEEE Computer Society Press, pp. 196–
203.

[11] HANSON, A. J., AND HENG, P. A. Illuminating the fourth
dimension. IEEE Computer Graphics and Applications 12, 4
(July 1992), 54–62.

[12] HE, T., HONG, L., KAUFMAN, A., AND PFISTER, H. Gen-
eration of transfer functions with stochastic search techniques.
In Visualization ’96 Proceedings (Oct. 1996), pp. 227–234.

[13] HIBBARD, W. L., ANDERSON, J., FOSTER, I., PAUL, B. E.,
JACOB, R., SCHAFER, C., AND TYREE, M. K. Exploring
coupled atmosphere-ocean models using Vis5D. The Interna-
tional Journal of Supercomputer Applications and High Per-
formance Computing 10, 2/3 (Summer/Fall 1996), 211–222.

[14] HOLLASCH, S. R. Four-space visualization of 4D objects.
M.sc. thesis, Arizona State University, Aug. 1991.

[15] LAUR, D., AND HANRAHAN, P. Hierarchical splatting:
A progressive refinement algorithm for volume rendering.
In Computer Graphics (SIGGRAPH ’91 Proceedings) (July
1991), T. W. Sederberg, Ed., vol. 25, pp. 285–288.

[16] NOLL, M. A. A computer technique for displaying n-
dimensional hyperobjects. Communications of the ACM 10,
8 (August 1967), 469–473.

[17] PASCUCCI, A., AND PASCUCCI, V. Uso del calcolatore nalla
produzione, elaborazione ed archiviazione di proiezioni par-
allele. In Atti del convegno L’immagine nel rilievo (1992),
C. Cundari, Ed., edizione Gangemi.

[18] SHAFFER, C. A., JUVVADI, R., AND HEATH, L. S. A gen-
eralized comparison of quadtree and bintree storage require-
ments. Image and Vision Computing 11, 7 (1993), 402–412.

[19] VAN WIJK, J. J., AND VAN LIERE, R. Hyperslice. In Pro-
ceedings of IEEE Visualization ’93 (San Jose, CA, Oct. 1993),
G. M. Nielson and D. Bergeron, Eds., IEEE Computer Society
Press, pp. 119–125.

[20] WESTOVER, L. Footprint evaluation for volume rendering.
Computer Graphics 24, 4 (Aug. 1990), 367–376.

[21] WISE, K. Generalized comparison of bintree and 2n-tree stor-
age requirements. Technical Report 053, University of Bath,
Department of mechanical Engineering, December 1997.

8

