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THE GRAND TOUR:
A TOOL FOR VIEWING MULTIDIMENSIONAL DATA*

DANIEL ASIMOV?

Abstract. The grand tour is a method for viewing multivariate statistical data via orthogonal projections
onto a sequence of two-dimensional subspaces. The sequence of subspaces is chosen so that it is dense in
the set of all two-dimensional subspaces. Desirable properties of such sequences of subspaces are considered,
and several specific types of sequences are tested for rapidity of becoming dense. Tabulations are provided
of the minimum length of a grand tour sequence necessary to achieve various degrees of denseness in
dimensions up to 20.
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1. Introduction. The familiar "scatterplot" (of a finite sample of ordered pairs
of variables) can be extraordinarily informative. Thus, it is very tempting to consider
the p-dimensional scatterplotma finite sample of ordered p-tuples of variables--and
to devise ways to view it.

Even for p 3, we have no magic pen that draws points in mid-air. Resorting to
computer graphics [FFT], however, will permit us to see the three-dimensional scatter-
plot on a display screen just as if the points were drawn in mid-air. With the aid of a
graphical input device like a "trackball," we may even rotate the scatterplot in real time.

For p greater than 3, we are faced with serious problems. How can computer
graphics technology be used, in conjunction with our visual abilities, to better grasp
the structure of the p-dimensional data?

A simple answer to this question is to project the data orthogonally onto some
two-dimensional subspace of p-dimensional Euclidean space, and then to view the
resulting projected image.

A problem immediately arises: Which of the infinitely many two-dimensional
subspaces shall we choose for viewing? The idea of the grand tour is to move through
a sequence of projections, chosen to be dense in the set of all projections. As a result,
we can view (or else have the computer apply some analysis or measurement to) a
sequence of two-dimensional scatterplots which, asymptotically, come arbitrarily close
to all 2-dimensional scatterplots projectable from the given data.

Historically, the grand tour is a descendant of the Andrews plot [Andr] which
dates to 1972. This plot is often realized as a stationary set of function graphs y =fi(t)
where f(t) xl//-+ X2 sin + X3 COS + X4 sin 2t + x5 cos 2t +. for the ith data point
(xl, x2, x3,"" ,xv). This can, however, be interpreted also as a time sequence
{fl(t), , fN(t)} of points in R, where at time to we are viewing the dot-products of
all the data points with the vector given by (1/x/, sin to, cos to, sin 2to, cos 2t0," ").

Then, in 1977, Paul and John Tukey [TT77] presented some further thoughts on
Andrews plots, including an example of a dense curve of directions in R 4. They also
considered briefly a two-dimensional (not necessarily dense) version of Andrews plots
which they called "ouija" plots.
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Meanwhile, real-time computer graphical visualization of three-dimensional (or
higher) rotation had been achieved when the PRIM-9 system was implemented at the
Stanford Linear Accelerator Center (SLAC) in the early 1970’s [FFT].

Much of the work described herein was performed at Harvard University in
1980-81 and at SLAC in 1981-83.

2. Overview. In order to implement a grand tour on a computer graphics system,
it is necessary to have an explicitly computable sequence of orthonormal 2-frames (a
2-frame is an orthonormal pair of vectors) in p-dimensional Euclidean space. The
p-dimensional data is then projected, in turn, onto the 2-plane spanned by each
2-frame. If desired, each projected image may be displayed on the screen, or else
processed somehow by the computer (or both). We list below some desiderata for this
sequence of 2-frames:

Desiderata. A) The sequence of planes should be dense in the space of all planes.
Precisely, let Gz,,p stand for the space of unoriented 2-planes through the origin in
Euclidean p-space (a so-called "Grassmannian manifold"’). Let PI, P2,"" be the
infinite sequence of 2-planes (spanned by the infinite sequence of 2-frames generating
the grand tour). Then our condition A says that for every 2-plane P and for every
e > 0, there exists an n such that the distance d(P, Pn) from P to Pn is less than e.

(Our definition of the distance function d is in 4.) Note that this denseness is not
just a desideratum, but part of our definition of "grand tour."

B) Our sequence of planes should become dense in Gz,p rapidly. This means
finding an efficient algorithm to compute the sequence of 2-frames and to project the
p-dimensional date onto each pair of vectors in turn.

C) It would be useful for the sequence of planes to be uniformly distributed in
Gz,p. That is to say, for each open measurable subset A of Gz,p, our sequence of planes
P, P2"’" should pass through A with frequency proportional to the measure of A.
We refer here to the invariant measure/_ on G2,p (which is uniquely determined up
to a positive constant factor). Precisely, we want

lim
1

Ia(Pi)--- (A),
neo F/ i=

where Ia is the characteristic function of the set A.
D) Our sequence of planes should be continuous, in some sense, if its projections

are to be apprehended by a human observer. Each plane should be perceptibly close
to those planes just before and after it in the sequence. (This condition is of no
importance in many applications of the grand tour in which no human observing occurs.)

