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Introduction 
Correctly rendering non-refractive transparent surfaces with core OpenGL 

functionality [9] has the vexing requirements of depth-sorted traversal and non-
intersecting polygons.  This is frustrating for most application developers using OpenGL 
because the natural order of scene traversal (usually one object at a time) rarely satisfies 
these requirements.  Objects can be complex, with their own transformation hierarchies.  
Even more troublesome, with advanced graphics hardware, the vertices and fragments of 
objects may be altered by user-defined per-vertex or per-fragment operations within the 
GPU.  When these features are employed, it becomes intractable to guarantee that 
fragments will arrive in sorted order for each pixel.  The technique presented here solves 
the problem of order dependence by using a technique we call depth peeling.  Depth 
peeling is a fragment-level depth sorting technique described by Mammen using Virtual 
Pixel Maps [7] and by Diefenbach using a dual depth buffer [3].  Though no dual depth 
buffer hardware fitting Diefenbach’s description exists, Bastos observed that shadow 
mapping hardware in conjunction with alpha test can be used to achieve the same effect 
[2].  Using this variation of depth peeling, each unique depth in the scene is extracted into 
layers, and the layers are composited in depth-sorted order to produce the correctly 
blended final image.  The peeling of a layer requires a single order-independent pass over 
the scene.  Figure 1 contrasts correct and incorrect rendering of transparent surfaces. 

(a)                                                                                       (b) 
 

Figure 1.  These images illustrate correct (a) and incorrect (b) rendering of transparent 
surfaces. 
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The goal of this document is to enable OpenGL developers to implement this 
technique with NVIDIA OpenGL extensions and GeForce3 hardware.  Since shadow 
mapping is integral to the technique a very basic introduction is provided, but the 
interested reader is encouraged to explore the referenced material for more detail. 

Shadow Mapping 
Shadow mapping is a multi-pass shadowing technique developed by Lance Williams 

[11] in 1978.  In the first pass, the scene is rendered from the light’s point of view.  The 
depth buffer generated in that pass is copied to a special “depth texture” or shadow map.  
In the second pass, the shadow map is projected onto the scene using projective texture 
mapping [10, 4].  Unlike regular 2D projective texture mapping where the r coordinate is 
unused, we use the r coordinate to compute the distance of the rasterized fragment to the 
light source.  Then, the lookup of (s,t) is the distance to the nearest surface to the light 
source (along that direction).  If r ≤ lookup(s,t), then the current fragment is visible to 
the light source, and therefore not in shadow.  Essentially, we use depth-buffering in the 
first pass to determine which surfaces are visible from the light’s point of view, and in the 
second pass we show those surfaces as illuminated.  Figure 2 helps illustrate this concept. 

We use the SGIX_shadow and SGIX_depth_texture extensions [8] to take advantage 
of GeForce3 shadow mapping hardware in OpenGL.  The SGIX_shadow extension 
provides the ability to compute a comparison of the r texture coordinate with the results 
of the 2D lookup.  The SGIX_depth_texture extension exposes GL_DEPTH_COMPONENT 
internal texture formats and defines semantics for glCopyTex{Sub}Image2D for fast 
copies from the depth buffer to a depth texture.  These features are fully accelerated on 
GeForce3. 

  It has been shown by Heidrich [5] that multitexturing can be used to implement a 
limited form of shadow mapping.  It is limited in that it requires multiple texture units 
and it only supports nearest filtering and 8-bit depth texels (16-bit depth on GeForce [6]).  
For depth peeling, we need full depth buffer precision (24 bits) that necessitates the use 
of the SGIX shadowing extensions. 

Figure 2.  These diagrams were taken from Mark Kilgard’s shadow mapping presentation at 
GDC 2001.  They illustrate the shadowing comparison that occurs in shadow mapping. 
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Depth Peeling 
Depth peeling is the underlying technique that makes this approach for order-

independent transparency possible.   The standard depth test gives us the nearest fragment 
at each pixel, but there is also a fragment that is second nearest, third nearest, and so on.  
Standard depth testing gives us the nearest fragment without imposing any ordering 
restrictions, however, it does not give us any straightforward way to render the second 
nearest or nth nearest surface.  

Depth peeling solves this problem.  The essence of what happens with this technique 
is that with n passes over a scene, we can get n layers deeper into the scene.  For 
example, with 2 passes over the scene, we can extract the nearest and second nearest 
surfaces in a scene.  We get both the depth and color (RGBA) information for each layer. 

