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Abstract

We describe a geometric basis for the visualization of time-varying volume data of
one or several variables as they occur in scientific and engineering applications. We
demonstrate a prototype interface for gridded data, extending the contour spectrum
interface of Bajaj, Pascucci, and Schikore to higher dimensions and to topological
properties that are not decomposable. And we explore the data structure
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Fig. 1. Iso-surface from JetStream data

1 Introduction

Many areas of science and engineering capture large data sets from a four-
dimensional (4D) space-time domain. These data sets represent the evolution
through time of quantities such as temperature, pressure, and flow velocity
that are measured or computed on a dense grid of sample points in three-
dimensional (3D) space for a series of time steps. The visual exploration of
these data sets is a primary means for scientific discovery. Unfortunately, the
data complexity, i.e., the number of samples and time-steps, far exceeds what
can be fully downloaded and viewed in interactive sessions.

For example, a typical full-scale simulation of atmospheric turbulent flow or
of the combustion in an engine must be conducted at a high-performance
computing center (HPCC) and produces hundreds of gigabytes of data. Cur-
rently, researchers request individual slices, iso-surfaces, or simple animations
of the evolution of a color-coded cross-section through time or space, which
must be computed on the HPCC and downloaded for interactive inspection
on the client [36]. The process is time consuming, and reduces the scientist’s
ability to discover phenomena that occur outside of the requested surfaces or
animations.

Because each cross-section or iso-surface is defined by two parameters (say,
pressure p and time t), the user cannot request a single linear animation that
will visualize the entire 4D data set. The alternative of simultaneously view-
ing all cross-sections or iso-surfaces via cumulative projections [26] produces
blurred and often unsatisfactory images unless a selected set of iso-surfaces is
rendered with sufficiently high opacity to make them stand out.

An interactive environment, where the operator controls both time and pres-
sure, could instead permit one to follow significant features (such as the pres-
sure wave due to an explosion) as they evolve through time and space. Fur-
thermore, it could eliminate the need to process, render, and inspect portions
of the data that are insignificant. We believe that the challenge posed by the
interactive exploration of large, time-dependent data sets is to provide the op-
erator with visualization tools, and the context to decide “when and where”
to look.

Bajaj, Pascucci and Schikore [2] proposed contour spectra to give a global
overview of properties of all iso-surfaces. In their paper, they developed an
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Fig. 2. The prototype user interface visualizes a density iso-surface, pop-up pre-
view, and control plane for the Combustion data set. The iso-surface is colored
by a second variable, absolute momentum, and the control plane by the number of
connected components.

interface to 3D volume data that guides the selection of interesting iso-surfaces
by presenting the user with a graph of properties of iso-surfaces for various
threshhold values (particularly decomposable properties, such as surface area
or enclosed volume) They demonstrated the feasibility for non-decomposable
properties, such as the contour tree, and for 4D data. We extend their work
by tackling both simultaneously.

We focus on interactive exploration of iso-surfaces, see Figures 1 and 2 for
examples. We call our contour spectrum display a control plane, which guides
the user in a safari through the most promising (p, t) parameter pairs. Each
point in the contour spectrum corresponds one-to-one to an iso-surface. Spe-
cific properties of the iso-surface can be illustrated in the control plane using
color, symbols and other methods. Furthermore, the user can leave annota-
tions, markers, and traces in the control plane documenting an interactive
session and its discoveries.

In addition, we use a thumb-nail preview window that follows the mouse
pointer interactively in the control plane and that shows a small preview im-
age of the iso-surface at that point. The fast and small preview image provides
a quick overview while selecting the point under the mouse pointer loads the
iso-surface into the interactive 3D viewer for detailed inspection.

We report on our experience with this prototype Safari interface, illustrated
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in Figure 2. After a comparison with previous work in Section 2, we give an
overview of our interface in Section 3, then give more detail on the control
plane and its color-coding with the number of connected components in Sec-
tion 4, and the preview window in Section 5. We discuss example data sets
and results for the color-coding of the control plane in Section 6. We close in
Section 7 with observations on using simplicial meshes as a geometric basis for
a client/server visualization system that extracts individual iso-surfaces and
summary overviews from time-varying volume data.

2 Previous Work

Our Safari prototype is designed to demonstrate possible user/client inter-
action for a web-based, client/server visualization system for time-varying
volume data. There have been a number of web-based systems aiming to-
wards interactive visualization of static volume data. Bethel [6] uses the terms
render-local (render on the client from raw data) and render-remote (render
on the server and transfer an image) to characterize most systems, but points
out that increases in bandwidth allow client and server to share the rendering
task.