E) For human observers, our sequence of planes should be as straight as possible.
That is, if we think of the planes as being evenly-spaced points on a curve in G2,p.
then we should be able to choose that curve so that it is almost a geodesic. This is
another way of assuring that the sequence of planes is both comprehensible to the
observer, and also that it moves rapidly to new views, giving new information about
the data being projected.

F) The grand tour ought to have a built-in degree of flexibility about it. This
would enable the user to better optimize those qualities (among A) through E, for
example) which may be important for the particular purpose he or she has in mind.
Flexibility may be obtained by finding a parametric family of sequences of planes.
There should then be some clear relationship between the parameter(s) and the desired

Note. Unless otherwise specified, all "planes" referred to herein will be planes through the origin.
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properties, so that the user can choose the parameter(s) wisely. It should also be
possible to interactively change parameters after the grand tour has begun.

G) The sequence of planes should be reconstructible at any later occasion. In
practice, this simply means that either the sequence of planes is chosen from a
parametric family with parameters known to the user, or else there may be a pseudo-
random component whose random number algorithm(s) and seeds(s) are known. It
is, of.course, desirable that in reconstructing a particular plane of our sequence, the
other planes preceding it need not be computed all over again.

Remarks. R1. To require bona fide denseness of the infinite sequence of planes
P1, P2,"" is unnecessary for any real-world implementation of the grand tour. In
particular, if we know in advance the number L of planes P1, P2,""", PL we will be
using, we can dispense entirely with the idea of an infinite sequence. We may also be
able to better optimize the seven properties A) through G) once L is known.

R2. If the method for producing the sequence P1, P2, is based on some random
process, we will generally be able to claim properties such as denseness or uniformity
as being "almost sure" rather than certain. (But this is almost surely sufficient for our
purposes!)

R3. There is evidently a tradeoff between rapidity and continuity. This suggests
using a curve of points in Gz,p, and obtaining a sequence P, P2," by walking along
this curve after choosing an appropriate stepsize. The human observer, of course,
desires continuity. A machine alone, processing many planes, will rather need rapidity.

R4. To date, the known sequences P, P2," that are both uniform and rapid
require sequences of pseudo-random numbers to compute them. Thus to achieve
reconstructability the algorithm and seed value of the pseudo-random sequence must
be retained.

R5. Minor violations of uniformity are acceptable for the human observer. Strict
uniformity is needed only when the computer is determining distributional properties
of some statistic of two-dimensional scatterplots (see 5).

R6. In all of the above, we have emphasized the choice of 2-planes P1, P2,"
In practice, however, when displaying a two-dimensional picture we must also choose
its rotational position on the screen. This is accomplished by choosing not just a mere
plane Pi but rather a pair of orthonormal vectors (vi, w) spanning P: these are to be
identified with the X and Y directions of the display screen. Even when no display is
required, the computer must still hold internally a description of each plane P. The
"2-frame" (v, wi) is a convenient form for this information.

3. Some specific grand tours. In this section, we present three general methods
for producing grand tours.

I. Torus method. The N-dimensional torus TN may be defined as the Cartesian
product of N identical unit circles. Equivalently, TN may be thought of as Euclidean
space RN in which all arithmetic is performed modulo one. Symbolically, T
RN/(2rZN) where ZN is the integer lattice in R N. It is well-known that dense curves
may be found on TN via the following.

PROPOSITION [HWTN]. Let {A1,. ", AN} be a set of real numbers that are linearly
independent over the integers. 2 Then the curve a" R TN via a (t) =(Alt,. , ANt)has
dense image in TN. (Note that the coordinates Ait are interpreted modulo 27r.)

Real numbers ul," , uN are said to be linearly independent over the integers if the only sequence of

integers {K1,..., KN} for which the equation Yi=l Kiui =0 holds is with all K =0.
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The special orthogonal group in dimension p, denoted SO(p), is the set of all
orthogonal pp matrices having determinant =+1. SO(p) has a topology induced
from R p2, the space of all real p p matrices, and is in this way a compact manifold
of dimension 1/2(p2_p). SO(p) may equivalently be thought of as the space of all
rotations of the unit sphere in R p. (As such, it is a "Lie group" [Chev].)

We let Rq(0) denote the element of SO(p) which rotates the standard basis vector
ei through an angle 0 towards the standard basis vector ej inside the i, j coordinate
2-plane of R p, leaving fixed the orthogonal complement of this 2-plane.