The images we get from peeling away depth are shown in Figure 3.  It can be quite 
confusing to make sense of the images of layer 1 and beyond, because the notion of a 
“second nearest surface” is unintuitive.  To help distinguish the various surfaces, the 
teapot is rendered with two-sided lighting (outside is red and inside is green), and the 
ground plane is drawn in blue.  Note that the image labeled ‘Layer 2’ is in the shape of a 
teapot, but most of the fragments in that layer are from the ground plane (they are blue).  
Without the coloring, this would be difficult to interpret. 

Layer 0 Layer 1 

Layer 2 Layer 3 

Figure 3.  These images illustrate simple depth peeling.  Layer 0 shows the nearest depths, 
layer 1 shows the second depths, and so on.  Two-sided lighting  with vivid coloring is used 
to help distinguish the surfaces. 
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Figure 4 provides a more diagrammatic view of depth peeling.   The diagrams there 
are analogous to the images in Figure 3, except we are now looking at a cross section of 
the view volume and highlighting each layer.  It is evident from the view in Figure 4 that 
the depths vary within each layer, and the number of samples is decreasing.  The peeling 
process clearly happens at the fragment level, so the pieces are generally not whole 
polygons. 

The process of depth peeling is actually a straightforward multi-pass algorithm.  In 
the first pass we render as normal, and the depth test gives us the nearest surface.  In the 
second pass, we use the depth buffer computed in the first pass to “peel away” depths that 
are less than or equal to nearest depths from the first pass.  The second pass generates a 
depth buffer for the second nearest surface, which 
can be used to peel away the first and second 
nearest surfaces in the third pass.  The pattern is 
simple, but there is a catch.  We need to perform 
two depth tests per fragment for it to work! 

Multiple Depth Tests 
The most natural way to describe this technique 

is to imagine that OpenGL supported multiple 
simultaneous depth units, each with its own depth 
buffer and associated state.  We diverge from 
Diefenbach’s dual depth buffer API in that we 
assume there are n depth units, all writeable, that 
are executed in sequential order.  The first depth test 
to fail discards the fragment and terminates further 
processing.  The pseudocode in Listing 1 
implements depth peeling using two depth units. 

In each pass except the first, depth unit 0 is used 
to peel away the previously nearest fragments while 
the depth unit 1 performs “regular” depth-buffering. 
We decouple the depth buffer from the depth unit 
because it simplifies the presentation of the 

0             depth             1 

Layer 0 Layer 1 Layer 2 

0             depth             1 0             depth             1 

Figure 4.  Depth peeling strips away depth layers with each successive pass.  The frames 
above show the frontmost (leftmost) surfaces as bold black lines, hidden surfaces as thin 
black lines, and “peeled away” surfaces as light grey lines. 

for (i=0; i<num_passes; i++) 
{ 
 clear color buffer 
 A = i % 2 
 B = (i+1) % 2 
 depth unit 0: 
  if(i == 0) 
   disable depth test 
  else 
   enable depth test 
  bind buffer A 
  disable depth writes 
  set depth func to GREATER 
 depth unit 1: 
  bind buffer B 
  clear depth buffer 
  enable depth writes 
  enable depth test 
  set depth func to LESS 
 render scene 
 save color buffer RGBA as layer i 
} 

Listing 1.  Pseudocode for depth 
peeling using multiple simultaneous 
depth buffers. 
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algorithm and more closely matches the semantics of ARB_multitexture.  This 
decoupling is convenient because we need to use the depth buffer produced by depth unit 
1 in pass i as the “peeling” depth buffer for depth unit 0 in pass i+1.   

It is also worth mentioning that we only enable depth writes on depth unit 1.  This 
will be important later. 

Shadow Mapping as Depth Test 
Shadow mapping is a depth test.  For the purposes of our discussion, there are only a 

few major differences between shadow mapping and the depth-buffer algorithm: 

• the shadow mapping comparison sets a fragment color attribute, 

• the shadow mapping depth test is not tied to the camera position, and 

• the shadow map (depth buffer) is not writeable during the shadow comparison 
(depth test). 

 It is not difficult to compensate for these differences.  We write the results of the 
shadow mapping comparison to fragment alpha and use alpha test to discard fragments 
that fail the “depth test” we have chosen.  We make the orientation and resolution of the 
shadow map identical to that of the camera.  We can then use shadow mapping as a read-
only depth test.  This is good news, because this is all we needed to implement depth 
peeling as described in the previous section using our imaginary multiple depth test 
OpenGL.  Except now, we can actually implement it using real OpenGL and with 
hardware acceleration! 

