
Spiders: A New User Interface for Rotation and Visualization ofN-dimensional Point Sets�Kirk L. Du�nBrigham Young Universitykirkl@python.cs.byu.edu William A. BarrettBrigham Young UniversityAbstractWe present a new method for creating n-dimensionalrotation matrices from manipulating the projectionsof n-dimensional data coordinate axes onto a viewingplane. A user interface for n-dimensional rotationis implemented. The interface is shown to have norotational hysteresis.1 IntroductionMany techniques for visualizing n-dimensional datasets separate the data into its component dimensions,allowing the user to look at various coordinate combi-nations in a way that hopefully brings understanding.These methods do well at avoiding the traditional pro-jection to two dimensions that hides data. Howeverthe data relationships are not immediately intuitiveto our brains, which are used to transforming largeamounts of information from three dimensional pro-jections down to two.On the other hand, projection of n-dimensionalinformation down to two may be slightly more intu-itive, but su�ers from the curse of data hiding due toprojection. Moving the data in n-space, by predeter-mined motion or direct manipulation can help solvethis problem.Asimov's \grand tour"[Asi85] made it possibleto step through all possible projections of an n-dimensional data set onto two dimensions in a use-ful manner. Hurley and Buja introduced a means ofcreating \guided tours" of the data by allowing theuser to create two disparate projection plane orienta-tions and interpolate between them[Hur88]. A goodmethod of interpolation is to create a n-dimensionalrotation between the two orientations and samplealong the rotation angle[BA86]. Subsequent data ro-tation tools, while similar, have retained this inter-�This paper presented at 1994 IEEE Conference on Scienti�cVisualization.

polation approach for creating smooth motion in theprojected data[YR91, SC90].Here we present a new technique for creatingn-dimensional rotations from information projectedonto the viewing plane. From this technique wedevelop an interface for interactively rotating n-dimensional point sets. User control over the rotationsequence is �ne enough that no direct interpolationbetween projections is needed. Section 2 will reviewsome of the important principles from matrix algebra.Section 3 will develop the main algorithm for creatingn-dimensional rotation matrices from manipulation ofdata projections in the viewing plane. Section 4 willdiscuss some of the implementation aspects of the al-gorithm and present an implementation of an interac-tive n-dimensional rotation interface that is free fromhysteresis e�ects. Section 5 will demonstrate the ma-nipulation of two 5-dimensional data sets using theinterface, and section 6 will point out some possibleareas of re�nement for the interface.2 Background2.1 NotationIn this paper we will hold to an extension of the no-tation used in most of the computer graphics liter-ature: a n-dimensional point is represented by a n-dimensional row vector and is post-multiplied by anytransformation matrices. The vector composed of allzeros except for a 1 in position i will be denoted ei.2.2 Coordinate FramesWe represent a n-dimensional data set as a set ofpoints in an n-dimensional Euclidian space Rn . Thereare two ways of investigating the projection of a setof n-dimensional points onto a 2-dimensional view-ing plane. In the �rst, the coordinate system ofthe data and the coordinate system of the viewing1



space coincide. A viewing plane is arbitrarily placedin the viewing space and the data is projected ontothe plane. The second approach to projecting n-dimensional data onto a viewing plane moves the co-ordinate system of the data with respect to the co-ordinate system of the viewing space. In this latterapproach the viewing plane remains �xed.Because a rotation leaves the coordinate systemorigin invariant, it is possible to focus on the rotationas a transformation of a vector from the origin to thedata point. This allows the creation of coordinateframes, a cluster of unit vectors that point down thepositive principal axes of the underlying coordinatesystem.Using coordinate frames gives us some powerfultools[Piq90]. If we start with an untransformed datacoordinate frame, multiplying each axis vector ei inturn by the rotation matrix, it can be seen that thenew position in view space of the axis is given by rowi of the rotation matrix.A corollary to this fact is that if we specify thenew position of the axis vectors such that they remainorthonormal then the new positions de�ne the rows ofthe rotation matrix1 R.2.3 Orthogonal Projections inn DimensionsWe de�ne the orthogonal projection of an n dimen-sional point onto a subspace of lower dimension (theviewing subspace) as the point in the subspace clos-est to the data point. If b1 � � �bm;m � n are basisvectors of the viewing subspace, then the projectionxproj of a data point x is de�ned byxproj = mXi=1 x � bi: (1)If the b are equivalent to the standard basis vec-tors ei then the projection of x onto bi is simply thei-th coordinate of x.3 Arbitrary Rotations inn DimensionsIn three dimensions, rotations are commonly speci�edin terms of an angle about an arbitrary axis. How-ever, it is more correct to think of rotation as taking1Actually, this is not quite true. The negation of a dataaxis is also allowed in this de�nition which corresponds to are
ection of the data about that axis. However, the algorithmpresented here will not produce re
ections.