We let G2,p denote the space of all 2-planes in R p. We also let V2,p denote the
space of all ordered pairs of orthonormal vectors in RP. V2,p is topologized as a subset
of Rp Rp and is compact.) We have the natural continuous surjections r: SO(p) V2,p
and p: V2,p-G2,p given by "rr(Q)-(Qel, Qe2) for any QSO(p), and p(v,w) =the
2-plane spanned by v and w, for any (v, w) V2.p.

We are now ready to describe explicitly the torus method.
1. Let N 1/2(p)-p) and think of the coordinates of Tn as being indexed by all

pairs i, j with 1 _-< < j _-< p.
2. Define a map f: T - SO(p) via

f(Xl,2,""", Xp-l,p)-- R12(Xl,2) oRp_l,p(Xp_l,p)"

In words: f is the product of coordinate-plane rotations through angles determined
by the toral coordinates. (Note: each xq is only well defined modulo 2r, but since
Rq(0 + 2r) Rq(0), f is well defined.)

3. We claim that f is a surjection. This fact was in essence discovered by L. Euler
[MMCM]; the angles {xq} are referred to as "Euler angles."

4. Choose real numbers A1,." ", An and a stepsize STEP such that the numbers
{2r, STEP" A1,’" .,STEP. An} are linearly independent over the integers. Use
A1,""", AN to define the curve a: R - TN via a(t)= (Alt,’’’, ANt) as in Proposition
1. Thus, we know that the image a(R) of a is dense in TN.

5. We conclude, therefore that foa:R-SO(p) has dense image f(a(R)) in
SO(p).

6. The discrete sequence {foa(K. STEP), K--1, 2,...} must therefore also be
dense in SO(p).

7. Finally, we define our sequence of 2-frames (vn, w) as (v,w)--
rofoa(K. STEP), K 1, 2,’". By 6 above, this sequence must be dense in V2.p.

8. We define our sequence of 2-planes P, P2, as, of course, P p V, W
po rof a(K STEP).

It follows from 7 above that this sequence is dense in G2,p. This concludes our
description of how to compute a grand tour by the torus method.

Remarks. R1. The number N, the dimension of the torus used here, can be"
reduced from 1/2(p2-p) to 2p- 3 (see Appendix). The resulting sequence of orthogonal
matrices will no longer be dense in SO(p) but will be dense when pushed via rr and
p into V2,p and G2,p. This reduction achieves a considerable savings in computation time.

R2. The sequence given by zK -(K. STEP. A1,’’’, K. STEP. AN) Ts is uni-
formly distributed on Ts. But the maps f, r, and p do not respect volumes. Thus, the
sequences of 2-frames {(vK, wK)} and planes {PK} are not uniformly distributed. This
remark applies equally to the 2p-3 version in the Appendix.

R3. The parameter STEP may be varied before, or even during, each run of the
grand tour. The effect of increasing the size of STEP is to trade continuity for rapidity.
More accurately, this is true for some range of values 0 < STEP-< M, after which there
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is very little noticeable effect of STEP on either continuity (which is totally lost) or
rapidity (which is at a maximal level).

R4. Although it is convenient to fix the values of ‘il,." ", ,in and vary STEP, it
is in fact the vector x (STEP. 11,. , STEP. ‘in) in the torus TN which determines
the characteristics of the grand tour, torus method. If the total number L of planes
to be used is known, then Korobov [MCTP] has deter’mined vectors x which behave
optimally vis-a-vis the distribution of the sequence x, 2.x, 3.x,... in TN. It seems
likely that Korobov coefficients will give rise to sequences of 2-frames and 2-planes
which become dense rapidly, but their use is restricted to occasions when L is known
in advance. Alternatively, some easy-to-compute values of x seem to work very well.
For example, two choices are

a) Let ‘i: =/p/ =the square root of the Kth prime (p=2, p2=3, .). Let
STEP almost any irrational positive real.

b) Let ‘in e: mod 1 (e 2.71828 .) and again let STEP almost any irra-
tional positive real.

If. At-random method. In this method, each 2-frame is chosen independently,
from the "uniform" distribution on Vz,p. This distribution is more accurately termed
the "invariant" measure on Vz,p, because it is characterized up to constant factor by
its invariance under the action of SO(p) on Vz,p. That is, if O SO(p) and A Vz,p,
then we have for the invariant measure m,

m(a) m{(Ov, Ow)(v, w) A}.