An Invariance Issue 
As simple as depth peeling sounds, it is actually pretty intolerant to variance. Due to 

the nature of the technique, many of the fragments generated in each pass will be on the 
razor’s edge of the comparison. In our imaginary OpenGL that supports multiple depth 
tests, we would not expect variance to be a problem because we are re-using the same 
interpolator to compute depth the same way in each pass.  Things are a little more 
complicated when we use shadow mapping as a depth test, though.  This is primarily 
because 

• zw (window space z) is interpolated linearly in window space at the precision 
of the current depth buffer, and 

• r and q are interpolated linearly in clip space (hyperbolically in window 
space) at high precision 

The possible differences in precision and/or interpolation implementation are the hazards 
that cause variance.  Consider the depth interpolation in Equation 1, which is linear in 
window space. 
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Where zw is window space z, zc is clip space z, wc is clip space w, and the numeric 
specifiers 1 and 2 indicate two points that are being interpolated.  When we perform 
shadow mapping, we must interpolate quantities as texture coordinates which vary 
linearly in clip space, so we interpolate zc and wc as the r and q texture coordinates 
respectively, and use the r/q quotient to produce a value that varies linearly in window 
space.  For the particular case we have been considering, shadow mapping from the 
camera’s point of view we get Equations 2 and 3. 

When we compute the r/q quotient, we recognize that the denominators in Equations 2 
and 3 cancel, and that for our special case of shadow mapping from the camera’s point of 
view, the numerator of Equation 3 is 1.  This leaves only the numerator of Equation 2, 
which is identical to the expression in Equation 1.  While this is algebraically true, the 
hardware may not be able to make some of these cancellations.  For fragments with the 
same depth, hardware could evaluate the comparison shown in (4).  The left side of the 
expression interpolates three quantities and performs four divides while the right simply 
interpolates one quantity. 

 

 

Luckily GeForce3’s NV_texture_shader extension [8] supports a mode called 
GL_DOT_PRODUCT_DEPTH_REPLACE_NV that allows us to compute fragment depth using 
texture coordinates.  The depth computed in this texture shader replaces the fragment 
depth that was computed in the rasterizer.  This means that for GeForce3, we can 
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compute the depth that we store in the depth buffer in exactly the same way that we 
compute it when making the comparison.  When we use this texture shader in generating 
our shadow map, there are no variances in the least significant bits.  This is nice because 
it means we do not have to employ fudge factors to deal with LSB variance.  The depth 
replace texture shader is very general, and this is a very simple use of it.  Figure 5 
illustrates the general operation of the depth replace texture shader. 

For our purposes, we really only want to interpolate zc and wc using a single texture 
coordinate for each, so we use a 1x1 GL_UNSIGNED_HILO_NV texture where H and L are 
zero.  By definition, the 3rd component of an unsigned HILO is 1, so we perform a dot 
product of (S, T, R) with (0, 0, 1).  In this way, we can interpolate the R coordinates of 
stages 1 and 2, and we use texture coordinate generation to make sure that R1 is zc and R2 
is wc.  When we perform the division zc/wc at each fragment, we are effectively 
interpolating window space depth in the same way that s/q does it in the subsequent 
shadow mapping pass. 

There is one clarification we should make.  When we consider the standard 
transformation pipeline, we often place the perspective divide before the viewport and 
depth range scale and bias.  The depth replace texture shader and shadow mapping depth 
computation perform the divide (zc/wc and s/q respectively) as the final operation. This 
means that we must apply the depth range scale and bias before the perspective divide.  
Or, said another way, for depth replace and shadow mapping, we must transform 
coordinates into homogeneous window coordinates rather than homogeneous clip space.

Figure 5.  This diagram is a slightly modified slide taken from Dominé and 
Spitzer’s GDC 2001 presentation on GeForce3 texture shaders.  It 
describes the depth replace texture shader. 
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The code in Listing 2 illustrates how to set up the GL_DOT_PRODUCT_DEPTH_-
REPLACE_NV texture shader to compute window z in a way that closely matches the 
standard projective texture mapping computation of window z.  For illustrative purposes, 
we use eye linear texgen with an identity mapping for the r coordinate [ 0 0 1 0 ], and we 
use the texture matrix to perform the transforms.  The most efficient approach would be 
to encode the transform in the texgen plane. 

