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Abstract. This paper would like to give a contribution to the analysis of the 
geometry of 4D phase space, which is very relevant for the study of betatron 
motion in beam physics. We will show fundamental surfaces and hypersurface 
(in particular the torus and the hypertorus) in 4D and some of their properties. 
Afterwards we will present the axiomatic bases of the 4D geometry. 

1. In troduct ion  

It is well-known that the betatronic motion is studied by a 4D phase space (for 
example see [7], [8]) and it is very important for this study the analysis of the 
geometrical manifolds. Usually the methods of analytical geometry are utilized for 
the study of the dynamical systems and in particular for the study of the 
hamiltonian systems. The torus and the geometry on the toral surface are 
analytically well described. If we want, for example, to determine a specific curve 
on the toral surface it is necessary the use of the coordinates, but if we want to 
consider a generic curve on this surface it is more convenient to utilise the 
methods of the syntetic geometry because these methods are less complicated than 
the analytical methods. We also think that it is necessary for a proper application 
of geometrical concepts a more exact knowledge of them and of their authentic 
meaning like the synthetic geometry suggests. This geometry does not need to 
explain its fundamental concepts (i.e. point, line, surface etc.) of other 
mathematical notions. For example a point is a primitive concept and it is not 
indispensable that this coincides with a pair of real numbers. The synthetic 
geometry is the "true" geometry. But the analitical methods are an essential tool 
especially for the geometrical interpretation of the algebraic expressions which 
derive from the techniques of mathematical analysis. 
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Beyond theoretical reasons, the synthetical approach to geometry is useful for the 
techniques of the computer graphics. 
The bases of the syntetic geometry of four dimensions will be given in 3rd 
paragraph. In the following 2nd paragraph, we shall examine some hypersurfaces 
in S (euclidean syntetic space of four dimensions, while we shall denote by R 4 
the correspondent analytical space) and so the torus and the hypertorus. 

2. Torus and Hypertorus in 4D 

Now we shall present some "classic" hypersurfaces of S 4 also useful for the study 
of phenomena. Considering in particular "round hypersurfaces" because these 
have also a more direct topological meaning. 

A hyperconical hypersurface (of first kind) consists of the straight lines 
(elements) determined by the points of a hyperplane surface (that is a part of a S 3 
of S 4, see par.3) (directing-surface) and a point (vertex) which does not belong to 
the hyperplane (a S 3 of S 4) of this surface. The hyperconical hypersurface has two 
nappes. A hypercone of first kind consists of the points of a hyperconical 
hypersurface together with the interior points to the portion of hyperspace 
delimitated by this hypersurface and with the interior points to the directing- 
surface. These points together with those of directing-surface form the base of the 
hypercone. The directing-surface can be a plane, a sphere, a circular conical 
surface or portions of these. We obtain a hyperplane in the case of the plane. A 
piano-conical hypersurface (or hyperconical hypersurface of second kind) 
consists of the planes (elements) determined by the points of a plane curve 
(directing-curve) and a line (vertex-edge) which does not belong to hyperplane of 
this curve. It is trivial the definition of hypercone of second kind. 

Prop. 1: "A hyperplane which contains the directing-curve of a piano-conical 
hypersurface and a point of the vertex-edge, intersects the hypersurface in a 
conical surface" (see [2] p.71). 

A hypercylindrical hypersurface (or of first kind) consists of the 
parallel straight lines (elements) passing through the points of a hyperplane 
surface (directing-surface) not lying in the hyperplane of the surface. This surface 
can be a plane, or a sphere, or a conical or cylindrical surface with directing-circle 
or a combination of parts of such surfaces. A hypercilinder of first 16nd is the 
hypersolid formed by the points of the hypercylindrical hypersurface together with 
the interior points of the portion of hyperspace delimited by this hypersurface and 
with the interior points of the directing-surface. A piano-cylindrical hypersurface 
or hypercylindrical hypersurface of second kind is formed by the parallel planes 
(elements) passing through the points of a plane curve (directing-curve) and 

210 

Downloaded 06 Sep 2009 to 169.234.250.233. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



intrsecting the plane of  the curve only in these points. In particular we shall 
consider the case where the directing-curve is a circle. It is trivial the definition of  
hypercylinder of second kind. 

Prop. 2: If a fight triangle takes all possible positions with a fixed side, then the 
vertices and the points of  the other two sides of  the triangle make up a hypercone 
of  first kind which has a sphere as a base and the straight line from the vertex to 
the centre of  the sphere is perpendicular to the hyperplane to which belongs the 
sphere (right spherical hypercone). The fixed side is the axis, the hypothenuse is 
an element and the other side is a radius of  the base (see [2] p.204). 