place in a plane embedded in the space[Nol67]. In3-dimensional rotations, this plane is the plane per-pendicular to the axis of rotation. In more than threedimensions, the idea of rotation about an axis goesawry because there are an in�nite number of axes thatare perpendicular to any given plane. But as long asa plane in the space is speci�ed along with a center ofrotation in the plane, the rotation is uniquely de�ned.The simplest rotation to describe in n-dimensional space occurs in the plane formedby any two coordinate axes. The rotation matrixRab(�) for the rotation of axis xa in the direction ofxb by the angle � isRab(�) = 8>>>>>><>>>>>>:rij ������������ rii = 1 i 6= a; i 6= braa = cos �rbb = cos �rab = � sin �rba = sin �rij = 0 elsewhere
9>>>>>>=>>>>>>; :(2)That is, Rab(�) is an identity matrix except for theentries at the intersection of rows a and b and columnsa and b. Since there are �n2� principal axes planes, n-dimensional rotations are built up as the compositionof speci�ed rotations in each of the principal planes.This composition is accomplished by multiplying thecorresponding rotation matrices together.Our goal is to provide an intuitive means of spec-ifying an n-dimensional interface, hopefully in a con-cise graphical manner. The key to our approach isin the observation that if an axis is not contained inthe viewing plane nor is perpendicular to the viewingplane, then the axis and its projection onto the view-ing plane de�ne another plane in which rotation canoccur. Moreover, by manipulating the projection ofan axis, it is possible to rotate the axis in the rotationplane such that the axis remains consistent with itsprojection. Figure 1 illustrates this observation forn = 3.3.1 Rotation in the PlaneThe problem here is to rotate the selected axis xi byan unknown angle � to its new position x0i. All thatis known are the magnitudes of the projections of theaxis.Let xi be a unit vector representing the positivedirection of the i-th axis of the data coordinate sys-tem embedded in the n-dimensional viewing coordi-nate system. The projection of xi onto the viewingplane is denoted xiproj . The position and projectionof the axis after rotation are denoted x0i and x0iproj2



Figure 1: A 3-dimensional coordinate frame beforerotation (l) and after rotation (r). The rotation planeis de�ned by the rightmost data axis in each diagramand its projection. The circle at the bottom of eachdiagram shows the projection of the data coordinateaxes onto the viewing plane.respectively. See �gure 2.In the rotation plane, xi can be decomposedinto two vectors, xiproj , and a component orthog-onal to the viewing plane, xi? such that xi? =xi � xiproj . These two vectors set up an orthogonalcoordinate system in the rotation plane. Now xi canbe represented by the coordinates (miproj ;mi?) wheremiproj = kxiprojk and mi? = kxi?k.Since xi and x0i are unit vectors, given m0iproj ,the magnitude of the new projected component canbe determined, namely m0i? = q1�m0iproj 2. Conse-quently, the parameters for rotation in the plane arecos � = xi � x0i = miprojm0iproj +mi?m0i? (3)sin � = kxi � x0ik = miprojm0i? �mi?m0iproj : (4)Thus any vector v in the plane can be rotated usingthe standard rotation equationsv0 = �v � xiprojkxiprojk ; v � xi?kxi?k �� cos � sin �� sin � cos � � (5)More importantly,x0i = m0i? xi?kxi?k +m0iproj xiprojkxiprojk (6)To determine the n-dimensional rotation matrixR, all that remains is to �nd the new positions of

xi
’

xi

xi proj

xi
’

proj

xi

xi
’

Figure 2: Rotation in the plane de�ned by xi and itsprojection on the viewing plane. The data coordinateaxis vector xi is rotated to x0i.each axis vector. This is accomplished by decom-posing each data space coordinate axis vector intothree components: a vector orthogonal to the rota-tion plane, and two vector components in the rotationplane. These last two vectors are the projection of thedata axis vector onto xiproj and xi? respectively. Therotation is calculated for the rotation plane compo-nents and the results added to the orthogonal vectorcomponent. This gives the rotated position of the axisvector.Let a and b be the coordinates of data axis xjprojected onto the rotation plane, i.e.a = xjprojxiproj = xj � xiprojkxiprojk (7)b = xjprojxi? = xj � xi?kxi?k : (8)Let xjorth be the orthogonal component of xj withrespect to the rotation plane. Thenxjorth = xj � a xiprojkxiprojk � b xi?kxi?k : (9)After rotation, the new position of the data axisvector x0j can be expressedx0j = xjorth + (a cos � � b sin �) xiprojkxiprojk+(a sin � + b cos �) xi?kxi?k : (10)3



