
NVIDIA Proprietary

Interactive Order-Independent Transparency
Cass Everitt

NVIDIA OpenGL Applications Engineering
cass@nvidia.com

Introduction
Correctly rendering non-refractive transparent surfaces with core OpenGL

functionality [9] has the vexing requirements of depth-sorted traversal and non-
intersecting polygons. This is frustrating for most application developers using OpenGL
because the natural order of scene traversal (usually one object at a time) rarely satisfies
these requirements. Objects can be complex, with their own transformation hierarchies.
Even more troublesome, with advanced graphics hardware, the vertices and fragments of
objects may be altered by user-defined per-vertex or per-fragment operations within the
GPU. When these features are employed, it becomes intractable to guarantee that
fragments will arrive in sorted order for each pixel. The technique presented here solves
the problem of order dependence by using a technique we call depth peeling. Depth
peeling is a fragment-level depth sorting technique described by Mammen using Virtual
Pixel Maps [7] and by Diefenbach using a dual depth buffer [3]. Though no dual depth
buffer hardware fitting Diefenbach’s description exists, Bastos observed that shadow
mapping hardware in conjunction with alpha test can be used to achieve the same effect
[2]. Using this variation of depth peeling, each unique depth in the scene is extracted into
layers, and the layers are composited in depth-sorted order to produce the correctly
blended final image. The peeling of a layer requires a single order-independent pass over
the scene. Figure 1 contrasts correct and incorrect rendering of transparent surfaces.

(a) (b)

Figure 1. These images illustrate correct (a) and incorrect (b) rendering of transparent
surfaces.

mailto:cass@nvidia.com

NVIDIA Proprietary

The goal of this document is to enable OpenGL developers to implement this
technique with NVIDIA OpenGL extensions and GeForce3 hardware. Since shadow
mapping is integral to the technique a very basic introduction is provided, but the
interested reader is encouraged to explore the referenced material for more detail.

Shadow Mapping
Shadow mapping is a multi-pass shadowing technique developed by Lance Williams

[11] in 1978. In the first pass, the scene is rendered from the light’s point of view. The
depth buffer generated in that pass is copied to a special “depth texture” or shadow map.
In the second pass, the shadow map is projected onto the scene using projective texture
mapping [10, 4]. Unlike regular 2D projective texture mapping where the r coordinate is
unused, we use the r coordinate to compute the distance of the rasterized fragment to the
light source. Then, the lookup of (s,t) is the distance to the nearest surface to the light
source (along that direction). If r ≤ lookup(s,t), then the current fragment is visible to
the light source, and therefore not in shadow. Essentially, we use depth-buffering in the
first pass to determine which surfaces are visible from the light’s point of view, and in the
second pass we show those surfaces as illuminated. Figure 2 helps illustrate this concept.

We use the SGIX_shadow and SGIX_depth_texture extensions [8] to take advantage
of GeForce3 shadow mapping hardware in OpenGL. The SGIX_shadow extension
provides the ability to compute a comparison of the r texture coordinate with the results
of the 2D lookup. The SGIX_depth_texture extension exposes GL_DEPTH_COMPONENT
internal texture formats and defines semantics for glCopyTex{Sub}Image2D for fast
copies from the depth buffer to a depth texture. These features are fully accelerated on
GeForce3.

 It has been shown by Heidrich [5] that multitexturing can be used to implement a
limited form of shadow mapping. It is limited in that it requires multiple texture units
and it only supports nearest filtering and 8-bit depth texels (16-bit depth on GeForce [6]).
For depth peeling, we need full depth buffer precision (24 bits) that necessitates the use
of the SGIX shadowing extensions.

Figure 2. These diagrams were taken from Mark Kilgard’s shadow mapping presentation at
GDC 2001. They illustrate the shadowing comparison that occurs in shadow mapping.

NVIDIA Proprietary

Depth Peeling
Depth peeling is the underlying technique that makes this approach for order-

independent transparency possible. The standard depth test gives us the nearest fragment
at each pixel, but there is also a fragment that is second nearest, third nearest, and so on.
Standard depth testing gives us the nearest fragment without imposing any ordering
restrictions, however, it does not give us any straightforward way to render the second
nearest or nth nearest surface.

