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THE SPHERICAL TWO-PIECE PROPERTY AND
TIGHT SURFACES IN SPHERES

THOMAS F. BANCHOFF

A set A in E3 is said to have the spherical two-piece property (STPP) if no
plane or sphere in E3 separates A into more than two pieces. Examples of
such sets include a sphere, a plane, a circle, an annulus, and a torus of
revolution. In the first part of this paper we give a characterization of all
closed sets in the plane with the STPP.

A surface M2 in En is said to be tight if no hyperplane separates M2 into
more than two pieces. (This is equivalent to the hypothesis that M has minimal
total absolute curvature in the sense of Chern and Lashof.) We proceed to
identify all tight smooth surfaces which are subsets of spheres in En. By a
result of Kuiper, the only tight surface in a sphere Sn~ι which is not contained
in a 3-sphere S3 is a Veronese surface, which is an algebraic surface in S4. We
show as the main result of this paper that the only tight surfaces in S3 other
than S2 are the images under inverse stereographic projection of cyclides of
Dupin, a class of algebraic tori in E3.

Several of the results in the first part of this paper have been generalized by
S. Glass [8].

1. The circle-two-piece property

A set A in the plane E2 has the circle-two-piece-property (CTPP) if every
circle or straight line S in E2 separates A into at most two pieces. In an earlier
study [2] we examined objects with the ordinary two-piece property, i.e., those
which are separated into at most two pieces by every line in E\ and we related
this property to the study of total absolute curvature. The CTPP is also related
to total absolute curvature, but for objects in a sphere rather than in Euclidean
space, and we make this relationship more precise in the latter sections of this
paper. In this section however, we give a treatment which is independent of
the total absolute curvature theory, and also independent of the ordinary TPP.

The whole space E2 has the CTPP, since any circle or straight line S
determines precisely two open complementary components Dx and D2, with
closures Dt = Dt US, ί = 1, 2. The empty set, a one-point set, and a set
consisting of just two points all have the CTPP trivially. The last-mentioned
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set is the only CTPP set which is not path-connected, where a set A is called
path-connected if for every two points p and q of A, there is a path γ, the
continuous image of a closed interval, from p to q in A. Using this notion, we
make the definition of the CTPP more precise:

Definition. A set A in E2 has the CTPP if A Π Dt is path-connected, for
either complementary component Di of any circle or straight line S in E2.

Proposition 1.1. A circle A has the CTPP.
Proof. A circle A and a distinct circle or straight line S meet in at most

two points, so A Π Dt must be either a closed circular arc, the whole circle A,
or the empty set. In any case A Π Dt is path-connected so A has the CTPP.

Note that a straight line does not have the CTPP, and in fact the only non-
empty subsets of a straight line which can have the CTPP are the sets
consisting of one or two points.

Proposition 1.2. A closed disc A {i.e., a disc together with its circular
boundary dA) and a closed half-plane both have the CTPP.

Proof. If A is a closed disc, and p and q lie in A Π D19 then the segment
pq meets D2 in an open subinterval (ab) with endpoints on S (which may be
empty, and which must be empty if S is a straight line). If S is a circle, then
one of the circular arcs, say ab, from a to b along S must lie in A, since S has
the CTPP. Then we may connect p to q by pa U ab U bg. Similarly the closed
half-plane has the CTPP.

Other examples of CTPP objects are an annulus, a pair of internally tangent
circles together with the region between them, and generally, a closed disc
with a collection of open discs removed. The fact that these have the CTPP
follows from the following proposition.

Proposition 1.3. // A is a closed disc, a closed half-plane, or the whole
space, and if {Bj} is a collection of disjoint open discs in A, then A — U Bΐ
has the CTPP.