Various systems [5,21,20,22,37,35,51,55] span the range from render-local to
render-remote. Bailey and Michaels’ VizWiz [37] is a Java-based example
of render-local. Trapp and Pagendarm [51] presented a render-remote, web-
based, flow-visualization service in which an HTML client would request VRML
output from a server. Ma and Camp [35] assembled an integrated, parallel,
render-remote system where the server sent pipelined, compressed images.
They studied different compression schemes and display clients, so their sys-
tem approaches render-both. Engel and co-authors [21,22] combine local and
remote visualization in their application for volume visualization in a medical
environment. Bethel’s Visipult system [5] runs an IBR-assisted parallel ren-
derer on a server that computes a scene graph for the client to display. Another
system of Engel, Gross, and Ertl [20] renders iso-surfaces progressively: their
client has sliders to request values for the iso-surface threshold and level of res-
olution. The server constructs level-of-detail structures in VRML or Java3D,
which the client can display once they are received.

The render-local/render-remote debate puts the focus on the image that is to
be displayed. When the data is drawn from a four-dimensional domain, the
system must focus equally or more on giving the user some guidance for which
images to display. We try to give the user a global view of the data by using a
simple preview window and by using contour trees, which have been used to
find seed sets for iso-surfaces.
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Marching Cubes [33], with the asymptotic decider [39] to resolve ambiguities,
has become a standard tool for iso-surface extraction from grids in 3D. Many
have noted [47,28] that a simple variant, often called Marching Tetrahedra,
generalizes immediately to higher dimensions and is free of topological ambigu-
ities. Recently, simple extensions of marching cubes to higher dimensions have
also been given [7]. There have been several recent works on data structures to
support efficient extraction of iso-surfaces from volume data [1,13,15,53,31,54].
Some of these have been extended to time-varying volumes [42,44,45,49].

Bajaj, Pascucci and Schikore [2] developed contour spectra to efficiently com-
pute decomposable properties of iso-surfaces in static volume data. Decompos-
able properties, which include properties such as volume and surface area, can
be computed by aggregating the values computed on each grid cell. This aggre-
gation can be extended to time-varying data: if a spline function areaν(P, T )
is used to represent surface area in grid cell ν as a function of P and T , then
the spline function for the total surface area can be obtained by summing the
splines for each grid cell.

There are important topological properties that are not decomposable, such
as the number of connected components. We can still compute these efficiently
using contour trees. Contour trees were introduced by Boyell and Ruston [10]
as a summary of the evolution of contours on a 2D map, and used by Freeman
and Morse to find terrain profiles in a contour map [23]. The contour tree is
related to Morse theory in mathematics [4,38,46], which studies the changes in
topology of level sets as the parameter changes. Contour trees have been used
for image processing and geographic information systems, but principally in
2D applications. It appears that van Kreveld et al. were the first to identify
the applicability to iso-surfaces [53]; they advocated using the contour tree to
generate a seed point on each component, from which the entire component
could be traced; see also [16,3,45].

The contour spectrum, displayed as a control plane, can be compared with
other ideas that give users a global picture of large or multidimensional data
sets, such as fish-eye views [24,29], or image graphs that arrange and connect
different views of a 3D volume set [34]. The preview window has similarities
to the magic lens interface technique [8,29,48].

3 System Overview

We assume that simulation data is represented by a vector-valued function
f :D → IRk, where the domain D ∈ IR4 is parameterized by position x, y,
and z, and time t. The k values in the range can consist of observed values,
such as pressure, temperature, axial velocities, etc., or derived values, such
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as vorticity or approximated derivatives. We will use pressure, denoted p, as
the example throughout this paper. We will also use the convention that the
lower case letters x, y, z, t, and p denote free variables or axes in space and
the upper case letters X, Y , Z, T , and P denote chosen values. Thus, z = Z
indicates a hyperplane perpendicular to the z axis, going through the point
on this axis that is Z from the origin.

The display partitions the data by dimension into a control plane, which rep-
resents the space of all iso-surfaces, and a viewing volume, which displays a
chosen iso-surface. We begin with a real-valued function f(x, y, z, t) defining
the pressure over our domain (x, y, z, t) ∈ IR4. The graph of the function f is
a surface in a 5-dimensional space:

{(x, y, z, t, p) ∈ IR5 | p = f(x, y, z, t)}.

We obtain an iso-surface by restriction along two different dimensions, pres-
sure p = P and time t = T :

iso(P, T ) := {(x, y, z) ∈ IR3 | P = f(x, y, z, T )}.

The iso-surface is a 2D surface embedded in three-space; several examples are
shown in Table 1.

The definition of an iso-surface partitions the five data dimensions into the
three dimensions, (x, y, z), for the viewing volume and the remaining two
dimensions, (p, t), for the control plane. The user can select viewing parameters
by selecting a position on the control plane

We have created a prototype implementation for the visualization to study the
usability of our approach to data navigation. Snapshots of the prototype in
Figure 2 and color plate Figures 9 and 10 show the three-dimensional viewing
volume on the left, the two-dimensional control plane on the right, and a small
preview window hovering above the control plane.

Each point (P, T ) in the control plane corresponds to the particular iso-surface
iso(P, T ), see Figure 3 for an illustrative example. The user can select the iso-
surface by a mouse click in the control plane (direct interaction), by cursor
keys, or by numerical entry in dialog boxes (conventional indirect interaction).