Depth peeling solves this problem. The essence of what happens with this technique
is that with n passes over a scene, we can get n layers deeper into the scene. For
example, with 2 passes over the scene, we can extract the nearest and second nearest
surfaces in a scene. We get both the depth and color (RGBA) information for each layer.

The images we get from peeling away depth are shown in Figure 3. It can be quite
confusing to make sense of the images of layer 1 and beyond, because the notion of a
“second nearest surface” is unintuitive. To help distinguish the various surfaces, the
teapot is rendered with two-sided lighting (outside is red and inside is green), and the
ground plane is drawn in blue. Note that the image labeled ‘Layer 2’ is in the shape of a
teapot, but most of the fragments in that layer are from the ground plane (they are blue).
Without the coloring, this would be difficult to interpret.

Layer 0 Layer 1

Layer 2 Layer 3

Figure 3. These images illustrate simple depth peeling. Layer 0 shows the nearest depths,
layer 1 shows the second depths, and so on. Two-sided lighting with vivid coloring is used
to help distinguish the surfaces.

NVIDIA Proprietary

Figure 4 provides a more diagrammatic view of depth peeling. The diagrams there
are analogous to the images in Figure 3, except we are now looking at a cross section of
the view volume and highlighting each layer. It is evident from the view in Figure 4 that
the depths vary within each layer, and the number of samples is decreasing. The peeling
process clearly happens at the fragment level, so the pieces are generally not whole
polygons.

The process of depth peeling is actually a straightforward multi-pass algorithm. In
the first pass we render as normal, and the depth test gives us the nearest surface. In the
second pass, we use the depth buffer computed in the first pass to “peel away” depths that
are less than or equal to nearest depths from the first pass. The second pass generates a
depth buffer for the second nearest surface, which
can be used to peel away the first and second
nearest surfaces in the third pass. The pattern is
simple, but there is a catch. We need to perform
two depth tests per fragment for it to work!

Multiple Depth Tests
The most natural way to describe this technique

is to imagine that OpenGL supported multiple
simultaneous depth units, each with its own depth
buffer and associated state. We diverge from
Diefenbach’s dual depth buffer API in that we
assume there are n depth units, all writeable, that
are executed in sequential order. The first depth test
to fail discards the fragment and terminates further
processing. The pseudocode in Listing 1
implements depth peeling using two depth units.

In each pass except the first, depth unit 0 is used
to peel away the previously nearest fragments while
the depth unit 1 performs “regular” depth-buffering.
We decouple the depth buffer from the depth unit
because it simplifies the presentation of the

0 depth 1

Layer 0 Layer 1 Layer 2

0 depth 1 0 depth 1

Figure 4. Depth peeling strips away depth layers with each successive pass. The frames
above show the frontmost (leftmost) surfaces as bold black lines, hidden surfaces as thin
black lines, and “peeled away” surfaces as light grey lines.

for (i=0; i<num_passes; i++)
{
 clear color buffer
 A = i % 2
 B = (i+1) % 2
 depth unit 0:
 if(i == 0)
 disable depth test
 else
 enable depth test
 bind buffer A
 disable depth writes
 set depth func to GREATER
 depth unit 1:
 bind buffer B
 clear depth buffer
 enable depth writes
 enable depth test
 set depth func to LESS
 render scene
 save color buffer RGBA as layer i
}

Listing 1. Pseudocode for depth
peeling using multiple simultaneous
depth buffers.

NVIDIA Proprietary

algorithm and more closely matches the semantics of ARB_multitexture. This
decoupling is convenient because we need to use the depth buffer produced by depth unit
1 in pass i as the “peeling” depth buffer for depth unit 0 in pass i+1.

It is also worth mentioning that we only enable depth writes on depth unit 1. This
will be important later.

Shadow Mapping as Depth Test
Shadow mapping is a depth test. For the purposes of our discussion, there are only a

few major differences between shadow mapping and the depth-buffer algorithm:

• the shadow mapping comparison sets a fragment color attribute,

• the shadow mapping depth test is not tied to the camera position, and

• the shadow map (depth buffer) is not writeable during the shadow comparison
(depth test).