Proof. If p and q lie in (A — U Bj) Π D, then, as in Proposition 1.2,
there is a path γ — paUabUbq from p to q in A Π Dγ. The path γ meets the
disc Bj in at most two disjoint subpaths of γ. Let ad be the first point at which
γ meets Bj and bj the last. As in the previous proposition, we may find an arc

ύjbj from aj to bj on Bj and lying within D19 and we may form a new "path"

yr from p to q by replacing the subpath from aό to bj by the arc ctjbj. In the
case where the number of discs is finite, the set γ' is automatically a path, but
in the case of an infinite (necessarily countable) collection {BJ} we must still
show that Y is the continuous image of a closed interval. (The analogous
theorem in the case of the ordinary two-piece property requires additional
hypotheses to insure the continuity, cf. [2].) Continuity follows however since
for any m, there are only finitely many disjoint discs of radius greater than
1/ra which will meet γ. Thus any sequence of points {p'n} of yf which converge
to a point pf of A either has all but a finite number of points in a finite number
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of arcs, in which case p' is in f, or {pn} has points in a sequence of discs with
radii converging to zero, so again p lies in f, and in fact in γ Π γ'.

An interesting use of a CTPP set obtained by removing an infinite number
of disjoint open discs from the disc so that no interior points remain is the so-
called "Swiss Cheese" used as a counterexample in the theory of function
algebras. In this context it is usually required that the sum of the radii of the
Bj be finite to insure that y' has finite length, but we do not require any finite
length condition for our paths; cf. [7].

Note that all the examples considered in Proposition 1.3 are closed sets.
Recall the following definitions: The frontier of A = 3A = {p in A such that
any disc about p in E2 meets A and E2 — A}. The closure of A is A = A U dA,
and A is said to be closed if A = A. The interior of A = A — A — (3A Π A),
and A is open if A = A.

We shall prove as our main theorem in this section, a sort of converse of
Proposition 1.3:

Theorem 1.4. The only connected closed sets in E2 with the CTPP are a
closed disc, a closed half-plane, or the whole plane, each with a collection of
disjoint open discs removed.

This class includes a single point, as a disc with zero radius, and the empty
set—a disc with negative radius. Also included is a circle, as a closed disc
with its interior (an open disc) removed.

The first step in the proof is to show that any simple closed curve with the
CTPP must be a circle. We recall some facts about simple closed curves from
the topology of plane sets. A simple closed curve A in E2 is a 1 — 1 continuous
image of a circle. Each such curve determines precisely two complementary
domains, one bounded Bλ and the other unbounded B2. Four distinct points
a,b,c,d on A are said to be in cyclic order on A if b lies on one of the
subpaths of A from atoc and d lies on the other. If a, b, c, and d are in
cyclic order on A, then any path from a to c in Bt meets any path from b to
d in Bi9 for i = 1,2. Also, if A is a simple infinite curve, then A separates
E2 to two complementary components Bλ and B2, and four points a, b, c, d on
A are in order if any path in Bt from a to c meets any path in Bt from b to d.

(Basic) Proposition 1.6. // A is a simple closed curve in E2 with the CTPP,
then A is a circle.

Proof. If A is a simple closed curve which is not a circle, then we may
find four points a, b, c, d in cyclic order on A such that d lies in one of the
complementary components Dx of the circle (or straight line) S determined by
a, b, and c. We may then find a circle S' through a and c sufficiently close to
S such that b and d both lie in D[. By changing the radius by a sufficiently
small amount, we obtain a circle S" with b and d in D" and a and c in D".
Thus any path from a to c on A meets D", so there is no path from a to c in
A Π D" so A does not have the CTPP.
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Remark. The same reasoning shows that if A is a simple infinite curve
which is not a straight line, then it is possible to find a circle S and four points
a, b, c, and d in order on A such that a and c lie in D1 5 and b and d in D2.

Proposition 1.7. // A is a region bounded by a simple {closed or infinite)
curve dA, and has the CTPP, then dA is a circle or a straight line.

Proof. If dA is a simple closed curve which is not a circle, then as in
Proposition 1.6, we may find a, b, c, d in (cyclic) order on dA, and a circle S
with a and c in Dλ and b and d in D2. If there is no path from b to d in AC) D2,
then A does not have the CTPP and we are done. If there is a path γ from b
to d in A ΓΊ D2, then we may find a circle S' of slightly different radius so that
a and c lie in D[ and f lies in Ό'2. Then any path from a to c in the region A
meets 7% so there is no path from a to c in A Π Dί and ̂ 4 does not have the
CTPP. For a simple infinite curve dA, the analogous reasoning shows that dA
must be a straight line if A has the CTPP.