To find interesting iso-surfaces for investigation, the control plane can be anno-
tated with navigational aids. We give examples in the next section. In addition,
we present the user with a small preview window that hovers close the current
mouse pointer whenever the mouse pointer is in the control plane. We explain
details of the preview window in Section 5.
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Fig. 3. Control plane (right), showing numbers of connected components in gray,
and three corresponding iso-surfaces (left) for JetStream data

The prototype also features selected conventional visualization techniques,
e.g., it can show cross sections, several iso-surfaces at once, and it can color
one iso-surface based on the values of a second volume data set. All images in
this paper are produced with our program.

The prototype is based on original and subsampled volume data, i.e., regular
3D grid samples for several time steps. A cache management keeps as many
time steps in main memory as possible. Marching cubes or marching tetrahedra
are used to extract iso-surfaces [33] and an octree per time step speeds up the
search for voxels that contribute to the iso-surface [54]. OpenGL display lists
can optionally be used to speed up rendering once an iso-surface is selected.

Our test machine was a Linux Laptop with a 400 MHz Mobile Pentium II,
a 12GB hard disk, and 256 MB main memory. Graphics was rendered using
Mesa without hardware graphics accelerator.

We can examine iso-surfaces in the 3D viewer at moderate convenient frame
rates of 1 to 5 frames per second for data sets of size of 643×100. Contemporary
workstations are more powerful and include hardware graphics accelerators,
however there is still a considerable gap to the data set size we are aiming
for to visualize, such as 2563 × 100 or larger. So our prototype serves also as
a benchmark between this conventional approach and future work aimed to
bridge the gap.
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4 Control Plane

There is a one-to-one correspondence between a point in the 2D control plane
and an iso-surface. This straightforward observation, illustrated in Figure 3,
is the basis for our use of the control plane to provide guidance for the user’s
exploration of the data.

The control plane can be used to display summary information about the
corresponding iso-surface. In our prototype we can do this in two ways: first,
by loading an image for display on the control plane and second by loading a
set of precomputed iconic views of iso-surfaces for display in a preview window
that follows the mouse cursor over the control plane.

The control planes in this paper display the number of connected components
in the corresponding iso-surface, using a simple color ramp from black (zero)
through blue, green, yellow, and red (maximum). Changes in the number of
connected components can be related to the behavior of the phenomenon un-
der study. For example, in our jet dynamics simulation data sets described in
the next section, an increase in the number of connected components indicates
that a flow has developed instability and is shedding vortices at some chosen
threshold levels. Changes can also indicate the behavior of the modeling; we
give more detail in an example of Section 6 that studies oil displacing water
in soil. As water is displaced the grid-based modeling tends to produce small
fluctuations in the values near the interfaces. Due to the linear interpolation,
these fluctuations reveal themselves for threshold values near the critical value
as connected components that surround a single data point. Almost by coin-
cidence, this causes the control plane to reveal the change in interface value
over time.

The number of connected components is a particularly good example of the
type of data that can be displayed on a control plane, because we can deter-
mine the number without computing all iso-surfaces. We spend the remainder
of this section describing how we do so using a contour tree, which records the
evolution of components of the iso-surface for a fixed time as threshold value v
changes. The edges of a contour tree correspond to components, and vertices
to the threshold values v at which these components appear, merge, split, or
disappear. (The components of the iso-surface may also change genus, which
affects their topology but not their number; such events are not recorded in
the contour tree.)

We mentioned earlier that the contour tree is related to Morse theory in math-
ematics, which studies the changes in the topology of level sets as the threshold
value changes. Points at which the topology of the level sets change are called
critical points. Morse theory requires that the critical points be isolated—that
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they occur at distinct points and values—which can be assured by (conceptual)
perturbation of the data values so that they are distinct. We are interested
only in the critical points that change the number of connected components.

Van Kreveld et al. [53] gave an algorithm to compute a contour tree for a 3D
mesh with N points. Their algorithm swept through all iso-surfaces and used
O(N2) time. Tarasov and Vyalyi [50] reduced the time to O(N logN) by doing
three sweeps: two to classify critical points and one to build the tree. Their
approach also involved increasing the mesh size by a factor of 30–300, which
rendered it impractical. Carr et al. [12] simplified the algorithm so that the
first steps produced partial trees without sweeping iso-surfaces, and the third
simply merged these partial trees.

Once contour trees are computed, it is a simple matter to traverse the tree
edges and gather the number of connected components. With an existing im-
plementation for the contour tree, it takes minutes to compute numbers of
connected components for all iso-surfaces in our smaller example data sets
and a few hours for the largest.

Other guiding images could be computed for the control plane to illustrate
other properties of corresponding iso-surfaces. Examples include topological
properties, such as the number of tunnels; statistical properties, such as distri-
bution characteristics of the values of other data sets; or visual properties, by
displaying the preview images as small multiples [52] as in the color plate Fig-
ure 11. Of course, the efficient algorithms of Bajaj, Pascucci and Schikore [2]
for contour spectra apply to compute decomposable properties such as surface
area for or volume enclosed by a time-varying iso-surface. It is interesting to
ask what other non-decomposable properties, in addition to the number of
components, can be computed without computing iso-surfaces.