To pick the sequence {(v/, wn)} of 2-frames, we use the "rejection" method as follows"
1. Generate a sequence of pseudorandom numbers x, x2," in the unit interval.
2. Sety 2x- 1, Y2 2X2-- 1,"
3. Assume we have already used the random numbers yl,..., y, (at the start

n =0). Set zi Y,,+i for i= 1,...,p.
2 1.0. If not, return to Step 3 and try again.4. Test for 0 < z2 +. + z

5. Go through Step 3 again until a second set of p numbers are found (call them
2<1.0u, , Up this time) with 0 < u2 +. + Up

6. Letting z=(za,..., z) and u= (u,..., u), apply the Gram-Schmidt pro-
cedure to obtain an orthonormal pair of vectors

u- (u v<)v:
v,, -z/llzll and w/ ]]u-(u. v:)v:ll

These constitute the next 2-frame (v:, v:) of our sequence. It is easy to verify that
despite the apparent asymmetry in the use of the Gram-Schmidt procedure, (v:, w:)
is in fact selected at random from the invariant distribution.

7. It follows immediately that the corresponding sequence of planes P/ (v, w/)
may be thought of as being selected from the corresponding invariant distribution on

Gz,p.
Remarks. R1. The at-random method has in its favor the extreme ease of concept

and computation. It is too discontinuous (totally) for movie viewing. (This is, of course,
no problem if the viewer prefers to see only a sequence of still pictures.)

R2. The at-random method will produce, almost surely, a uniformly distributed
sequence.

R3. There is no flexibility in the at-random method.
R4. The at-random method becomes dense about as fast as the torus method

with large stepsize.
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III. Random-walk method. The random-walk method was devised in an attempt
to unite the flexibility of the torus method with the guaranteed uniform distribution
of the at-random method. We describe here two methods, the plain random walk and
the smoother random walk.

A. The plain random walk. Let /Z denote a measure on SO(p) satisfying the
following condition:

Condition D. The support of/z (i.e., the complement of the union of all open
/z-null sets) generates a dense subgroup of SO(p). Then we obtain a sequence of
orthogonal matrices OK SO(p) as follows:

1. Set O0 Ip, the identity matrix.
2. For K 1, 2,... we let gl, g2," be selected i.i.d., according to the law

from SO(p).
3. For K 1, 2,. we set OK gK OK-1.
To now obtain our 2-frames and 2-planes, we proceed as usual.
4. (VK, WK r(OK (OKel, OKe2).
5. PK =p(VK, WK)=(OKel, OKe2). (ei is the ith canonical basis vector in RP.)
Remarks. R1. As a concrete example of an appropriate measure /z, we take a

discrete/z concentrated on the finite set of rotations supp (/z) {Rq(Ai/)I1 -<_ < j <= p},
where (,qll--< < j-< p} U {1} is a set of real numbers linearly independent over the
integers. We simply set

2
/z Rq(*q) p2_p

for all i, j with 1 <=i< j<= p. We shall denote /z by U{Rq(Aq)}. By our discussion of
the torus method, it is easy to see that supp (/z) generates a dense subgroup of SO(p).
Thus, Condition D is satisfied by

R2. As long as p_-__ 2, Condition D guarantees that the distribution of OK (the
position of the random walk at time K) approaches the invariant distribution on
SO(p). Precisely,

lim/z*n invariant measure

where /z*n denotes the nth convolution power of /z with itself, and the limit is
understood in the sense of weak convergence [MAGL]. (Note: the invariant measure
on SO(p) is what is sometimes referred to as the Haar measure.)

R3. The random walk achieves its flexibility through the available choice of
measures/z satisfying Condition D. By using such a measure with supp (/z) lying close
to Ip, we may maintain a slow rate of change in the sequences of rotations, 2-frames,
and 2-planes, and thus a high degree of continuity.

R4. The use of a measure U{Rij(&q)}, as described in R1 above, has the following
drawback. Regardless of the choice of parameters &q, 1 =< < j =< p, the resulting random
walk will be as unstraight as can be. Thus, the human viewer may experience disorienta-
tion in attempting to follow the resulting sequence of scatterplots. To remedy this, we
hereby propose the use of the following type of measure

B. The smoother random walk. For convenience, we first introduce the size of
an orthogonal matrix M SO(p) as follows:

size (M) max (angle (v, Mv)}
v0

(where angle is always chosen to lie between 0 and 180). Now pick any orthogonal
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matrix Q having size (O) e where e is small. Also, pick a set of numbers ,ij, 1 <- < j <=
p, such that {ijl I -< < j _-< p} [.J { I} is linearly independent over the integers. Also, have
the ij satisfy

6<-j<=26, l<=i<j<=p

for some 6 > 0 satisfying 6 < e(6- e2 seems to work well). Finally, we define to be

2
l<-i<j<=pt(QoRj(Ai)) pZ_p

on supp(l)={QoR(Ai)]l<=i<j<=p}. We denote/ by U{QoRi(Aj)}.
It is easy to verify that this / satisfies Condition D above and thus, as long as

p _-> 2,/*"--> invariant measure on SO(p) as n--> oo. The smaller the choice of e, the
smoother the grand tour will turn out to be.