We now recall a proposition which properly belongs with the study of the
ordinary two-piece property (TPP), but which we prove here for completeness.
(A set A has the TPP if A Π Hλ is connected for every half-space in E2.)

Lemma 1.8. // A is a set with the TPP with unbounded complementary
components {Cj}, then E2 — U Cj is convex.

Proof. First of all, E2 — U Cj is contained in the convex hull H{A) of A
(— the intersection of all closed half-planes containing the bounded set A),
since a point in a bounded complementary component necessarily lies in an
interval with endpoints in A. If E2 — UC 7' Φ H(A), then there must be a
point p on dH(A) which is in some Cj. But any such point must lie on a
segment ab for a and b in A, where the line determined by a and b bounds a
half-plane Hί which contains A. But then A Π H2 is not connected, so A does
not have the TPP. Note that for an unbounded convex set H(A), we must have
dH(A) = 0, a pair of parallel straight lines, or a simple infinite curve.

Proposition 1.9. // A is a bounded closed connected CTPP set with
unbounded complementary component C, then E2 — C is a closed disc.

Proof. By the previous proposition, E2 — C is convex. If E2 — C is
contained in a line, then E2 — C must be a bounded closed interval pq. It
p Φ q, then for the disc Dλ with diameter pq, we have A Π D2 — {p, q) and
A Π D2 is not connected. Thus either E2 — C is a point (a disc with 0 radius),
or a convex set with interior, bounded by a simple closed curve, which must
be a circle, by the previous proposition.

To show that all bounded components must also have circles as boundaries,
we use a transformation which reduces the problem to the previous case.

We recall the definition and properties of inversion with respect to a circle
with center x and radius p. The map IXfP: E2 — {x} —> E2 — {x} sends p to a
point Ix>p{p) on the ray fromx through p such that \p — x\ \Ix>p(p) — x\ = p2.
This map sends the set of circles not through x into itself, maps the set of
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circles through x and the set of lines not through x into one another, and
preserves lines through x. It follows that if A is a CTPP set and x$A, then
for any p, the set IXιP(A) also has the CTPP.

We now proceed to the proof of the main theorem :
Proof of Theorem 1.4. If A is a bounded connected CTPP set, then by

Proposition 1.9, either A is a point or the boundary of the unbounded
complementary component is a circle. If x is a point in a bounded comple-
mentary component B of an arbitrary CTPP set A, then IXfP(A) is a bounded
CTPP set which has IXtP(B) as its unbounded complementary component, so
IXtP(B), and B as well, will have circles as boundaries.

If A is unbounded, then 3H(A) is either empty, a pair of parallel straight
lines, or a simple infinite curve. If 3H(A) is empty, then A is E2 — UBj. If
dH(A) is an infinite strip, then A does not have the CTPP. If dH(A) is a
simple infinite curve, then by Proposition 1.7, 3A must be a straight line and
A is a half-plane with a collection of disjoint open discs removed. If A is
bounded, then A is a closed disc with discs removed.

2. Additional results on the CTPP

In this section, we present a collection of results and techniques which will
be used in the latter section of the paper.

Definition. A connected set A on the sphere S2 has the CTPP iff A Π Dt

is pathwise connected for any complementary component Dt of a circles SonS 2 .
Proposition 2.1. A connected closed set A on S2 has the CTPP if and only

if A is S2 with a collection of disjoint open discs Bj removed, where each disc
Bj is the intersection of S2 with an open half-space in E\

Proof. We reduce this to a previous problem by using stereographic
projection πp: S2 — {p} —> E2, where E2 is the plane through the origin
perpendicular to the vector to p, and πp(x) is the point in E2 collinear with p
and x. This projection sends circles not through p to circles in E2, and circles
through p to straight lines in E2. Thus a closed set A in S2 — {/?} has the CTPP
if and only if πp(A) is a bounded CTPP set in E2.

Now if A is not S2 itself, we may choose p in E2 — A to get a bounded
connected closed set with the CTPP in E2. By Theorem 1.4, such a set is a
closed disc with a collection of open circular discs removed, and therefore A
itself is either a point or the complement of a number of discs with circular
boundaries.