To display an additional computed value, the control plane may also be pre-
sented as a colored terrain, where at each point (P, T ) the elevation of the
terrain represents one characteristic of iso(P, T ) and the color on the terrain
represents another. Finally, as mentioned in the introduction, the user can
trace a path on the control plane to indicate a sequence of desired views,
and can leave annotations, trails, and markers to record his or her journey of
exploration and point out important views.

5 Preview Window

We can provide a small preview window that is shown continuously at the
current mouse pointer position in the control plane, see Figure 2. The window
follows the mouse pointer instantaneously and gives a preview of the iso-
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surface that corresponds to the current mouse pointer position. This preview
facilitates a quick interactive overview, while selecting the current location
in the control plane switches to the corresponding detailed view in the 3D
viewer for iso-surfaces for further detailed inspection. The preview window
has similarities to the magic lens interface technique [8,48].

In the current prototype, the preview is realized as a low resolution image that
has been pre-computed for a fixed viewpoint. The preview images are stored as
a mosaic of small images in a large image. For example, for the Combustion
data set the preview images have 66 × 66 pixels, and we store them for 20
time steps and 256 different density values, a total of 1320 × 16896 pixels for
the mosaic. Image 11 in the color plate shows a part of that mosaic.

We can pre-compute the preview images for our data sets in the range of
several minutes to a few hours, depending on the data set size. The next
section gives the details of several data sets that drove our research.

6 Data Sets and Results

JetStream TurbulentJet Convection Oil&Water Combustion

Name dim x dim y dim z dim t # values voxel total size

JetStream 256 256 256 100 1 byte 1680 MB

TurbulentJet 104 129 129 150 1 float 1040 MB

Convection 128 128 64 30 1 byte 120 MB

Oil&Water 56 50 50 16 2 double 36 MB

Combustion 110 64 81 20 7 float 320 MB
Table 1
Example volume data sets.

We illustrate our prototype on five example data sets whose characteristics
are summarized in Table 1. In addition, we use subsampled versions of these
data sets. Figure 8 in the color plate shows, for each data set, the images
in the control plane illustrating the number of connected components in a
false color encoding: black for zero or one component, dark blue for a few
components, going over green and yellow to red for the maximal number of
connected components. Time extends to the right and the iso-surface value
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Fig. 4. Nine iso-surfaces and the control plane from a pulsed flow data set Turbu-
lentJet.

increases from bottom to top. The time axis is stretched for the smaller data
sets. We discuss phenomena visible in these images.

Our first data set JetStream 4 , in Figures 1 and 3, contains the result of a
flow simulation studying Helmholtz instability of a jet stream introduced into
a stable medium. The data provides concentration values of a passive tracer
material initially placed in the jet-stream that spreads over time. (Lines that
can be seen on the iso-surfaces are in the data set, probably as artifacts of the
computational methods that generated the data.) The image in the control
plane illustrates where turbulence on the originally smooth, connected surface
becomes unstable and creates more and more small disconnected parts of the
iso-surface.

The second data set TurbulentJet, shown in Figure 4, contains the re-
sult of another turbulent jet simulation. This is a pulsed jet in steady state,
whereas JetStream was introduced into a stable medium. Thus, the control
planes show quite different characteristics for these two jets. The image for
TurbulentJet is more regular, indicates the pulses, and shows the range of
iso-values that are of interest for inspection.

The third data set, Convection 5 , shown in Figure 9 in the color plate,
contains the result of a numerical simulation of convection flow in earth’s
crust. Two iso-surfaces for different temperatures show hotter magma in red
and cooler magma in blue; one can watch the hot magma rising and cold
magma falling over time. The two identical control planes show the different
iso-value settings. The control plane image shows the interesting range of iso-
values, similar to one for the TurbulentJet data set.

The fourth data set Oil&Water, shown in Figure 10 in the color plate,

4 http://www-unix.mcs.anl.gov/~hudson/htmlbase/jet.html; also available
from http://www.avtc.org/
5 http://wwwvis.informatik.uni-stuttgart.de/~engel/, also see
http://earth.uni-muenster.de/geodynamik/index.html
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contains the result of a pollution study of soil. In the simulation an oil spill
displaces water from the soil. The data provides concentration values for both,
oil and water. The soil contains gravel that is not available as separate data
but it is visible as stable empty pockets in the 4D volumes of Figure 10. This
figure shows an actual screen shot of the prototype used for all images, with
one viewing window and two control planes. Control planes for water and
oil are synchronized in time, independent in density. The left control plane
shows density values, decreasing over time, at which water has iso-surfaces
with many connected components. In the viewing volume, these components
will mostly be noise, attributable to discretizing the data to fixed precision.
Nevertheless, the control plane still displays the useful information that water
is being forced out.