4. Testing of grand tours. In order to assess the suitability of a grand tour for a
specific application, we need to perform statistical tests on it. Two characteristics of
particular concern to us are the rapidity with which a sequence of 2-planes becomes
dense, and the asymptotic uniformity of the limiting distribution, if any. For each of
these characteristics, there is a multitude of possible choices of how to measure them.
We have chosen one test that we feel measures well the most important characteristic.

Rapidity. Here we rely on the following:
FACT. Given two 2-planes P, Q Gz,p, the relative position of P and Q in Rp is

described by two angles 01, 02 with 0<= O1 <- 02 <- 7r/2. Precisely, there exists a rotation
M SO(p) such that M(P) =(e, ez) and M(Q) =(cos 01el+sin 0lea, cos 02e2+
sin 02e4).

The cosines of 01 and 02 are the correlations encountered in canonical correlation
analysis. Thus, we use the terminology "canonical angles" for 01 and 02.

We define the distance between P and Q as the larger canonical angle: d (P, Q) 02.
(It may happen that 01- 02.)

Now let S {P1, ,Pn} be a finite set of planes. Then we define the gap of S via

gap (S)- max min {d(P, Pi)}.
PG2, li<=n

(We are justified in using "min" and "max" rather than "inf" and "sup" since n is
finite and G2.p is compact.) Let us define the e-neighborhood of a plane Po to be

DEFINITION.

N(eo) {e Oz.pld(P, Po) < e}.

The number e will be called the radius of N(Po). In terms of this definition, it is clear
that gap (S) is the radius of the largest neighborhood in Gz,p which lies in the
complement of the set S of planes:

gap (S) sup { e > O]::lPo G2,p N(Po) = Gz,p S}.

Or expressed yet another way,

gap(S)=inf e>O G,p= U N(P)
i=1

We now use this last equation to establish lower bounds for n n(e), where n(e) is
the smallest number of planes needed to have gap <_-e. Namely,

G, N(Pi) (except for a set of measure O)
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and so

vol (G.,p)<- E vol (N(Pi))
i=1

where "vol" stands for the invariant (Haar) measure on G2,p. By invariance,
vol (N (Pi)) is independent of i, so

vol (G2,p) =< n. vol (g(Po))

where Po is, let us say, (el, e2).
Thus

vol (G2,p)
n=n(e) >- or

vol (N (Po))
n(e) >-_ [Prob (d(P, P0) < e)]-1,

where Pc G2,p is distributed according to the invariant measure. It can be shown
[Hote] that the canonical angles 01, 02 between P and P0 have joint density function
given by the following:

/(p-2)(p- 3)(sin 01-" sin 02)p-4(sin2 02-sin2 01)f(O1, 02)’-
otherwise.

0 01 02 7r/2,

If p 3, we have 01 0 always, and 02 has density given by g(02) sin 02, 0 __--< 02 <---- 7r/2,
and g(02) 0 otherwise.

We shall use the terminology "the 2-planes P and Q lie within angle Ang" to
mean that the larger canonical angle d(P, Q)= 02 is less than Ang (where 0=<Ang <-

r/2).
In the tables in Table 1, obtained by Monte Carlo methods, the probability shown

is the fraction of random pairs of 2-planes in Euclidean space of the given dimension
which lie within angle Ang. The column labeled "No. of planes" gives a theoretical
lower bound for the number of 2-planes which can be chosen in that Euclidean space
so that all 2-planes lie within angle Ang of one of the chosen ones. Namely, that
theoretical lower bound is the quantity: greatest integer in 1/Prob (d(P, Q)< Ang).

These tables should be thought of as a standard against which to measure the
rapidity with which a sequence of planes becomes dense. In fact, if we set Nposs(e) the
smallest possible number of planes needed to achieve a gap of e, and Ng,(e)=the
smallest number of planes (in sequence), from some particular choice of grand tour,
needed to achieve a gap of e, we have

n( e) <= Nposs( e) <- Ngt( e)

for all e > 0. These inequalities are, with very few exceptions, actually strict ones.
Figures 1-6 display the gap as a function of the number of planes, for three types

of grand tour: (1) planes picked at random, (2) planes picked by the torus method,
and (3) planes picked via plain random walk on SO(p). The gap was not, in fact,
computed but was instead estimated via gap(N) maxl<=i=<10o minl=<j<__N d(Qi, Pj) where
{ Q} is a fixed set of planes picked at random. Due to the vast quantity of computing
time necessary, we have restricted the calculations to only two values of the dimen-
sion: p=4 (using the average of 5 repetitions) and p=8 (using the average of 3
repetitions).
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TABLE
Oimenston 3