Using stereographic projection, we may present an additional proof of the
(Basic) Proposition 1.6, and tie the subject in with total absolute curvature.

The fundamental observation is that a set B on S2 has the CTPP on S2 if
and only if B has the TPP as a subset of £ 3 , since a plane E2 in £ 3 separates
B into at most two pieces if and only if the circle E2 Π S2 separates B into at
most two pieces in S2.
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Proof 2 of Proposition 1.6. If A is a simple closed curve in E2 with the
CTPP, then π~\Λ) is a simple closed curve with the CTPP in S2 - {/?}, and
therefore is a simple closed curve in E3 with the TPP. But a simple closed
curve with the TPP has at most one local maximum for every linear (height)
function on E\ and this, for smooth curves, is equivalent to the condition of

minimal total absolute curvature, i.e., ί \k(s)\ds = 2π. In [2] we showed

sec

that a TPP simple closed curve must lie in a plane and be convex, generalizing
the classical result of Fenchel [6] for twice-differentiable curves. Therefore
π~\Λ), as a TPP curve, must lie in a plane as well as on the sphere, so π~\A),
and A as well, must be circles.

Using the concept of inversion with respect to a circle we may prove some
propositions:

Proposition 2.2. // A is a simple closed curve in the plane such that
IXtP(A) is convex for any x not in A and any p, then A is a circle.

Proof. If A is not a circle, then we can find a circle S which separates A
into more than two pieces. But then for a point x on S not in A, the image of
S under IXtP is a straight line which separates IXιP(A) into more than two
pieces, so IX)P(A) is not convex.

Proposition 2.3. // A is a simple closed curve in the sphere S, which is
not a circle, then in each complementary component of A, there is a circle
which meets A in a non-connected set.

Proof. First we project A by stereographic projection πp from a point p
of S not on A to obtain a simple closed curve in the plane, which is not a
circle. It follows from the proof of Proposition 2.2 that in each complementary
component there is an x such that the image under lx>p is non-convex. But for
any non-convex simple closed curve in the plane, there is a support line which
meets the curve in a non-connected set. In this way we obtain a pair of circles
(or line segments), one in each complementary component of πp(A), each
meeting πp(A) is a non-connected set, and this gives a pair of circles on A,
which bound discs containing A and meet A in non-connected sets.

Corollary 2.4. // A is a closed connected set on S2 without the STPP, then
there is a circle C on S2 which bounds a disc D containing A and such that
C Π A is not connected.

Proof. Choose a complementary component B of A, which is bounded
by a simple closed curve which is not a circle. By the previous proposition, we
may find a circle C in B meeting A in a non-connected set, as required.

In [1] we examined the critical points of the angular coordinate function θx

of a polar coordinate system centered at x, and showed that θx has exactly
two critical points on a curve A for every point x not within A if and only if
A is convex. Here we may consider instead the radial coordinate function
px: E2 ^ E2, px{p) = \x - p\.
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Proposition 2.3. If A is a simple closed curve and px has at most two
critical points for almost every x not on A, then A is a circle.

Proof. If A is not a circle, we may find a circle S with center x which
separates A into at least four pieces, so px must have an extremum on each
piece. This is also true for all circles sufficiently close to S, so for an open set
of x in E2, the function ρx has more than two extrema on A.

We now consider a twice-differentiable curve A in E2 with a well-defined
curvature k(p) at every point p of A. At every point p, we have a well-defined
osculating circle (P(p), tangent to A at p with radius (of curvature) r(p) =
l/k(p), which agrees with A up to the second order (i.e., the Taylor
expansions of A and Θ{p) about p have identical second order terms). It
follows that for any circles S different from Θp{k) and tangent to A at p, there
is a neighborhood ω of p on A such that ω — [p] C Dt for one of the comple-
mentary components of Dt of S. We describe the circles tangent to A at the
vector p by choosing a unit normal n(p) to A at p, and letting S(p, k) be the
circle with center p + n(p)/k and radius \l/k\. (Here & can be any real
number, so S(p, 0) denotes the tangent line of A at p, and S(p, k(p)) = (9{p).)
Since the curvatures at the points of a closed curve are bounded, the circles
S(p, k) for \k\ sufficiently large meet the curve A at just the one point p. Let
k(p) and k(p) be the two numbers such that S(p, k) Π A Φ {p} if k(p) < k
< k{p) and S(p, k) Π A = {p} iί k < k(p) or Mp) < k. Thus 4̂ is contained
between the circles S(p, k(p)) and S(p, k{p)) tangent to A at p.