The fifth data set, Combustion 6 , shown in Figure 2, contains the result of
a combustion simulation. The data provides seven variables; density, energy,
flame location, turbulence kinetic energy, and three components for a momen-
tum vector. All images using this data set show the density variable, colored by
the absolute value of the momentum. The simulation aims for lean combustion
where a fuel scarce flame optimizes the use of fuel and reduces exhaust. In this
simulation of a gas turbine the fuel enters the chamber already mixed with
air. The flame is not stable in this simulation but oscillates. This happens also
in practice and can even extinguish the flame. The oscillation and interesting
areas with several components can be seen in the image in the control plane.
The density iso-surface actually exhibits the interesting topological feature of
tunnels. They occur right before we have several connected components. The
number of tunnels would be another interesting color-coding for the control
plane.

7 A Geometric Basis for Visualizing Time-varying Volume Data

We built this prototype to determine whether splitting the data dimensions
into a control plane and a 3D viewer would lead to an intuitive user inter-
face for navigating time-varying volume data sets. This interface can serve
as a display client in a client/server architecture of a visualization system,
where the visualization server stores the entire data set, computes an initial
iso-surface and overview images for the control plane and preview windows,
then receives updated (P, T ) values from the client and produces the corre-
sponding updates to the client’s iso-surface. In this section, we briefly describe
geometric foundations for this architecture based on simplicial meshes. With
Ajith Mascarenhas of UNC Chapel Hill, we are currently evaluating tradeoffs
and extensions of these foundations.

6 http://oriole.ae.gatech.edu/ccl/

12



7.1 Pentatope Mesh

We begin with a number of standard definitions so that we can formally in-
troduce the pentamesh and the interpolation function p = f(x, y, z, t).

A set of k+ 1 points, {V0, V1, . . . , Vk} ⊂ IRm, is said to be affinely independent
if the vectors V1−V0, V2−V0, . . . , Vk−V0 are linearly independent. The affine
hull is defined by linear combinations with real weights αi that sum to unity:

aff (V0, V1, . . . , Vk) =
{ ∑

0≤i≤k

αiVi

∣∣∣
∑

0≤i≤k

αi = 1
}
.

The convex hull, CH (V0, V1, . . . , Vk), is defined similarly, with the added re-
strictions that αi ≥ 0 for all 0 ≤ i ≤ k.

A k-simplex is the convex hull of an affinely independent set of k + 1 points.
Since 2-simplices are triangles and 3-simplices are tetrahedra, the 4-simplices
have been called pentatopes in recreational mathematics, and we use this term
in this paper. Note that 1-simplices are edges and 0-simplices are points (called
vertices). By convention, the empty set ∅ is considered a (−1)-simplex.

A k-simplex with vertices V0, V1, . . . , Vk defines a coordinate system on the
points in its convex hull (and affine hull). Each point Q ∈ aff (V0, . . . , Vk)
can be expressed as Q =

∑
0≤i≤k αiVi with

∑
0≤i≤k αi = 1. The weights

(α0, α1, . . . , αk) are called the barycentric coordinates of Q. One can check
that either this expression is unique or the vertices of the k-simplex are not
affinely independent.

Returning to geometry, any k-simplex has (k+ 1) boundary (k− 1)-simplices.
For example, a pentatope is bounded by 5 tetrahedra, which correspond to
the five ways of choosing 4 points from the pentatope vertices. In general,
a k-simplex has

(
k+1
j+1

)
boundary j-simplices. A pentatope, in addition to its

5 tetrahedra, has 10 triangles, 10 edges, 5 vertices, and 1 empty set.

A simplicial complex is any collection of simplices that is closed under the
operations of intersection and taking boundaries. This is a compact way of
saying that the only non-empty intersections allowed between k-simplices are
along common j-simplices for j < k. One implication is that in k-dimensions, a
(k−1)-simplex bounds at most two k-simplices. For example, in 3D a triangle
can be shared by two tetrahedra, but there is no room to squeeze in a third.
Similarly in 4D, a tetrahedron is shared by at most two pentatopes.

For a given set of points, a simplicial mesh is a simplicial complex whose
vertices (0-simplices) are exactly the given set of points and whose union is
the convex hull of these points. The Delaunay triangulation for a set of points
in general position is an example of a simplicial mesh [9,17,40]. It is defined
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 Fig. 5. Contours

by an empty sphere property: include a simplex for each subset of points that
defines some sphere that is empty of other points.

Recall that our function p = f(x, y, z, t) is defined on sample points in IR4.
We define a pentatope mesh, or pentamesh, as a 4D simplicial complex whose
vertices are these sample points with their pressures. Thus, we can consider
our pentamesh as a 4D surface in IR5.

We define f by linear interpolation over each pentatope in the pentamesh.
Suppose that we represent the five vertices of a pentatope π using homoge-
neous coordinates: Vi = (1, Xi, Yi, Zi, Ti, Pi), for 0 ≤ i ≤ 4. Then, for any
point Q in 4D, Q = (1, X, Y, Z, T, p), we may find the barycentric coordinates
α0, . . . , α4 and interpolate a pressure p by solving for these six variables in
the system of six linear equations Q =

∑
0≤i≤4 αiVi. If all of the barycentric

coordinates are non-negative, then Q is in pentatope π, and we accept the
computed p value as the interpolated pressure at Q.