Substituting (9) into (10) and simplifying resultsin x0j = xj + (a(cos � � 1)� b sin �) xiprojkxiprojk+(b(cos � � 1) + a sin �) xi?kxi?k : (11)3.2 AlgorithmThe foregoing development gives us the following algo-rithm for creating an n-dimensional rotation matrix.Input: R | the current rotation matrix. The rowsof this matrix are the axis vectors of thedata coordinate system. The elementsof R are denoted rij .i | the index of the data coordinate axisthat determines the plane of rotation.m0proj | the desired magnitude of theprojected component of the selecteddata axis.axis1, axis2 | the viewing space axesde�ning the viewing plane.Output: R0 | the new rotation matrix describingthe transformation from datacoordinate space to viewingcoordinate space.Variables: mproj | the current magnitude of theprojected component of theselected data axis.m? | the current magnitude of theorthogonal component of theselected data axis.m0? | the orthogonal componentmagnitude of the rotated data axis.cos; sin | the rotation parameters of therotation.k1, k2, sum | intermediate valuesFind magnitude of projected component of selectedaxis. sum 0for (1 � ` � 2)sum sum+ r2i axis`mproj = psumFind component magnitude of selected axisperpendicular to viewing plane.sum 0for (1 � ` � n)

if (` 6= axis1 and ` 6= axis2)sum sum+ r2i`m? = psumm0? =q1�m0proj2Calculate projection plane parameters.cos mproj �m0proj +m? �m0?sin mproj �m0? �m? �m0projRotate each data space axis.for (1 � j � n)sum 0for (1 � ` � 2)sum sum+ rj axis` � ri axis`a sum=mprojsum 0for (1 � ` � n)if (` 6= axis1 and ` 6= axis2)sum sum+ ri` � rj`b sum=m?k1  (a � (cos� 1)� b � sin)=mprojk2  (b � (cos� 1) + a � sin)=m?for (1 � ` � n)if (` = axis1 or ` = axis2)r0j`  rj` + k1 � ri`else r0j`  rj` + k2 � ri`The simpli�ed formulation of the main inner loopfrom (11) is justi�ed by noting that if we limit theviewing plane to be one of the principal planes inthe viewing coordinate system, then xiproj has non-zero components only along the axes speci�ed by theviewing plane. Likewise, xi? will always have 0 coor-dinates in those two dimensions.4 Implementation4.1 InterfaceWe have used two approaches in applying the aboveformulas to the development of user interfaces for n-dimensional rotation. Each approach allows the userto select a data coordinate axis and drag the pro-jected end of the axis in the viewing plane. Fromthe path traversed in the viewing plane, a sequence ofn-dimensional rotation matrices is created. The dif-ference in the two approaches is in how the change inposition of a selected projected axis is turned into arotation matrix.4



Figure 3: Repositioning a projected coordinate axis by 1) rotating for new projected coordinate axis length, and2) rotating in the viewing plane for new projected coordinate axis orientation.In the �rst approach R is composed of two rota-tions, the �rst occurs in the plane formed by axis xiand its projection xiproj . The amount of rotation isdetermined by the change in length of the projectedaxis. The second rotation occurs in the viewing planeand accounts for the change in projected orientationof xiproj . Figure 3 illustrates for n = 3.However, rotation in the projection plane pro-vides no new visual information. In practice, the setof projected axes tends to spin wildly in the viewingplane. This in turn makes it di�cult to adjust therelative positions of the projected axes.The second approach to the creation of n-dimensional rotation matrices also decomposesR intotwo rotations. The �rst rotation rotates the selectedaxis xi in the plane formed by itself and its originalprojection so that xi is perpendicular to the viewingplane. The second rotation rotates xi from its posi-tion perpendicular to the viewing plane to a positionconsistent with the projected position. (Figure 4).4.2 Lack of HysteresisThis latter approach to rotation possesses a nice theo-retical quality. Let the rotation of xi from its positionon the viewing plane, xiproj = (uj ; vj) to its new po-sition x0iproj = (uj+1; vj+1) be denoted jRj+1 for anyj. But this is the composition of two other matrices,jRj+1 = jPQj+1 where jP is the rotation of xi to aposition perpendicular to the viewing plane and Qj+1is the rotation of xi from the perpendicular space toits new position corresponding to x0iproj .Now if a user selects an axis xi at position (u0; v0)on the viewing plane and drags the projected axisaround the viewing plane, then the rotation matrixof this transformation is the composition of the rota-tion matrices of every point on the path of the draggedprojected axis in the viewing plane, i.e.0Rm = 0PQ1 1PQ2 � � � jPQj+1 � � �m�1PQm (12)