Proof of Proposition 1.6 for twice-differentiable curves. HA has theCTPP,
then k(p) = k(p). Otherwise Dt(p, k(p)) Π ω = {p} for some neighborhood ω
of p on A, and D/p, Mp)) Π (A — ω) is non-empty or we could find a larger
value for k(p). Thus Dt(p, k(p)) Π ̂ 4 is not connected so A does not have the
CTPP. Similarly ϊc(p) = k(p), so A, which lies between S(p,k(p)) and
S(p, fc(p)), must equal Θ(p).

Remark. The osculating circle Θ(p) has the property that it separates the
plane into two regions such that IXtP(A) is convex at Ix>p(p) if x is in one
complementary component of (9(p), and concave if x is in the other component
(where a closed curve C is said to be convex at a point p if there is a segment
through p not containing any points interior to C). This follows since the circle
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through x tangent to A at p will support the image of A locally, and the
support segment will lie inside or outside the region bounded by Ix>p depending
on the position of x relative to Θ(p). It is only for points x on Θ(p) that the
image curve can have a tangent which has order of contact greater than two
at the image of p.

Remark. If we restrict consideration to closed bounded 2-manifolds-with-
boundary in E2 or S\ then we may express the main theorem of § 1 in a more
symmetrical form. A 2-manifold-with-boundary A in E2 is a non-empty set
such that every point p of dA has a neighborhood B in E2 such that B Π A is
in 1 — 1 continuous correspondence with the intersection of an open disc
about the origin with the closed upper half-plane. A bounded 2-manifold-with-
boundary A is characterized by the fact that A is closed, A has no components
which are simple closed curves, and every component of dA is a simple closed
curve.

Theorem 1.4 for Manifolds-with-Boundary. A 2-manifold-with-boundary
A has the CTPP if and only if A is pathwise connected and every component
of 3A has the CTPP.

3. TPP surfaces in spheres and the STPP

Definition. A set A in En + ι(oτ Sn+ι) has the spherical-two-piece-property
(STPP) if A Π Di is pathwise connected for any complementary component
DM = 1, 2) of a hyperplane or hypersphere S in En+\or Sn+ι).

Proposition 3.1. An n-sphere Sn in En+ι has the STPP if n > 0. A
hyperplane Hn in En+ι has the STPP if n > 1.

Proof. For any S, Dt Π Sn is either Sn, the empty set, a single point, or
an n-disc on Sn bounded by an (n — l)-sρhere, and for n > 0, these sets are
all connected. Similarly, for any S ψ Hn, S Π Hn is either the empty set, an
(n — l)-sρhere, or an (n — l)-plane, and each of these will separate Hn into
at most two pieces if n > 1.

We recall from [2] that a set A is said to have the two-piece-property (TPP)
if A Π Di is pathwise connected for any complementary component Dt(i = 1 , 2 )
of a hyperplane Hn of En+ι.

Proposition 3.2. A set A contained on an Sn in En+ι has the TPP as a
subset of En+1 if and only if A has the STPP as a subset of Sn.

Proof. This follows since each hyperplane Hn in En+1 meets Sn in a point,
the empty set, or an (n — l)-sρhere, and A Π Dt for a complementary
component Dt of Hn in En+1 is identical with A[\D[ for a complementary
component D[ = Dt Π Sn of Hn Π Sn in Sn.

Theorem 3. // A is a smoothly embedded 2-sphere in En which has the
STPP, then A must be (Euclidean) 2-sphere.

Proof. If A has the STPP in En, then π~\A) is an STPP set in Sn - [p]
in En+ι, so in particular, π~\A) is a smooth 2-sphere in En+ι. By a result of
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Chern and Lashof [4], the set π~\Λ) must be the boundary of a convex set
in an E3 in En+\ But then π~\A) lies in E3 Π (Sn+ι - {p}), so π~\A) is a
Euclidean 2-sphere and therefore so is A.