Another slightly odd aspect the depth replace texture shader is illustrated in the code 
in Listing 2.  It is that the homogeneous window coordinate must be moved from the 
fourth row of the texture matrix into the r coordinate.  This is because the dot product 
texture shaders only perform a 3-component dot product, so all quantities must be in the 
s, t, or r coordinates.  

glActiveTextureARB(GL_TEXTURE0_ARB); 
simple_1x1_uhilo.bind(); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D); 
 
matrix4f m; 
glActiveTextureARB(GL_TEXTURE1_ARB); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_NV); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB); 
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE); 
glMatrixMode(GL_MODELVIEW); 
glPushMatrix(); 
glLoadIdentity(); 
eye_linear_texgen();  // set EYE_LINEAR texgen with identity planes 
texgen(true);         // enable texgen on s,t,r, and q 
glPopMatrix(); 
glMatrixMode(GL_TEXTURE); 
glLoadIdentity(); 
glTranslatef( 0, 0,.5); 
glScalef( 0, 0, .5); 
reshaper.apply_perspective();  // apply the camera’s perspective projection matrix 
glMatrixMode(GL_MODELVIEW); 
   
glActiveTextureARB(GL_TEXTURE2_ARB); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_DEPTH_REPLACE_NV); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB); 
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE); 
glPushMatrix(); 
glLoadIdentity(); 
eye_linear_texgen();  // set EYE_LINEAR texgen with identity planes 
texgen(true);         // enable texgen on s,t,r, and q 
glPopMatrix(); 
glMatrixMode(GL_TEXTURE); 
glLoadIdentity(); 
m(0,0) = 0;   m(0,1) = 0;   m(0,2) = 0;   m(0,3) = 0; 
m(1,0) = 0;   m(1,1) = 0;   m(1,2) = 0;   m(1,3) = 0; 
m(2,0) = 0;   m(2,1) = 0;   m(2,2) = 0;   m(2,3) = 1;  // move q to r 
m(3,0) = 0;   m(3,1) = 0;   m(3,2) = 0;   m(3,3) = 0; 
glMultMatrix(m); 
reshaper.apply_perspective();  // apply the camera’s perspective projection matrix 
glMatrixMode(GL_MODELVIEW); 
   
glActiveTextureARB(GL_TEXTURE3_ARB); 
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_RECTANGLE_NV); 
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE); 
 
glActiveTextureARB(GL_TEXTURE0_ARB); 

Listing 2.  Example code for setting up depth replace texture shader for use in depth peeling. 
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Putting It All Together 
Now we have a way to compute the RGBA color for each unique depth at every 

pixel.  These are stored as separate layers (or viewport-sized textures).  All that remains 
is to compute the correct order-dependent color at each pixel by compositing the layers in 
order.  Rendering each layer as viewport-sized textured quad does this.  For back-to-front 
compositing a (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) blending function is used. 

Figure 5 illustrates the results of compositing of the layers into a final image.  Note 
also that the bottom two images in Figure 5 look virtually (but not completely) identical.  
For completely correct results we should extract every semitransparent sample up to the 
first opaque sample, but in practice that is not necessary.  The nature of the transparency 
computation is that samples further back have diminished effect, so truncation is a 
reasonable (and efficient) form of approximation.  For example, the scene in Figure 5 is 
“good enough” after three layers.  

Figure 5.  The depth peeled layers of the scene are correctly sorted per-fragment.  If we 
simply save the color (RGBA) for each layer, we can composite them in depth-sorted order 
as a final pass.  These images illustrate blending more layers for more correct 
transparency.   

1 layer 2 layers 

3 layers 4 layers 
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Conclusion 
The technique presented is a straightforward and convenient way to render scenes 

with transparency because it does not require that the scene be rendered in sorted order, 
and it makes good use of graphics hardware.  In addition, there may be no practical 
alternative to this approach of layer extraction and compositing for scenes that cannot be 
rendered in sorted order in a single pass. 

Some of the figures in this paper come from the layerz and order_independent_-
transparency demos that can be found in the NVIDIA OpenGL SDK, which can be 
found at http://www.nvidia.com/developer. The demos only illustrate the technique 
described here, but many variations like those described in Diefenbach [3] are possible.  
The GDC 2001 presentations that were used in some figures are also available at the 
above web site. 
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