Proof'. In S 3 (see Fig. 1 ) if the cathetus-base of a right triangle takes all possible 
positions, with the other cathetus fixed, these all possible positions are taken in a 
plane S 2 and being fixed the intersecion4point between two cathetus, the cathetus- 
base makes a circle. Analogously in S the cathetus-base can take all possible 
positions in a S 3, therefore this cathetus-base make a sphere. 

/ 
/ 
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J 

Fig.1 

Prop. 3: If a rectangle takes all possible positions with one fixed side, the vertices 
and the points of the other three sides of the rectangle make up a hypercilinder of 
first kind which has two spheres as bases (top and bottom) and the elements of  
this hypercilinder are perpendicular to the hyperplanes of the bases (right 
spherical hypercilinder). "The fixed side is the axis, the opposite side is an 
element, and the other two sides are radi of the bases". (see [2] p.255). 
(Analogous proof to that of  the Prop.2) 

Considering the hypercilindrical hypersurface of second kind, in the case where 
the directing-curve is a circle (directing-circle) the plane which passes through the 
centre of the circle can turn around itself and this plane is each time parallel to a 
element (plane) of the hypersurface. This plane which passes through the centre of  
the circle is an axis-plane of  the hypersurface and every point of  it is a centre of  
symmetry. Therefore always in this case (directing-circle), the hypersurface can be 
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generated by the rotation of one of the elements (planes) around the axis-plane, 
that is by the rotation of one of two parallel planes around the other. We can call a 
piano-cylindrical hypersurface (or a hypercilindrical hypersurface of second 
kind) of revolution. The same considerations are valid for the hyperconical 
hypersurfce of second kind. 
We call layer that portion of a hyperplane which lies between two parallel planes 

(faces of the layer). A piano-prismatic hypersurface consists of a finite number of 
parallel planes taken in a definite (cyclical) order, and of the layers which lie 
between consecutive planes. A cube belonging to a hyperplane $30 of S 4 can be 
obtained if we intersect appropriately (in $30 but no in S 4 ) three equal layers (see 
Fig.2 a). Moreover a layer can be decomposed into further layers. 

Prop. 4: "When the elements of a piano-prismatic hypersurface intersect the 
elements of a hypercylindrical hypersurface of second kind (only in points), the 
intersection of the two hypersurfaces consists of the lateral surfaces of a set of 
cylinders lying in the cells of the prismatic hypersurface and joined together by 
their bases, together with the curves whose interiors are these bases" (see [2] 
p.258 and Fig.2 b) 

) .-"~ :"is~ J 
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Fig.2a Fig.2b 

The definitions of hypersphere (which consists of the points at a given distance 
from a given point) and of hypercube are elementary and well-known. These two 
hypersurfaces are particularly important for the geometry in S 4 like the circle and 
the square in S 2 and the sphere and the cube in S 3. For example the hypersphere 
has these following properties: 

Prop. 5: A hyperplane which intersects a hypersphere gives a sphere having for 
centre the projection of the centre of the hypersphere upon the hyperplane (see [2] 
p.207). 
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"When a hyperplane passes through the centre of hypersphere the section is called 
great sphere. Other spheres of the hypersphere are called small spheres." (see [2] 
p.207) 

Prop. 6: A 4-simplex of points (see the paragraph 3, that is four non-complanar 
points) of a hypersphere determines a sphere of the hypersphere, and a 3-simplex 
of points (that is three points) not complanar with the centre of the hypersphere 
determines a great sphere. 

There are hence a lot of properties about the hypersphere and the hypercube (see 
[2], [10] and [1]). 

An interesting surface (and solid) and a interesting hypersurface (and hypersolid) 
are the torus and the hypertorus (or three-torus) in S4. In S 3 geometrically a torus 
T 2 is generated by a revolution of a circle around an axis.  This rotation can be 
seen as a geometrical product C l x C 1 , that is T 2 = C l x C 1, where (see [10] 
p.90): 
1. All the vertical circles generated remain of the same size 
2. All the horizontal circles generated are perpendicular to every vertical circle. 

It is well-known (see [1] and [10]) that in S 3 a plane square surface (see Fig.3) 
can have one possibility each time of folding in such a way as to make an 
identification between two of its opposite edges. And we can make a torus if we 
deform the cylindrical surface (or the cylinder) (which we get by the identification 
of two opposite sides of the square) and we identify the two circles bases. 
Therefore a square - fiat torus has the same topology of the doughnut surface. 