Notice that if some of the barycentric coordinate values are zero, then Q is on
the boundary of possibly many simplices in the mesh. However, each of these
simplices will interpolate the same values, because each combines the same
vertices with the same set of non-zero weights.

7.2 From Pentatopes to Iso-surfaces

There are some simple, elegant connections from the topology of a pentamesh
to an iso-surface for chosen values of pressure and time, iso(P, T ). Because the
pentamesh can be considered as a four dimensional surface in five dimensions,
and we slice away two dimensions to form the iso-surface, an analogy with
topographic maps of terrain may be helpful.

Terrain data frequently comes in the form of elevation samples, z values, at
points in an x, y plane. To form a terrain model, one interpolates elevations.
On large maps, this is frequently done by computing a triangulation in the
x, y plane and raising the vertices to their elevations; this extends the height
mapping to a function z = f(x, y) by linear interpolation over each 2-simplex
(triangle). For topographic maps such as the one in Figure 5, one computes
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Fig. 6. Three projections of pentatopes onto the p, t plane; some regions are labelled
by the number of triangles the project onto them.

contours, or iso-lines, by slicing this terrain model by horizontal planes, e.g.
z = H.

The triangles and edges that contribute to contours at height z = H are those
whose projection onto the z axis contain the point H. A 2D triangle intersects
the plane z = H in a line segment, and an edge in general position intersects
the plane z = H in a point. These join together to form 1d curves in the z = H
plane; in fact, if one can find one triangle or edge on a contour curve, then
one can trace that contour by walking around the terrain model at height H.

When the chosen height H varies, all contours move, but as long as H remains
in the same intervals in the projection, the same triangles contribute to the
contours and the contour topology does not change. When H passes the value
of a sample point, then the set of triangles and edges contributing to the
contour changes, which may also cause contours appear or disappear, join or
split.

To determine iso-surfaces from the pentamesh, we have some of the same
operations of projection, intersection, tracing, and updating. We begin by
considering how a single pentatope contributes to an iso-surface iso(P, T ),
based on its projection on the p, t plane. Three possible projections are shown
in Figure 6.

Lemma 1 A pentatope π contributes a convex polygon to the iso-surface iso(P, T )
if and only if the point (P, T ) is in the projection of the pentatope π in the
p, t plane. The convex polygon can be a triangle, quadrilateral, or pentagon
corresponding to the number of triangles of π that contain the point (P, T ),
which is 3, 4, or 5 respectively.

PROOF. Since the contribution ρ = π ∩ iso(P, T ) is the intersection of two
hyperplanes, p = P and t = T , with a general convex 4-simplex in 5D, the
result ρ is clearly a convex, 2-dimensional polygon in 3D. Since the pentatope
(4-simplex) is bounded by 3D tetrahedra and 2D triangles, their intersections
should give the 1D edges and 0D vertices that bound ρ. What remains is to
determine the exact form of ρ.

Using homogeneous coordinates as in Section 7.1, consider a triangle with
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vertices V0, V1, and V2 and a point Q = (1, x, y, z, T, P ). We can solve the six
equations of Q =

∑
0≤i≤2 αiVi for the six variables x, y, z, α0, α1, α2 as long

as the three vertices V0, V1, and V2 are not collinear when projected to the p, t
plane. And this we may assume by simulating simplicity, if necessary [19].

Notice that (α0, α1, α2) are the barycentric coordinates of the projection Q|pt =
(P, T ) in the p, t plane, and that (x, y, z) is the corresponding location of a
point Q|xyz in the viewing volume. If, and only if, the αis are all non-negative,
then the computed point Q projects to the point (P, T ) in the triangle, and is
a vertex of iso(P, T ).

Therefore, there is a vertex of iso(P, T ) for each triangle of pentatope π that is
stabbed by (P, T ) in the projection. As Figure 6 suggests, and the reader can
check, this contributes a triangle, quadrilateral, or pentagon ρ to iso(P, T ).

The topology of the iso-surface iso(P, T ) is determined in a straightforward
manner from the topology of the pentamesh.

Lemma 2 The local topology of the pentamesh determines the order of poly-
gons and edges around vertices in the iso-surface iso(P, T ).

PROOF. Every tetrahedron in a pentamesh bounds two pentatopes, except
for those on the mesh boundary, which bound only one. Within a pentatope,
each triangle is contained in two of the tetrahedra bounding π.

If we fix a triangle τ and look at the pentatopes and tetrahedra containing
τ , we find either a cycle of pentatopes alternating with their bounding tetra-
hedra, or a sequence from one boundary tetrahedron to another, through an
alternating sequence of pentatopes and bounding tetrahedra.

In the iso-surface iso(P, T ), therefore, the vertex V corresponding to τ has
a cycle or sequence of 1D edges and 2D polygons that are incident upon V .
These aspects of the local topology of the pentamesh are inherited in the
iso-surface iso(P, T ).