 It is not difficult to compensate for these differences. We write the results of the
shadow mapping comparison to fragment alpha and use alpha test to discard fragments
that fail the “depth test” we have chosen. We make the orientation and resolution of the
shadow map identical to that of the camera. We can then use shadow mapping as a read-
only depth test. This is good news, because this is all we needed to implement depth
peeling as described in the previous section using our imaginary multiple depth test
OpenGL. Except now, we can actually implement it using real OpenGL and with
hardware acceleration!

An Invariance Issue
As simple as depth peeling sounds, it is actually pretty intolerant to variance. Due to

the nature of the technique, many of the fragments generated in each pass will be on the
razor’s edge of the comparison. In our imaginary OpenGL that supports multiple depth
tests, we would not expect variance to be a problem because we are re-using the same
interpolator to compute depth the same way in each pass. Things are a little more
complicated when we use shadow mapping as a depth test, though. This is primarily
because

• zw (window space z) is interpolated linearly in window space at the precision
of the current depth buffer, and

• r and q are interpolated linearly in clip space (hyperbolically in window
space) at high precision

The possible differences in precision and/or interpolation implementation are the hazards
that cause variance. Consider the depth interpolation in Equation 1, which is linear in
window space.

2

2

1

1
21)1()1(

c

c

c

c
ww

c

c
w w

z
w
zzz

w
zz αααα −+=−+== (1)

NVIDIA Proprietary

Where zw is window space z, zc is clip space z, wc is clip space w, and the numeric
specifiers 1 and 2 indicate two points that are being interpolated. When we perform
shadow mapping, we must interpolate quantities as texture coordinates which vary
linearly in clip space, so we interpolate zc and wc as the r and q texture coordinates
respectively, and use the r/q quotient to produce a value that varies linearly in window
space. For the particular case we have been considering, shadow mapping from the
camera’s point of view we get Equations 2 and 3.

When we compute the r/q quotient, we recognize that the denominators in Equations 2
and 3 cancel, and that for our special case of shadow mapping from the camera’s point of
view, the numerator of Equation 3 is 1. This leaves only the numerator of Equation 2,
which is identical to the expression in Equation 1. While this is algebraically true, the
hardware may not be able to make some of these cancellations. For fragments with the
same depth, hardware could evaluate the comparison shown in (4). The left side of the
expression interpolates three quantities and performs four divides while the right simply
interpolates one quantity.

Luckily GeForce3’s NV_texture_shader extension [8] supports a mode called
GL_DOT_PRODUCT_DEPTH_REPLACE_NV that allows us to compute fragment depth using
texture coordinates. The depth computed in this texture shader replaces the fragment
depth that was computed in the rasterizer. This means that for GeForce3, we can

21

2

2

1

1

1)1(1

)1(

cc

c

c

c

c

c

ww

w
z

w
z

zr
αα

αα

−+

−+
==

21

2

2

1

1

1)1(1

)1(

cc

c

c

c

c

c

ww

w
w

w
w

wq
αα

αα

−+

−+
==

(2)

(3)

c

c

c

c

c

c

c

c

w
z

w

w
w

w

w
z

≤





































































1

1

(4)

NVIDIA Proprietary

compute the depth that we store in the depth buffer in exactly the same way that we
compute it when making the comparison. When we use this texture shader in generating
our shadow map, there are no variances in the least significant bits. This is nice because
it means we do not have to employ fudge factors to deal with LSB variance. The depth
replace texture shader is very general, and this is a very simple use of it. Figure 5
illustrates the general operation of the depth replace texture shader.

For our purposes, we really only want to interpolate zc and wc using a single texture
coordinate for each, so we use a 1x1 GL_UNSIGNED_HILO_NV texture where H and L are
zero. By definition, the 3rd component of an unsigned HILO is 1, so we perform a dot
product of (S, T, R) with (0, 0, 1). In this way, we can interpolate the R coordinates of
stages 1 and 2, and we use texture coordinate generation to make sure that R1 is zc and R2
is wc. When we perform the division zc/wc at each fragment, we are effectively
interpolating window space depth in the same way that s/q does it in the subsequent
shadow mapping pass.