Ang Probability Ho. of planes

5 ,38E-0 63 5
10 .15E-01 66 10

15 .3E-OI 30 15
0 .60E-01 17 0
25 .9E-01 I1 25
30 .13 8 30
35 .18 6 35

65 .29 6 65
50 .36 3 50
55 .3 3 55
60 .50 3 60
65 .58 65
70 .66 70
75 .76 75

.3 8O
85 .91 85
90 1.0 2 90

Probability Ho. of planes

.19E=06 51686

.31E-03 3:’58
15E-02 650
,48E=02 209
,12Eo01 67
.23E-01
.2E-01
.69E-01 15
.11
.16 7
.Z 5
,30
.39 3
,9 3
.61
.73
.6
1.0

DImion 5 Dtmml 6

Ang Probabt iV

5 .11E-06
10 .70E-05
15 .78E-04
20 .63E-03
25 .16E-02
30 .5E-02
35 .11E-01
40 .23E-01
45 .3E-01
50 ,75E-01

55
60 .19
65 .27
70 .38
75 .51
80 .66
85 .83
90 1.0

No. of planes

0.9E+07
163529
12805
2369
636
222
93

9
6

3

Ang Probabi It iV No. of planes

5
10
15
20
25
30
35

50
55

65
70
75
80
85
90

.67E-09 0.2E+I0

.17E-06 0.6E+07

.C2E-05 2390.8

.OE-06 ’980

.23E-0 4607

.91E-03 1096

.29E-02 35

.77E-02 130

.1BE-O! 56

.37E-01 27

.70E-OI 15

.12 9

.20 6

.30 6

.46 3

.61 2
,80 2
1.0 2

Olmerlon 7

Arlg Probability

5
10
15
20
:’5
30
35
40

50
55
60
65
70
75
80
85
?0

.42E-II

.2E-06
,23E-06

.39E-05
,34E-06
,19E-03
.81E-03

.77E-02

.19E-01

.42E-01

.15

38
.56
.77
1.0

Ho. of p]ars

0.2E)12
0.2E+09
O.,E+07
25912
29331
5185
1230
366
130

25
t3
7
5
3
2

2

5
10
15

30
35

50
55
60
65
70
75
8O
85
90

Dimension 8

Probability 14o. of planes

.27E-13

.1 IE-09 O. 9E)10
13E-07 0.7E+O
.39E-06 O. 3E’07
.52E-05 190626
,42E-04 :73917
.23E-03 6305
.qgE-03 1011
.3E-02 :’93
.99E-02
.25E-01 +1
.56E-01 18
.11 9
.20 5
.36 3
.52 2
75 2

1,0
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Dlmslon

TABLE (cont.)
Dimension

J Probbllity

10 .29E-I1
15 .79[-09
20 .40E-07

30 .92E-05
35 .68E-0
0 .36E-03
5 .15E-0
50 .5E-O
55 ,15E-01

60 .38E-01
65 .8E-01
70 ,17

75 .30
80 .9
85 .73
90 1.0

No, of plan

0.6E+16
0.3E’12
0,IE’I0
0,2E*08
0,1E+07
0858
14768
2755
657

67
27

6

3

Ar Probability No. of planes

5 .12E-17 0.8E+18
I0 .77E-13 0.1E+1
15 ,q7E-10 0.2E+11
20 ,2E-08 0.2E+09
25 .13E-06 0.8E07
30 .21E-05 486134
35 .20E-0 50072
0 .1E-03 7398
5 .69E-03 1453
50 .28E-02 359
55 ,93E-02 108
60 .26E-01 39
65 .6E-01 16
70 .I 8
75 ,27 6
80 .6 3
85 .71
90 1.0

Ol mrm on 12 Dlmmrm|on 14

Ang Probabi ty

5 ,58E-22
10 .57E-16
15 ,17E-12
20 ,;7E-I0

15 .34E-08
30 ,11E-06

35 ,18E-05
40 .19E-04
45 .IE-0]
50 .81E-03
55 .36E-02
60 .13E-01
65 .38E-01
70 .97E-0!
75 .21
80 .40
8S .67
90 1.0

No. of planes

0.2E’23
0.2E’17
0,6E’13
0,2E’11
0,3E*09
0,9E+07
55817
52000
6921
1229

78

11
5
3

Ar Probabt 11 ty

5 .28E-26
10 .E-19
15 .65E-15
20 .55E-12
25 .93E-10
30 .56E-08
35 .17E-06
40 .28E-05
45 .31E-0
50 .Z,E-03
55 .14E-02
60 .6E-O:
65 .23E-01
70 .66E-01
75 .17
80 .36
85 .64
90 1.0