With this lemma, and a data structure that gives access to the pentatopes and
tetrahedra bounded by triangles containing a point (P, T ), it is not difficult
to trace out a connected component of the iso-surface iso(P, T ); all we need
is a place to start. We will come back to this in Section 7.4.

We would like to make one final observation based on the computation in
the proof of Lemma 2. The server can send the vertices of iso(P, T ) as linear
functions of P and T . As the client navigates in the p, t plane, it requires
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updates from the server only for those iso-surface vertices that correspond to
newly stabbed triangles.

Lemma 3 If a user changes the (P, T ) viewing parameters without leaving the
projection of a triangle τ , the position of the corresponding vertex of iso(P, T )
moves linearly in P and T .

PROOF. From the proof of Lemma 2, one can determine that the position
(x, y, z) has a linear dependence on P and T that is determined by coordinates
of the triangle vertices V0, V1, and V2. One can derive the following matrix
expression for the position of the iso-surface vertex:




x

y

z




=




X0 X1 X2

Y0 Y1 Y2

Z0 Z1 Z2







1 1 1

P0 P1 P2

T0 T1 T2




−1 


1

P

T



.

These correspondences allow the client to maintain a polygonal iso-surface
while the server uses the pentatope mesh and tracks the viewing parameters
p and t.

7.3 A Corner Table Data Structure for the Pentamesh

The data structure chosen to represent a simplicial complex has a significant
impact on the efficiency of its manipulation. Some structures store too little: a
simple list of pentatopes would require a search for adjacencies. Other struc-
tures store too much: the entire facial lattice [18] or the elegant generalizations
of the quadedge [25] to higher dimensions, such as Leinhardt’s n-G maps [30]
and Brisson’s cell-tuples [11], require many pointers.

Since our primary operation is to “slice” the pentamesh, generating an iso-
surface by fixing parameters P and T , we do not need the entire facial lattice,
but will be satisfied if we can access adjacencies between pentatopes, their
bounding tetrahedron, and their triangles. On the other hand, it would be ben-
eficial if operations used to walk the pentamesh, such as retrieving Lemma 2’s
cycle of tetrahedra and pentatopes around a triangle, were particularly effi-
cient.

We therefore use a corner-based data structure that is a refinement of the
simplex-based structure of Paoluzzi et al. [41]. A corner is the use of a vertex
in a pentatope; each pentatope has five corners. Each corner i stores a pair of
indices; one to v(i), the vertex used at that corner, and one to c(i), the corner
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cor vert opp

id i v(i) c(i)

0 A 9

1 B -

π 2 C 14

3 D -

4 E -

cor vert opp

id i v(i) c(i)

5 B -

6 C 10

ρ 7 D -

8 E -

9 F 0

cor vert opp

id i v(i) c(i)

10 A 6

11 B -

σ 12 D -

13 E -

14 F 2

Fig. 7. Corner structure

of the neighboring pentatope that is opposite v(i). A similar data structure
has been advocated by Rossignac and colleagues for their implementation of
the Edgebreaker algorithm for compressing 3D meshes [43].

We list corners ordered first by their pentatopes so that knowing the corner
index, i, gives easy access to the pentatope index, �i/5�. We use the vertex
index v(i) as a secondary key, so that within a pentatope the vertex indices
increase. Let us also define the corner number #(i) = (i mod 5) so that i =
5�i/5� + #(i). By pointing to corners, rather than to pentatopes, and having
a canonical ordering of the corners in each pentatope, we can navigate the
structure without having to test which face we entered from and where we are
going.

Even this pentamesh data structure is large; in our pentameshes a vertex is
used as corner about 150 times on average.

Consider a small example as we look at some of the operations that this
structure supports. On six vertices, A–F , form three pentatopes π = ABCDE,
ρ = BCDEF , and σ = ABDEF with a cycle around �BDE. The corners
are listed in Table 7.

Find pentatope vertices: From corner index i, obtain pentatope index j =
�i/5�. The vertices are v(5j), v(5j + 1), . . . , v(5j + 4).

Walk through bounding tetrahedron: Corner index i also indicates the
tetrahedron obtained by removing vertex v(i) from the pentatope �i/5�. The
index c(i) indicates the same tetrahedron obtained in the adjacent pentatope.
Notice that walking back is idempotent: c(c(i)) = i.

Find pentatope orientation: Our use of a canonical ordering for vertices
implies that not all of our simplices are oriented according to a right-hand
rule. To obtain the orientation for a (non-degenerate or properly perturbed)
pentatope with vertex sequence V0, V1, . . . , V4, we may compute the sign of
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the 5 × 5 determinant whose rows are the homogeneous coordinates of these
vertices (sans pressure values). Once we know our orientation, however, we
can determine the orientation of a neighbor c(i) by reversing orientation if the
difference (#(i) − #(c(i))) is even. (Proof: The orientation reverses when we
replace v(i) by v(c(i)) at row #(i) in the matrix, then we may need to do row
interchanges to move row #(i) to row #(c(i)).) Thus, maintaining orientation
has a small overhead.