Proposition 3. If A is a smooth 2-dimensional surface embedded in Sn with
the STPP, then either A = S2, A = the real projective plane embedded as a
Veronese surface in SA, or A is an orientable surface in S3.

Proof. This follows from a result of Kuiper—any TPP smooth surface
must be contained in an E5, and the only such surface not contained in an EA

is the Veronese surface [11]. If A is a smooth surface embedded in S\ then
for p $ A, the image πp(A) is a smooth STPP surface imbedded in E3, so πp(A)
and A will be orientable.

The problem of finding all TPP surfaces contained in spheres is thus reduced
to finding all orientable surfaces in E3 with the STPP.

4. STPP surfaces embedded in E3

For smooth surfaces M2 in E3, an alternative characterization of the TPP is
that every local support plane at a point p is a global support plane. (A plane
H through a point p is said to be a local support plane of M2 at p if p has a
neighborhood U in M2 which lies in a closed component, say D19 of H, and
H is a global support plane if H Π M2 = 0 and M2 c A ) In the study of
smooth surface with the STPP, the corresponding concept is that of a support
sphere.

Definition. A sphere (or plane) S is said to be a local support sphere of
M2 at p if p 6 S Π M2 and U C A for some neighborhood [/ of p in M2. If C/
can be chosen so that S Π U = {p}, then S is said to be a sine* local support
sphere at p. A global support sphere S is one such that S Π M2 Φ 0 and
M2 C A

Proposition 4.1. A surface M2 has the STPP if and only if every local
support sphere at a point p is a global support sphere.

Proof. If S is a local support sphere at p, which is not global, then there
is a point q of M2 in D2. For a sphere S' in A tangent to S at p but with a
slightly different radius, we still have q in D2, but now S' Π E/ = {/?}, and we
have no path from p to q in A , s o ^ 2 d ° e s n o t n a v e the STPP. Conversely,
if M2 does not have the STPP, then for some S, M2 Π A is n o t connected so
we have at least two components Cx and C2, both bounded since M2 is a closed
surface. Change S radially into A u n t ϋ the last sphere *SI/ which meets both
Cx and C2. Then A Π M2 is still disconnected, but S' is a local support sphere
for a point /? either on Cι or C2.

As in the case of curves in the plane, we may introduce for each point p
the spheres S(p,k) tangent to M2 at p, with center p + n(p)jk and radius
I l/k\, where k may be any real number, with S(p, 0) denoting the tangent
plane at p. (The unit normal vector n(p) may be selected continuously over
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the entire embedded surface M2, but at this point we work only locally.)
Let k(p) and k(p) be the two numbers such that S(p, k) is a strict global

support plane for k < k(p) or k(p) < k, and such that for any k in the interval
(k(p),k(p)),S(p,k) ΓiM2 Φ {p}. Thus at each point p, the surface M2 is
contained in the region between S(p,k(p)) and S(p,k{p)). Since we assume
that M2 has continuously defined curvature, both k(p) and k(p) are finite.

Recall that for a smooth surface with continuous curvature, the normal
sections at p obtained by intersecting M2 with a plane through n(p) are plane
curves with well-defined curvatures, so each has an osculating circle. The
maximum and minimum values kλ(p) and k2{p) of these curvatures are the
principal curvatures and if they are distinct, then they correspond to the normal
sections from a pair of orthogonal planes. The osculating circle for the normal
section with radius k^p) is the equator of the sphere S(p, kt(p)), and in fact all
of the osculating circles of the normal sections must lie in the closed region
between the spheres S(p,kλ(p)) and S(p,k2(p)). From the basic property of
osculating circles, it follows that if k is not in [kλ(p), k2(p)], then S(p, k) is a
local support sphere at p, since every normal section at p will contain an arc
about p which except for /?, lies entirely in a complementary component Dγ of
S(p, k), and the union of these arcs will contain a disc neighborhood U of p
lying, except for p, in Dγ.

Proposition 4.2. // M2 is a smooth surface in E3 with the STPP, then at
every point, k(p) — k2(p) and k(p) = Kip).