No. of planes

0.4E+27
0.2E+Z0
0 2E’16
0.2E*13
0.1E’11
0.2E*09
0.6E*07
355768
32130
<121
70
157

15
6

O mn’ on 16 Ol|o 2:0

AnJ Probabt 11 ty No. of planes

5 .14E-30 0.7E’31
10 .34E-2 0,3E’23
15 ,5E-17 0.E’18
20 .65E-1 0.ZE*15
25 .26E-11 O.qE*12

30 .31E-09 0.3E’I0
35 .16E-07 0.6E* 08
40 .42E-06 0.2E+07
45 .68E-05 146196
50 .7,E-04 13516
55 .57E-03 1767
60 .32E-02 311
65 .14E-01 71
70 .9E-01 21
75 .14 8
80 .3
85 .61
90 1.0

S
10
15
20
25
30
35

45
50
55
60
65
70
75

85
90

Probabt tty

.36E-39

.22E-28

.40E-22

.95E-18

.21E-14

.95E-12

.15E-09

.98E-08

.3E-06

.71E-05

.94E-04

.85E-03

.54E-02

.26E-01

.92E-01

.26

.57
1.0

No. of planes

O. 3E’40
0.5E’2’9
0.3E*23
0.1E’t9
0.5E’15
0.1E’13
0,7E+I0
0.1E*09
0.3E*07
1o2r3
1060
1160

39
11
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PLAIN RANDOM WALK, DIH. 4, STEP 25.o, AVG OF REPS.
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5. Some applications of grand tours. The most basic purpose to which one may
put a grand tour is to try to understand the shape of data. This understanding will
presumably be applied to interpreting the datadrawing real-world conclusions.

Unfortunately, we are a long way from the point where we can do this confidently.
The grand tour can be said to approximate the information content of a p-dimensional
scatterplot by a time-indexed family of two-dimensional images, i.e., a movie. In order
that human observers be able to interpret this kind of movie visually, a great deal of
experience viewing such movies would be advantageous.

Much is still to be learned when p 3, and the case p 4 already presents a major
challenge. Perhaps it would be of value to develop a taxonomy of scatterplots based
on extensive experience with actual data. This may lead to the use of certain adjectives
to describe the shapes of scatter-diagrams in greater than two dimensions. These
adjectives would ideally correspond to measurements which the computer could make
with great speed. An example of one such adjective-measurement pair might be the
idea of "clottedness" as defined in Friedman-Tukey [PP] as their figure of merit for
projection pursuit.

A useful genre of statistics may be compiled by applying a uniformly distributed
grand tour to a particular scatterplot S in R p. Let 0 be any measurement that can be
applied to two-dimensional scatterplots, such as their clottedness. Then, for each
2-plane Q in R, we may apply q, to the result of projecting S onto Q, obtaining
(’n’o(S)). As O ranges over all 2-planes in Rp (with the invariant measure), there is
a measure induced on the set of real numbers {(ro(S))}. This measure carries
significance especially when all coordinates represent identical units.

Statistics of this distribution of real numbers may be estimated by letting O run
through a long sequence Pi,’", PN of a uniformly distributed grand tour. To take,
for example, the mean m of this distribution, we may estimate rn via

1 N

E (,(s)),rtl =!
where 71" denotes orthogonal projection onto the 2-plane Pi. This is a deep fact,
provable by standard techniques in ergodic theory [Brei].

The advantages of using such measurements (and their corresponding adjectives)
include 1) they are easy to compute, and 2) they convey an intuitive content based
on the user’s knowledge of two-dimensional scatterplots.

Projection pursuit methods can be described as the study of the above paradigm
where the maximum or minimum of the set {O(ro(S))} is the statistic of interest.
These extreme values are usually sought via hill-climbing algorithms as in [PP].

One great mystery in projection pursuit is endemic to hill-climbing algorithms"
how can we be confident that a local maximum is in fact the absolute maximum (or
at least very near to it)? A grand tour which rapidly becomes dense in G2,p may be
used to help with this problem. Using, e.g., the torus method with large stepsize
(step= 25.0 will work), we may let each grand tour plane P, P2,"" be the starting
point for a hill-climbing procedure to maximize O(rro(S)) locally. When the local max
is found, a record is kept of that value maxi. One may then determine from the
distribution of {maxi} an estimate of the absolute max.

Perhaps a better procedure would be to use the torus method with an intermediate
stepsize, say step- 1.0. Then hill-climbing may be initiated from Pi whenever

0(7"J’i__l(S)) < t(,7l’i( S) >
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(where rj again denotes orthogonal projection onto Pj). Once again the local max
values {maxi} may be stored and eventually used to estimate the absolute max.

Several films demonstrating the SLAC implementation of the grand tour have
been created by the author and in collaboration with A. Buja [AsiBu].

Appendix. We describe here a method for reducing the number of matrix multipli-
cations in the grand tour, torus method to 2p-3.