~ - . ; s  . . . .  ->  . . . .  ~ , . , j  

Fig.3 

Now we consider a cube in S 4 (see [10] pp. 91 - 92), this cube can be seen like a 
set of layers delimited by horizontal squares (see Fig.4a). And we can imagine the 
same cube to be filled with intervals standing on end (see Fig. 4b). 
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Fig.4a Fig.4b 

The hypertorus.T 3 = C 1 X C 1 )< C 1 is given hence by the geometrical.product T 3 = 

T 2 x C 1 . In fact when in S 4 the cube's sides (top and bottom) are glued we have 
that the cube of layers becomes a circle of tori and the cube of intervals becomes a 
torus of  circles. This product is geometrical because all the horizontal tori are the 
same size and all the vertical circles are the same size and each torus is 
perpendicular to each circle. In this way we can consider T 3 a s  a hypersolid of  
rotation. 
For T 2 in S 4 it is interesting and fundamental the following proposition 7, but in 

the mean time we remember that in S 3 a torus, surface of  revolution (see Fig.5), is 
represented in R 3 by the following vectorial equation: 

¥ 

D, 
It 

Fig.5 
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r(u,v) = (a + b sin u)cos v i + (a + b sin u)sin v j + b cos u k 

with 0 < b < a and (u, v) ~ [0, 27t] × [0, 2rq 

or rhe following Cartesian equation: 

(.~(x 2 + y2). a)2 + z 2 = b 2 

Prop. 7: The intersection of two hypercylinder hypersurfaces of second kind, 
perpendicular between them, gives a toms T 2 . 

Proof'. The elements (planes) of the first hypersurface intersects the elements 
(planes) of the second only in points. Each element of one hypersurface intersects 
the other hypersurface in a directing-circle, and the surface of intersection consists 
of the circles of either one of these sets. The interiors of the circles of each set lie 
in one of the hypersurfaces and in the interior of the other (see [2] p.262 and Fig. 
6). 

The analytical expressions of the two hypercylinder hypersurfaces in Cartesian 
space R 4 associated to S 4 are: 

X 2 + y2 = k Vz Vw 
(~) 

z2+w2=h VxVy 

- _~_~ . . . . . . . . . . . . . .  × 2 +  y2__ k 

/ /  

W 2-- h 

Fig.6 

Hence the system (!) is the Cartesian representation of a torus T 2 in R 4. 
We shall now study a property which topologically tie the hypersphere, the 

hypercube and the toms. First we must consider the unfolding in S 3 of a 
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hypercubic hypersurface analogous to the plane unfolding in S 2 of a cubic surface 
(see Fig. 7). And still we must keep in mind the procedure of identification of  
sides (which happens by particular rotations) which rebuilds the hypercubic 
hypersurface and the cubic surface. 

Cube Hypercube 

Fig.7a Fig.7b 

The hypercube has 24 square faces (see Fig.7b) and each edge is common to three 
square faces. But (see [1]) we can take 16 squares only in such a way as each edge 
of the hypercube is common to two square faces. These squares can constitute a 
two-dimensional square surface in four-dimensional space S 4 (see Fig. 8a), which 
we denote by the name square-polyhedrical torus. In fact in S 4 it is geometrically 
possible to fold this square in such a way as to have identifications between the 
pairs of opposite edges and hence we obtain a doughnut-polyhedrical torus. It is 
trivial the 

Prop. 8: The doughnut-polyhedrical torus coincides with the central projection in 
S 3 of the hypercube. 

The vertices of a hypercube lie upon the hyperspherical hypersurface which 
circumscribes it as the vertices of a cube lie upon the spherical surface which 
circumscibes it. The 16 vertices of polyhedral torus also lie upon a hyperspherical 
hypersurface because these vertices are the vertices of a hypercube. If we divide 
ulteriorly the square polyhedrical torus in S 4 (for istance we can have 8 × 8 or 16 

× 16 etc. little squares) in such a way as all vertices of this figure lie upon a 
hypersphere, we can use the central projection to obtain the image of this new 
polyhedrical torus in three-dimensional space. Therefore we have geometrically: 
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Fig.8a Fig.8b 

Prop. 9: If we increase the subdividing by little squares of the square-polyhedrical 
torus in S 4, the approximation of the doughnut-polyhedrical tori, originated from 
this subdivision, to the doughnut torus of revolution T 2 in S 4 increases also (see 
Fig. 8). 