Proof. Since every local support sphere must be global, it follows that
k2(p) < kip) < kip) < Kip)9 a n d w e n e e d only show that for any k in
iK(p), k2(p)), we have M2 Π S(p, k) ψ {p}. This follows since S(p, k) meets
the osculating circles with curvatures kλ(p) and k2(p) just at p, so we have a
neighborhood ωx of p in the first normal section such that ωγ — {p} C Dγ and
ω2 of p in the other normal section with ω2 — {p} C D2. Thus any embedded
disc neighborhood U of p in M2 must meet S(p, k) in points other than p, since
its boundary curve contains parts of both complementary components of
S(p,k).

Theorem 4.3. // M2 is a smooth surface embedded in E3 with the STPP,
then M2 is either a {Euclidean) 2-sphere or a smooth torus.

Proof. By Proposition 4.2, if M2 has any umbilic p (where kλ{p) = k2(p)),
then M2 lies "between" the identical spheres S(p, Kip)) and S(p, k2(p)), so M2

is a sphere. It follows that if M2 is not the sphere, then M2 has no umbilics,
so at every point p there is a larger principal curvature kλ(p) determining a
certain principal direction in the tangent space of M2 at p. Since we have no
umbilics, this yields a differentiable field of directions, without singularities,
on the orientable surface M2. But the only orientable surface admitting such a
field is a torus (the sum of the indices of singularities of any direction field is
the Euler-Poincare characteristic, and since we have no singularities χ(M2) = 0,
and M2 is orientable so M2 is a torus. For a clear development of this result
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compare H. Hopf [9]).
Remark. The support spheres S(p, kλ{p)) = Sλ and S(p, k2{p)) = S2 separate

E3 into three regions, such that for any point x between Sλ and S2, the image
IXfP(M2) has positive curvature at IXfP(p), while the curvature is negative for
any point x outside the closed region between Sλ and S2. This is independent
of the radius p, and it follows simply from the fact that the maximum and
minimum curvatures of the normal sections will be non-zero, and with different
signs if the point x lies between 5X and 52 and with the same signs if x lies in
one of the other open complementary components of Sλ U S2.

This demonstrates in particular that any sphere S between S^p) and S2(p)
cuts a sufficiently small disc neighborhood U of p into exactly four parts, two
inside S and two outside and each curve in a principal direction contains points
in two of the components. In fact, if we invert with respect to a sphere
centered at a point x on S and not on M2, then the image of S Π U will be the
intersection of the tangent plane to IXfP(M2) at IXjP(p), and at such a negatively
curved region, the intersection lines are tangent to the asymptotes of the Dupin
indicatrix.

5. Tori in E3 with the STPP

We first show that there exist tori in E3 with the STPP.
Proposition 5.1. A torus of revolution T\ formed by revolving a circle

around an axis which it does not meet, has the STPP.
Proof. Any point p of T2 lies on a circle of latitude Cγ{p) and a circle of

longitude C2(p), and for any other point q, we obtain r = Cλ(p) (Ί C2(q) and
s = C2(p) f) C^q). The points p,r,q,s taken in order form an isosceles
trapezoid in E3 (which may degenerate to a doubly covered segment), and this
can be inscribed in a circle C. If S is a sphere or plane in E\ and p and q lie
in T2 Π A? then since C has the STPP, at least one of the points r or s, say
r, lies in Dv Since Cλ{p) has the STPP, there is at least one arc γλ from p to
r on Cx{p) in Dx and similarly an arc γ2 from p to q in C2(q) in Dλ. Then the
path γx U γ2 connects p to q in Z>15 so T2 Π A is pathwise connected.

Remark. An alternate proof of this proposition may be obtained by
expressing T2 as the image πpiS1^) X S1(r2)) under stereographic projection
from a 3-sphere of a flat torus SXrJ X S\r2) c E2 x E2 = E\ where S1^)

= {(*, y) € E21 x2 + y2 = r*} so tffa) X S1^) C S3(VrTf7D = {(*, 3>, z, w) | *2

_̂ -y2 _|_ Z2 _̂  ^2 _ r2 _̂_ r2| βy a r e s u i t of Kuiper [10], such a flat torus has

the TPP in S3(V^ + r*) so it must have the STPP, and then so does T.
Conversely, since T2 has the STPP by Proposition 5.1, any flat torus of the
form PirS X S\r2) in a 3-sphere has the TPP.