for the path in the viewing plane of (u0; v0), � � �,(um; vm).But rotating an axis perpendicular to the viewingplane and then rotating it back to the same positionis an identity operation. This means that Qj jP = I .Consequently, (12) collapses to0Rm = 0PQm: (13)Thus dragging a projected axis with this methodis a conservative operation. The rotation matrix re-sulting from dragging xiproj = (u0; v0) to its new po-sition x0iproj = (um; vm) is the same, regardless of thepath taken from (u0; v0) to (um; vm)2.This lack of hysteresis is a highly desirable prop-erty for interactive rotational interfaces for at leasttwo reasons: First, the user can follow any path inthe viewing plane when dragging a projected axis andbe guaranteed of receiving the same rotation matrix,given the same start and end points of the drag. Ifthe desired projected target is overshot or missed, theaxis can be dragged back to the desired position. Sec-ondly, the interface need not process every point inthe path of the dragged projected axis in order tomaintain consistent interface operation. If the data isbeing replotted as the axis is dragged, then a rotationmatrix need be created only from the current viewingplane position. Any other positions traversed sincethe last plotting step can be discarded, giving a greatcomputational savings if the data set is large.The unit quaternions also share this lack of hys-teresis, which has generated signi�cant interest intheir use in 3-dimensional rotation interfaces[Sho92].Now this property can be extended to n-dimensionalrotations as well.2As long as the path does not pass through the projectionof the origin of the data coordinate viewing system onto theviewing plane.5



Figure 4: Repositioning a projected coordinate axis by 1) rotating axis perpendicular to viewing plane, and 2)rotating out of perpendicular space to new projected axis position.4.3 OrthonormalityAs presented, this algorithm is highly dependent onthe fact that the axis vectors are orthonormal. Inpractice, as numerical error creeps in, the rotationmatrix R ceases to be orthogonal. This is a standardproblem in 3-d interfaces where the rotation matrixis occasionally re-orthogonalized. Our experience hasbeen that renormalizing the rows of the rotation ma-trix is su�cient to maintain orthogonality. Withoutrenormalization, numerical error quickly dominates,making R useless.Actually, nothing in the derivation of the algo-rithm depends on the mutual orthogonality of thecoordinate axis vectors. Therefore, the algorithmgiven above will properly transform any set of vec-tors through a rotation speci�ed by a n-dimensionalvector and its projection. But in such a case, theresulting vectors can not be used to form the new ro-tation matrix.4.4 Boundary ConditionsBecause the algorithm decomposes every n-space vec-tor into two rotation plane components, it is necessarythat the axis xi that determines the rotation plane bedistinct from its projection onto the viewing plane.Consequently, special measures must be taken whenxi lies in the viewing plane or is perpendicular to theviewing plane. In practice, due to discretization er-ror in the interface, conditions when xi is close to theviewing plane or close to the perpendicular must alsobe considered.In our implementation, when an axis projectionis dragged within a small distance of the center of theviewing plane, the axis snaps perpendicular to theviewing plane and stays there. When a user wishes todrag one axis (of possibly several) out of the space per-pendicular to the viewing plane, she clicks the mouseon the center of the projected coordinate frame. Atext menu o�ers a selection of the available perpen-