Now we go on to some topological properties. We must premise the following 
important: 

Prop. 10: A hypercubic hypersurface is topologically homeomorphic to 
hyperspherical hypersurface (like a cubic surface is topologically homeomorphic 
to spherical surface). 

We have then (see [1 bis]): 

Prop. 11: The hyperspherical hypersurface is obtained topologically by the union 
of two solid tori, identifying the edges in such a way that a parallel circle of  the 
first is glued with a meridian circle of  the second and vice versa. 

Proof'. For the Prop. 10 we take a hypercubic hypersurface which we untie in S 3. 
We consider the two parts of the unfolding (see Fig.9): 
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Fig.9 

By identification in S 4 the part a) of Fig.9 becomes the part a) of Fig.10 and the 
part b) of Fig.9 becomes the part b) of Fig.10. 

G F 

Fig. 10a Fig. 10b 

We can transform c) and d) in two solid tori T 2. Now we join together again the 
two parts. We shall have so the following figure (Fig.11), which is hence 
topologically homeomorphic to the hyperspherical hypersurface. 
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Fig. 11 

3. The bases of the geometry of four dimensions 

A geometry is synthetically characterized by axioms. The first axioms are those 
of incidence. We shall start from the euclidean space S 3 and we will propose the 
axioms bearing those of Veronese (see [9] and [4]) in mind. 

Ax.l: Given the (euclidean) space S 3, must exist at least a point P which does not 
belong to S 3. 

DeLl: A 5-simplex is a geometrical figure determinated by five points not 
contained in the space S 3. 

Prop.12: A 5-simplex exists at least 
(Proof: from Ax. 1 and Def. 1) 

A 5-simplex is also called 'four dimensional simplex' and a 4- simplex is called 
'three dimensional simplex' etc. A 2-simplex or an 'one dimensional simplex' is a 
segment and a 1-simplex is a point. A k-simplex (with k < 5) determines also a 
simplex of k - 1 straight lines (or k - 1 vectors) which have their origin at a 
common point (Fig. 12). 
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Fig. 12 

Ax.2: A 5-simplex determines the space S 4 and a k-simplex (with k < 4) 
determines a subspace of  k - 1 dimensions. A simplex of  k straight lines determine 
a space o f k  dimensions. 

A S 3 in S 4 is called hyperplane 

Ax.3: Let be S p and S q two subspaces o fS  4 (that is: 0 <p ,  q < 4), it is: 

p + q = n + k (Grassmann's  equation) 

where n < 4 and k > 0 and k is the dimension of the intersection space S k between 
S v and S q. If  p + q < 4 (that is k < 0 ) then the two spaces S v an S q are skew. 

There are also the axioms of belongings, order, continuity and congruence 
appropriately adapted and concerning in particular the straight lines and the 
planes. For example: 

Ax.a : Two distinct points determine a unique straight line (It is a axiom of 
belongings) 

Ax.b : I f  A and C are two points of  a straight line, must exist at least a point 
between A and C and a point D such that C is between A and D (It 's a axiom of  
order) 
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Prop. 13: In S 4 there are infinite points. 

Proof: Given the space S 3 and a point P which does not belongs to S 3 (for Ax.1). 

We have a straight line determinated by P and a point Q s S 3 (for Ax.a). There is a 
point R not belonging to S 3 and distinct from P (for Ax.b). Then we can iterate 
the reasoning (see Fig. 13). 

Fig. 13 

By the Archimedes-Hilbert  axiom o f  continuity it is possible to prove this infinity 
o f  points is a continuous infinity. 
By S °, S 1, S 2 we denote respectively a point, a straight line, a plane. We have now 
the following 

Prop. 14 : Generally i n  S 4, i f  the relatives intersections exist, then: 

a) S 1, S 2 E S 4 .--) S 1 () S 2 = Q~ that is S I and S 2 skew there exist. 
In fact for Ax.3 from the Grassmann 's  equation we have: 1 + 2 = 4 - 1 < 4 .  
But if  S 1 , S 2 e S 3 ~ S 4 then it results from Grassmann 's  equation: 1 + 2 = 3 + 0 
that is: 
S 1 ¢.~ S 2 = S 0 

b) S 1 , S 3 e S 4 ~ S 1 ('~ S 3 = S 0, in fact 1 + 3 = 4 + 0 

But i f S l ~  S 3 E S 4 -"-) S 1 (") S 3 ----- S 1, in fact 1 + 3 = 3 + 1 

C) S2| , 822 E S 4 -'~ 82! f'~ S22 = S 0, in fact : 2 + 2 = 4 + 0, that is pairs o f  planes 

which have a single point in common there exist. These plans are called 
semiskew. 
But ifS2~ n $22 = S l ~ $2~, $22 ~ S 3 ~ S 4, in fact : 2 + 2 -- 3 + 1 
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The concepts of parallelism and perpendicularity are extended to S 4, for istance: 

l)ef.2: Let S p and S q be two subspaces of S 4 (that is p, q < 3) and p < q. If the 
space at infinity of S p belongs to the space at infinity of S q then these two spaces 
are called absolutely parallel. 