There is one clarification we should make. When we consider the standard
transformation pipeline, we often place the perspective divide before the viewport and
depth range scale and bias. The depth replace texture shader and shadow mapping depth
computation perform the divide (zc/wc and s/q respectively) as the final operation. This
means that we must apply the depth range scale and bias before the perspective divide.
Or, said another way, for depth replace and shadow mapping, we must transform
coordinates into homogeneous window coordinates rather than homogeneous clip space.

Figure 5. This diagram is a slightly modified slide taken from Dominé and
Spitzer’s GDC 2001 presentation on GeForce3 texture shaders. It
describes the depth replace texture shader.

NVIDIA Proprietary

The code in Listing 2 illustrates how to set up the GL_DOT_PRODUCT_DEPTH_-
REPLACE_NV texture shader to compute window z in a way that closely matches the
standard projective texture mapping computation of window z. For illustrative purposes,
we use eye linear texgen with an identity mapping for the r coordinate [0 0 1 0], and we
use the texture matrix to perform the transforms. The most efficient approach would be
to encode the transform in the texgen plane.

Another slightly odd aspect the depth replace texture shader is illustrated in the code
in Listing 2. It is that the homogeneous window coordinate must be moved from the
fourth row of the texture matrix into the r coordinate. This is because the dot product
texture shaders only perform a 3-component dot product, so all quantities must be in the
s, t, or r coordinates.

glActiveTextureARB(GL_TEXTURE0_ARB);
simple_1x1_uhilo.bind();
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D);

matrix4f m;
glActiveTextureARB(GL_TEXTURE1_ARB);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_NV);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
eye_linear_texgen(); // set EYE_LINEAR texgen with identity planes
texgen(true); // enable texgen on s,t,r, and q
glPopMatrix();
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glTranslatef(0, 0,.5);
glScalef(0, 0, .5);
reshaper.apply_perspective(); // apply the camera’s perspective projection matrix
glMatrixMode(GL_MODELVIEW);

glActiveTextureARB(GL_TEXTURE2_ARB);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_DEPTH_REPLACE_NV);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE);
glPushMatrix();
glLoadIdentity();
eye_linear_texgen(); // set EYE_LINEAR texgen with identity planes
texgen(true); // enable texgen on s,t,r, and q
glPopMatrix();
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
m(0,0) = 0; m(0,1) = 0; m(0,2) = 0; m(0,3) = 0;
m(1,0) = 0; m(1,1) = 0; m(1,2) = 0; m(1,3) = 0;
m(2,0) = 0; m(2,1) = 0; m(2,2) = 0; m(2,3) = 1; // move q to r
m(3,0) = 0; m(3,1) = 0; m(3,2) = 0; m(3,3) = 0;
glMultMatrix(m);
reshaper.apply_perspective(); // apply the camera’s perspective projection matrix
glMatrixMode(GL_MODELVIEW);

glActiveTextureARB(GL_TEXTURE3_ARB);
glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_RECTANGLE_NV);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_NONE);

glActiveTextureARB(GL_TEXTURE0_ARB);

Listing 2. Example code for setting up depth replace texture shader for use in depth peeling.

NVIDIA Proprietary

Putting It All Together
Now we have a way to compute the RGBA color for each unique depth at every

pixel. These are stored as separate layers (or viewport-sized textures). All that remains
is to compute the correct order-dependent color at each pixel by compositing the layers in
order. Rendering each layer as viewport-sized textured quad does this. For back-to-front
compositing a (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) blending function is used.

Figure 5 illustrates the results of compositing of the layers into a final image. Note
also that the bottom two images in Figure 5 look virtually (but not completely) identical.
For completely correct results we should extract every semitransparent sample up to the
first opaque sample, but in practice that is not necessary. The nature of the transparency
computation is that samples further back have diminished effect, so truncation is a
reasonable (and efficient) form of approximation. For example, the scene in Figure 5 is
“good enough” after three layers.