dicular axes. After a selection is made, a point on theviewing plane is selected, and the axis is rotated outto this position. From there the axis can be draggedlike any others visible on the viewing plane.5 ApplicationIn our work in the Brigham Young University Com-puter Vision Laboratory we have implemented thisinterface to help visualize images and color gamuts as5-dimensional point sets. Each pixel in a full color im-age is given �ve spatial coordinates: x, y, red, green,and blue. Each of these data points is also given acolor corresponding to its red, green, and blue com-ponents. This is done for convenience only and is notnecessary for the functioning of the interface. Themean of the data set is subtracted from all points sothat rotation will occur about the center of the dataset. The orthogonal projection of the data set is keptseparate from the rotational interface, which has ac-quired the appellation of a\spider." This is due tothe appearance of many moving \legs" on the viewingplane when many coordinate axes are simultaneouslyvisible.Our combining the projected axes into one �gureis in direct contrast to Hurley's data viewer [HB90],which assigns each axis its own interface item. Ourexperience seems to indicate that combining the axesinto a single �gure is acceptable when using relativelylow dimension data sets. However, we have imple-mented the spiders with the facility to display an ar-bitrary subset of the full data axis complement. Wehave also used the powerful concept of linking demon-strated by Buja, McDonald, et al[BMMS91] to linkseveral spiders simultaneously to a single data set.Figure 5 shows an image undergoing 5D rotation.At �rst only the x and y components are visible. Thenthe red axis is dragged out of the space perpendicular6



to the viewing plane. Because of the correspondencebetween the color attributes and the spatial coordi-nates, all of the points with high red values appear tomove in the direction of the projected red axis. Notethat as the red axis is brought out slightly, a pseudo3D e�ect occurs. Next the green axis is dragged outand the x axis pushed back into the perpendicularspace. Finally, the blue axis is brought out, the yaxis pushed in, and the three remaining color axes ar-ranged evenly in the projection plane. The points inthe data set realign themselves into a pattern remi-niscent of a color wheel.6 ConclusionWe have demonstrated a new method called \spi-ders" for interactively rotating n-dimensional pointsets. The technique provides n-dimensional rotationmatrices solely from information about the currentdata coordinate system and its projection onto theviewing plane. The interface has no rotational hys-teresis, similar to the more robust 3D interfaces usedtoday.The spiders are not without problems. They dosu�er from the \curse of projection" and data hidingwith dense sets associated with all projective tech-niques. And like other visualization methods, as moredimensions are added to the system, the incrementalreturn in understanding decreases. Nevertheless, wefeel that the interactive nature of this technique pro-vides a powerful tool to help understand the universeof data around us.References[Asi85] Daniel Asimov. The grand tour: A toolfor viewing multidimensional data. SIAMJournal on Scienti�c and Statistical Com-puting, 6(1):128{143, January 1985.[BA86] Andreas Buja and Daniel Asimov. Grandtour methods: An outline. In Proceedingsof the 18th Symposium on the Interface,pages 63{67. American Statistical Associ-ation, 1986.[BMMS91] Andreas Buja, John Alan McDonald,John Michalak, and Werner Stuetzle. In-teractive data visualization using focusingand linking. In IEEE Conference on Vi-sualization, pages 156{163, 1991.

[HB90] Catherine Hurley and Andreas Buja. An-alyzing high-dimensional data with mo-tion graphics. SIAM Journal on Scienti�cand Statistical Computing, 11(6):1193{1211, November 1990.[Hur88] Catherine Hurley. A demonstration ofthe data viewer. In Proceedings of the20th Symposium on the Interface, pages108{113. American Statistical Associa-tion, 1988.[Nol67] A. Michael Noll. A computer tech-nique for displaying n-dimensional hyper-objects. Communications of the ACM,10(8):469{473, August 1967.[Piq90] Michael E. Pique. Rotation tools. In An-drew S. Glassner, editor, Graphics Gems,pages 465{469. Academic Press, 1990.[SC90] Deborah F. Swayne and Dianne Cook.Xgobi: A dynamic graphics program im-plemented in x with a link to s. In Proceed-ings of the 22nd Symposium on the Inter-face, pages 544{547. American StatisticalAssociation, 1990.[Sho92] Ken Shoemake. Arcball: A user inter-face for specifying three-dimensional ori-entation using a mouse. In Proceedingsof Graphics Interface '92. Morgan Kauf-mann, 1992.[YR91] Forrest W. Young and Penny Rheingans.Visualizing structure in high-dimensionalmultivariate data. IBM Journal of Re-search and Development, 35(1):97{107,1991.

7



a) b)

c) d)Figure 5: An example of a 5D point set. Each point has spatial x, y, red, green, and blue components. Eachpoint also has color assigned according to its red, green, and blue spatial components. In a) only the x and ycomponents are manifest. In b) the red axis has been dragged down out of the space perpendicular to the viewingplane. Data points with high red components follow the motion of the projected red axis. In c) the green axis hasbeen dragged out and the x axis pushed in. In d) both x and y axes are perpendicular to the viewing plane andthe color axes are arranged symmetrically. The color wheel distribution of the data points mirrors the expectationof this projection.
8