S p and S q , withp < q ,  have their respective spaces at infinity determined by a p- 
simplex and a q-simplex. Instead S o and S q are determined by a (p + 1)-simplex 
and a (q + 1)-simplex, for Ax.2, but we must remember that for example a plane 
at infinity, which has dimension 2, is the greatest space at infinity o fa  hyperplane, 
which has dimension 3. We denote with 3 p and 3 q the greatest space at infinity 
respectively of S p and of S q, then we suppose 3 p c~ 3q equal to a subspace of 
dimension r - 1. This last space is determinated by a r-simplex. If r = p  we have 
the absolute parallelism, otherwise S p and S q are called partly parallel with a 
degree of parallelism expressed by the ratio r/p. 

The approach to concept of perpendicularity is analogous to that of parallelism 
(see [4]). But we can follow an other way, more specific for a four dimensional 
geometry (see [11]). We have the following theorems: 

Prop. 15: The straight lines which are perpendicular to a given straight line r at 
the given point Per do not all lie in the same plane, but they lie in the same 
hyperplane. 

Proof. (see [ l l ]pp .192  - 195).This theorem establishes a differentiation in 
comparison with s'_ 

Prop. 16: Let dl, d2, d3 be a simplex of three straight lines with their common 
point O. This simplex determines a space S 3. If a straight line g, which passes 
through O, is perpendicular to every line dj (j = 1, 2, 3), then so it is for every 
other lines which passes through O. 
This theorem is valid for a simplex ofm straight lines. 

Proof', When we have two lines dl and d2 the proof is immediate. If g is 
perpendicular to both dl and d2 then g is perpendicular to every straight line 
belonging to the plane (dh d2) and passing through O (see Fig. 14). 
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Fig.14 

In the case of a simplex of three lines dl, d2, d3 , if g is perpendicular to these 
three lines then g will be perpendicular in particular for dj and d2. Therefore g 
will be perpendicular to every line of the plane (dl, d2) according to the foregoing 
case of two lines. Let d be any straight line belonging to the space S 3 determined 
by the simplex made by dl, d2, d3. Then dl and d2 form a plane which intersects 
the plane (dl, d2) at the straight line d'. Because g is perpendicular to every line of 
the plane (db d2) g will be perpendicular for d' which belongs to (db d2). But g 
(d, d') therefore if g _I_ d' then also g _1_ d. 

Def. 3: A hyperplane and a straight line r are called perpendicular if their 
intersection is a point and every straight line in the hyperplane, which passes 
through this point, is perpendicular to the line r. 

Def. 4: Two planes which intersect at a single point are absolutely perpendicular 
if every straight line of one of them which passes through their common point P is 
perpendicular to every line of the other which passes through P. 

Def. 5: If a plane a is semiskew to an other plane 13 at a given point P and 
contains one and only one line perpendicular to the plane ~ at the point P, then we 
say the plane c~ is semiperpendicular to the plane [3. 

We can prove that if a plane (x is semiperpendicular to a plane 13 then 1~ is 
semiperpendicular to oc (see [11] p. 198 - 199). 
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Lastly we shall say something about the rotation in S 4 (see Fig. 15). We consider 
a $20 ~ S 4 (see Fig. 4), from any point M ~ $20 we pull down a plane $21 
absolutely perpendicular to plane $2o which intersect the $21 at a point P. In $21 
we make an other point M' such that the angle MPM' is equal to given value t 0. 
We say the point M' is obtained by a rotation of angle t o from M around the axis- 
plane $20. Let N be a point different from M. Then the points M, N, P and M' 
determine a space S 3 which intersects $20 at the straight line a which is 
perpendicular to the plane MPM'. In this S 3 the point M so has had the rotation of 
angle tp around the axis a and also the point N and all the points of S 4 (see [4] 
p.305). 

N I 

/ 
~ 4 

Fig.15 

It is very important that any figure in hyperspace S 4 can rotate around a plane (see 
[2] pp.141-145). 
We could illustrate other fundamental notions of geometry 4D, but we prefer to 
refer to [2], [4], [9], [11]. 
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