Cycle about triangle: Because of the canonical ordering of corners, when we
cycle around a fixed triangle, we can move from pentatope to pentatope, and
always know which three vertices in the pentatope list are the triangle corners.
Row interchanges moving i to c(i) will simply move some corners up or down.
Specifically, pentatope �i/5� corner number j goes to pentatope �i/5� corner
number j− 1, if #(i) < j ≤ #(c(i)), or to j + 1, if #(c(i)) ≤ j < #(i), or else
remains at j.

In the example of Table 7, we can cycle around �BDE. We let the pentatope
indices π = 0, ρ = 1, and σ = 2, so that we can write corner indices as
a combination of a pentatope index and a corner number, 0–4. We start in
pentatope π with vertices ABCDE. The triangle vertices are 1,3,4, so 0 and 2
indicate the neighbors; we follow c(5π + 0) = 5ρ + 4. To move corner number
0 to 4 by row interchanges, the other vertices each move up one, so corner
number 2 changes to 1 to indicate the next neighbor, c(5ρ + 1) = 5σ + 0.
Interchanging 1 and 0 does not renumber corner 4, which indicates the next
neighbor c(5σ + 4) = 5π + 2. Row interchanges that move 4 to 2 do not
renumber corner 0, so we have returned to 5π + 0.

If it is important to store all pentatopes with positive orientation, then we
can modify the structure of each pentatope as follows. After listing the five
corners in order of vertex index, interchange the first two rows, if necessary,
to make the orientation positive. Operations can compare these two vertex
indices to determine if they have been reversed before proceeding.

7.4 Arrangements on the Control Plane

The control plane represents every iso-surface iso(P, T ) as a point, and so it is
the natural space in which to consider tracking how the user views the data.
We define two natural arrangements that can be built on the control plane:
the projection of the 1-skeleton of the pentatope mesh, and the projection of
silhouette edges.

The 1-skeleton of a simplicial complex is the set of all 1-dimensional simplices,
or edges. Thus, the inked parts of Figure 6 are the projection of 1-skeletons.
The cells of this arrangement correspond to points with the same set of pro-
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jecting pentatopes, triangles, and tetrahedra, which determine the iso-surface,
according to Lemma 1.

The silhouette edges are the edges of the pentamesh for which all incident
triangles lie to one side. When the point (P, T ) moves across a silhouette edge,
a new connected component appears or disappears from iso(P, T ). Rather
than building the arrangement of the entire 1-skeleton, we could build the
arrangement of the silhouette edges only. In this arrangement, it is easy to
color the control plane by the number of connected components.

These graphs can be linked to the generation of the iso-surface from the pen-
tamesh. The idea of marching cubes and marching tetrahedra is to visit all
cube or simplex elements and decide which contribute to the iso-surface. In
3D, researchers have used several data structures to identify the contributing
cubes or simplices, such as octrees in the viewing volume [54] or interval trees
in the projection [14,16,32]. The projection of the 1-skeleton generalizes the
interval tree ideas.

The alternative to visiting all elements is to identify a seed on each connected
component of an iso-surface, and trace the iso-surface from that seed [27,53,12].
The projection of the silhouette edges identifies the connected components,
and which seeds are needed. The operations on the pentamesh data struc-
ture allow us to trace a connected component of the iso-surface iso(P, T ) by
traversing only those pentatopes, tetrahedra, and triangles that intersect the
component. We believe that this alternative is the most promising way to
generate iso-surfaces.

7.5 Storing and Updating the Client’s Iso-surface

Three questions indicate several options for representing the iso-surface at
the client. How much topological structure should the client keep? Should
the client or server compute the iso-surface from pentatopes? Should it do
so by scanning all relevant pentatopes or by tracing connected components
of the iso-surface? The first two questions combine to ask whether the client
should maintain a surface representation of the iso-surface, either as a list of
polygons, as triangle strips, or as a planar subdivision, or whether the client
should maintain the pentatopes that contribute to the iso-surface, again as a
list, as a spanning forest, or as a subset of our pentamesh data structure.

The trade-offs are between structure size, transmission bandwidth, and com-
putational demand on the client, both for initial construction and for updating
as the client makes incremental changes to the viewing parameters P, T . The
data structure must support drawing and update operations. For drawing, a
list of triangles is sufficient, and triangle strips are ideal. The updates are
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edge contractions and expansions, and triangle contractions and expansions;
for these operations the extra pointers of a planar subdivision help, although
they do add to the operation costs. There is ample opportunity for further
research, especially in extending the various surface and mesh compression
schemes and using them to reduce communication bandwidth.
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Fig. 8. Images in the control plane illustrating the number of connected components
for our data sets

Fig. 9. Convection: Two iso-surfaces for
same data set show hot magma rising and cold
falling

Fig. 10. Oil&Water: iso-surfaces and
control planes for water and oil densities

Fig. 11. Part of the mosaic image for the density iso-surface preview of the Com-
bustion data set
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