Figure 5. The depth peeled layers of the scene are correctly sorted per-fragment. If we
simply save the color (RGBA) for each layer, we can composite them in depth-sorted order
as a final pass. These images illustrate blending more layers for more correct
transparency.

1 layer 2 layers

3 layers 4 layers

NVIDIA Proprietary

Conclusion
The technique presented is a straightforward and convenient way to render scenes

with transparency because it does not require that the scene be rendered in sorted order,
and it makes good use of graphics hardware. In addition, there may be no practical
alternative to this approach of layer extraction and compositing for scenes that cannot be
rendered in sorted order in a single pass.

Some of the figures in this paper come from the layerz and order_independent_-
transparency demos that can be found in the NVIDIA OpenGL SDK, which can be
found at http://www.nvidia.com/developer. The demos only illustrate the technique
described here, but many variations like those described in Diefenbach [3] are possible.
The GDC 2001 presentations that were used in some figures are also available at the
above web site.

Acknowledgements
Rui Bastos came up with the very clever idea of depth peeling using shadow mapping

hardware support when he was considering hardware accelerated Woo shadow maps for
GeForce3 (whitepaper on that topic to follow soon). I had help from Mark Kilgard on the
appropriate texture coordinate generation setup for the depth replace texture shader that
solves the invariance problem. He also provided invaluable feedback on early drafts of
this paper.

References
[1] James F. Blinn. Hyperbolic interpolation. IEEE Computer Graphics (SIGGRAPH)

and Applications, 12(4):89 94, July 1992.

[2] Rui Bastos. Personal communication. Feb 2001.

[3] Paul Diefenbach. Pipeline Rendering: Interaction and Realism Through Hardware-
Based Multi-PassRendering. University of Pennsylvania, Department of Computer
Science, Ph.D. dissertation, 1996.

[4] Cass Everitt. Projective texture mapping.
http://www.nvidia.com/Marketing/developer/devrel.nsf/bookmark/BAB26B313302
3C2088256A38007DE5E6. 2001

[5] Wolfgang Heidrich. High quality shading and lighting for hardware-accelerated
rendering. http://www.cs.ubc.ca/~heidrich/Papers/phd.pdf. 1999.

[6] Mark Kilgard. GDC 2001 – Shadow mapping with today’s OpenGL hardware.
http://www.nvidia.com/Marketing/developer/devrel.nsf/bookmark/C89B7FC5F049
7EFC88256A1800672176. March 2001.

[7] Abraham Mammen. Transparency and antialiasing algorithms Implemented with
the virtual pixel maps technique. IEEE Computer Graphics and Applications, 9(4):
43-55, July 1989.

http://www.nvidia.com/developer
http://www.nvidia.com/Marketing/developer/devrel.nsf/bookmark/BAB26B3133023C2088256A38007DE5E6
http://www.nvidia.com/Marketing/developer/devrel.nsf/bookmark/BAB26B3133023C2088256A38007DE5E6
http://www.cs.ubc.ca/~heidrich/Papers/phd.pdf
http://www.nvidia.com/Marketing/developer/devrel.nsf/bookmark/C89B7FC5F0497EFC88256A1800672176
http://www.nvidia.com/Marketing/developer/devrel.nsf/bookmark/C89B7FC5F0497EFC88256A1800672176

NVIDIA Proprietary

[8] NVIDIA OpenGL Extensions Specifications.
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/bookmark/A86B9D846E8
15D628825681E007AA680. March 2001.

[9] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 1.2.1). www.opengl.org

[10] Mark Segal, et al. Fast shadows and lighting effects using texture mapping. In
Proceedings of SIGGRAPH ’92, pages 249-252, 1992.

[11] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of
SIGGRAPH ’78, pages 270-274, 1978.

http://www.nvidia.com/Marketing/Developer/DevRel.nsf/bookmark/A86B9D846E815D628825681E007AA680
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/bookmark/A86B9D846E815D628825681E007AA680
http://www.opengl.org/

	Introduction
	Shadow Mapping
	Depth Peeling
	Multiple Depth Tests
	Shadow Mapping as Depth Test

	An Invariance Issue
	Putting It All Together
	Conclusion
	Acknowledgements
	References