1. Let N 2p-3 and think of the coordinates xi of Tu as being indexed by all
pairsi, jwherei=l or 2, and2-<_j-pif i=l, but 3 -<_ j =< p if i=2.

2. Define a map f" T --> SO(p) via f(Xl,2, X2,p) RI,2(X1,2) "R2,p(X2,p).
3. Define a map F" T --> Gz,p via F po rof where r" SO(p) --> Vz,p and p" Vz,p ->

Gz,p are as in 3, part I above.
4. We shall prove the
THEOREM. F: TN -) Gz,p is a surjection.
Proof. Let P G2,p be an arbitrary 2-plane. We must find Xl,2,’", X2,p (real

numbers mod 27r) such that Rl,E(X1,2) R2,p(X2,p)(el, e2 p. Letting O,j =-xi,j, this
is equivalent to finding 0, (real numbers mod 27r) such that

R2,p(02,p) R12(01,2)P (el, e2).

Now pick any orthonormal basis v, w for P. First, we pick 01,2 SO as to satisfy

-sin 01,2/)1 "- cos 01,2/)2 0.

This assures that R1,2(01,2) annihilates the second component of/).

We similarly choose 01, so that

-sin Ol,jU + cos Ol,j/)

where /) the first component of

R 1,j--1 01,j-- 1) R 1,2( 01,2)V

and v is the jth component (in fact, v=/)i for j-> 3). Thus, Rl,p(Ol,p) .oR1,2(01,2)
must have its 2nd through pth components equal to 0, and since it is a unit vector, it
must, in fact, be el.

We now similarly choose 02,3," , 02,p so the 3rd through pth components of w’
are annihilated by R2,3(02,3)," ,R2,p(02,p) in turn, where w’ denotes
Rl,p(Ol,p) .oR1,2(01,2)w. As a result, the vector R2,p(O2,p) "R1,2(01,2)w lies in
the plane (el, e2). But, since the orthogonal pair v, w is taken to an orthonormal pair
by the orthogonal transformation R2,p(O2,p) "R1,2(01,2) and since v is taken to el,

we must have that w is taken to e2. Thus, we have chosen 01,2,"’, 02,p so that
R2,p(O2,p) "oR1,2(01,2) takes the frame v,w to the frame el, e2 (more than we
needed!). As a result the plane P (v, w) is taken to (el, e2) as desired.

5. Since F" T - G2,p is a surjection, it now follows, just as in 3, part I, that a
dense curve a in TN will be taken by F to a dense curve Fo a in G2,p. We then just
let the Kth plane of our grand tour be defined as

PK F(a(K. STEP)), K 1, 2...

for some appropriate choice of stepsize STEP.

Acknowledgments. The author would like to thank Persi Diaconis, Jerry Fried-
man, Peter J. Huber, Ingram Olkin, Mathis Thoma, and above all, Andreas Buja, for
valuable conversations. He is also extremely grateful to Harriet Canfield for the lengthy
task of typing this paper.



THE GRAND TOUR 143

REFERENCES

[Andr] D.F. ANDREWS, Plots of high-dimensional data, Biometrics, 28 (1972), pp. 125-136.
[AsiBu] D. ASIMOV AND m. BUJA, Finding structure in unstructured data (a short film), Computation

Research Group, SLAC, 1983.
[Brei] L. BREIMAN, Probability, Addison-Wesley, Reading, MA, 1968.
[Chev] C. CHEVALLEY, Theory of Lie Groups, Princeton Univ. Press, Princeton, NJ, 1946.
[FFT] J. FRIEDMAN, M. A. FISHERKELLER AND J. TUKEY, PRIM-9: An interactive multidimensional

data display and analysis system, Proc. Fourth International Congress for Stereology, 1974.
[Hotel] H. HOTELLING, Relations between two sets of variates, Biometrika, 28 (1936), pp. 321-377.
[HWTN] G. H. HARDY AND E. M. WRIGHT, Theory of Numbers, Clarendon Press, Oxford, p. 381ff.
[MAGL] Y. GUIVARC’H, M. KEANE AND B. ROYNETTE, Marches al.atoires sur les groupes de Lie,

Springer-Verlag, New York, 1977.
[MCTP] F. JAMES, Monte Carlo Theory and Practice, CERN, 1980, p. 38.
[MMCM] V. ARNOLD, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978,

pp. 148ff.
[PP] J. FRIEDMAN AND J. TUKEY, A projection pursuit algorithm for exploratory data analysis, IEEE

Trans. Comp., C-23 (1974), pp. 881-890.
[TT77] J. TUKEY AND P. TUKEY, Methods for direct and indirect graphic display for data sets in three

and more dimensions, Bell Laboratories, Murray Hill, NJ, 1977.