We may obtain a further collection of examples by inversion. The image of
a torus of revolution T2 under an inversion IXtP: E3 — {x} —> E3 — {x} in a
sphere of radius p and center x not on T2 must also have the STPP. Such
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surfaces are known as Cyclides of Dupin, and they are characterized by the
fact that all their lines of curvature in both systems are circles. (Cf. Eisenhart
[5, pp. 312-313].) We proceed to make use of this characterization to conclude
that the only STPP tori are Dupin cyclides.

We must first make a closer examination of the intersections of support
spheres with M2.

Proposition 5.2. For any support sphere S of an STPP surface M2, the
intersection S Π M2 has the CTPP on the sphere S.

Proof. If S Π M2 does not have the CTPP, then by the remark after
Proposition 2.2, we can find a circle C on S bounding a disc Dλ containing
S Π M2 and such that C Π M2 is not connected. Choose a and c on different
components of C Π M2 and points b and d in C — (C Π M2) such that a,b,c,
and d are in cyclic order on C. Let γ be the geodesic arc from b to d in D2,
and let B be a neighborhood of γ in £ 3 not meeting M2. Then for a sphere
S' sufficiently close to S meeting S in C, the points a and c will be in different
components of Df Π M2—there can be no path from a to c in M2 Π D' Π £> by
the choice of C, and any path from a to c in £)' — (D Π DO must pass
through B.

Proposition 5.3. // M2 is a torus in E3 with the STPP, then for any
support sphere S, S Π M2 is a point or a circle.

Proof. By the previous proposition, S Π M2 is a (connected) closed set with
the CTPP. But we know all the CTPP connected closed sets of a 2-sphere S
by Theorem IΛ—i.e., S, the empty set, a single point, or S with a union of
disjoint open circular discs removed. But S Π M2 Φ S since M2 is a torus, and
S Π M2 Φ 0 since 5 is a support sphere. If M2 Π S contained any interior
points, then these would be interior points of a sphere 5, so umbilics on M2

and then M2 would be a sphere by Theorem 4.3, a contradiction. Thus M2f]S
is either a point or a set without interior obtained by removing disjoint open
circular discs from S. One such set is a circle, but for any other such set we
must remove infinitely many open discs, as in the "Swiss cheese" example.
But then we may find at least three boundary circles of the removed discs
which do not intersect, and any three disjoint curves on a torus must
disconnect the torus into more than two pieces, so M Π Dx would be
disconnected and so would M C\ D[ for a sphere S' obtained by changing the
radius of 5 by a sufficiently small amount.

Proposition 5.4. // M2 is a torus with the STPP in E3, then for every
support sphere S, S Π M2 is a circle.

Proof. If S(p, kλ(p)) Π M2 = {/?}, then for any value of k in (k2(p), kx(p))
there is a neighborhood U of p such that S(p, k) Π U consists of four paths
from p separating the pair of regions in Dλ Π U (containing a deleted
neighborhood ωx — {p} of the normal section with curvature kλ(p)) from the
pair of regions D2 Π U. Since 5(0, kx{p)) (Ί M2 = {p}, for kf sufficiently close
to k,(p), the sets S(p, kf) Π M and D[ Π M2 will lie in the neighborhood U of
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p, and we may find points r and s of (ωλ — {p}) Π D[ such that any path from

r to s in M2 Π D[ passes through p. For a sphere S" with radius slightly

different from that of S(p, &'), the points r and s will still be in D"9 but p will

be in D" so there is no path from r to s in Ϊ5" Π M2 and M2 does not have

the STPP.

Theorem 5.5. // M2 is a smooth torus in E3 with the STPP, then M2 is a

cyelide of Dupin.

Proof. By Proposition 5.4, the curve through p with principal curvature

kλ(p) is a circle, and the same is true for the other direction of curvature.

Since this is true at all points of the surface, all the lines of curvature are

circles, and the theorem follows.

Remark. The family of cyclides obtained by stereographic projection of

the standard flat torus from various positions on S3 is the subject of a computer

graphics film, described in [3].
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