
Parallel N-Body Simulation using GPUs

Francisco Chinchilla, Todd Gamblin, Morten Sommervoll

Department of Computer Science, University of North Carolina at Chapel Hill, U.S.A.
http://gamma.cs.unc.edu/GPGP

1. Introduction

Programmable Graphics Processing Units (GPUs) are
becoming ubiquitous on consumer PCs. Successive
models have increasingly rich feature sets, enabling
the GPU to be used effectively as a coprocessor for
general purpose computation. The GPU is well
suited to this task, as it provides much higher
potential floating point performance at a lower cost
than today’s CPUs. Also, the performance of GPUs
is increasing at a rate faster than Moore’s law, so
harnessing their power should prove to be a good
investment. Furthermore, commodity hardware is
being used more and more to construct high
performance clusters of machines.

 The intersection of these trends makes the GPU
an appealing option for accelerating scientific
computation on cluster systems. However, while the
performance of the GPU is increasing quite rapidly,
memory performance is increasing at a slower rate.
Using the GPU as a coprocessor necessitates read-
back of data to the CPU. Current graphics processors
are not optimized for this operation: it causes a stall
in the GPU. Programmers must be careful to use it
sparingly.

 In this paper, we investigate the potential of the
GPU to speed up N-body gravitational simulation.
N-body is an important problem in cosmology and
astronomy, as it enables scientists to visualize and
understand the behavior of galaxies, nascent
planetary systems, and the evolution of the universe
(to name a few applications). The problem requires
significant computational power, as each body may,
in the worst case, have a strong effect on every other
body in the system, leading to O(n2) performance.
Large simulations can thus take many CPU hours to
complete. Accelerating this process will speed the
pace of discovery.

1.1 Related Work

Much work has been done on using the GPU to
accelerate scientific computation [1,6,7,8,9,10]. Each
of these papers covers a specific application and its
implementation on the GPU. None of these have yet
covered N-body simulation, and none have covered
GPU applications on clusters.

 A group at Stony Brook University [12] has
constructed a cluster from 32 Dual 3Ghz Pentium
Xeon systems equipped with nVidia GeForce 5800
graphics cards. They have implemented the Lattice
Boltzmann method to run on the cluster’s GPUs.

Abstract
We present a novel parallel implementation of N-body gravitational simulation. Our algorithm uses
graphics hardware to accelerate local computation, and is optimized to account for low bandwidth
between the CPU and the graphics card, as well as low bandwidth across the network. The number
of bodies that can be simulated with our implementation is limited only by the memory of the
graphics card, and results for small clusters indicate that it will scale well across larger numbers of
nodes. Finally, we show that our algorithm significantly outperforms a comparable CPU
implementation. Heretofore, commodity graphics hardware has been used mainly for graphics and
visualization applications. This work shows that it can also be used effectively for scientific
computation.

They report a speedup of 4.6 times the speed of a
CPU implementation, and this is approximately half
the performance of the algorithm on a 32 node IBM
Power4 BladeServer cluster. Also, they find that a
single GPU is 6.6 times faster than a single CPU in
the system. Had they used a GeForce 6800, this
number would jump to 16.6.

 Work has been done on analyzing the memory
performance of graphics hardware. Igehy, et al. [3]
present a graphics architecture optimized for
rendering. While the system they present is not
implemented directly in any commercial system, the
optimizations they make and the tradeoffs they
analyze are instructive in understanding design
decisions and expected memory reference patterns in
modern graphics hardware. Fatahalian, et al. [4] look
at matrix-matrix multiplication on modern GPUs, and
discuss the bandwidth limitations of the hardware.
These two papers are instructive in understanding
optimization on the GPU.

Finally, a tremendous amount of work has gone into
optimizing the performance of N-body algorithms for
traditional parallel architectures [5,2,11]. These
algorithms use far more sophisticated numerical
methods and optimizations than does our
implementation. As we are interested only in
showing that N-body can be run with a good speedup
across multiple GPUs in a cluster, we chose a simpler
algorithm for this first attempt.

1.2 Main Contribution

The main contributions of this paper are outlined as
follows:

• Algorithm: We present an algorithm for all-
pairs N-body simulation and show how it can be
adapted and optimized for the GPU. We describe
the steps we took to optimize the application
both for low CPU-GPU bandwidth and for low
bandwidth over the network.

• Cluster: We describe how to build an ad-hoc
cluster out of commodity hardware and graphics
cards.

• Speedup: We show that by using a cluster of
GPUs, the speed of an N-body simulation can be
increased by almost eight times. We also show
that with our algorithm, this speedup scales
linearly with the number of nodes in the cluster.

1.3 Organization

The rest of this paper is organized as follows: In
Section 2 we outline the N-body problem. In Section
3, we present a simple N-body algorithm for a single
GPU. In Section 4, we describe the implementation
of our GPU cluster. In Section 5, we present our
algorithm adapted for use on multiple GPUs. Section
6 improves on this algorithm and optimizes it to limit
CPU-GPU data transfer. In Section 7 we discuss our
results from running these algorithms, and address
the issue of numerical error in N-body systems.
Finally, we conclude with future directions for this
work.

2. The N-body Problem
In this section, we give a brief overview of the N-
body gravitation problem.

The initial inputs to the problem are a set of n bodies,
b1,...,bn, where each body bi has a mass mi, a velocity
vi, and position ri. The distance between any two
bodies bi and bj is written rij, and the gravitational
force on bi as a result of bj is written fij.

Let the total gravitational force on a body bi be
written fi. For each iteration, given a timestep t! , we
want to compute the new positions of each body
after t! has elapsed. This can be done in three phases.

1. First we compute partial forces fij for all pairs of
bodies:

ji
r

rmGm
f

ij

ijji

ij != ,
3

G here is the universal gravitational force constant,
and it is equal to 6.673e-11 m3/kg s2

.

2. Next, we compute the total force fi on each bi:

!
"

=
ijj

iji ff
,

3. Finally, we update the velocity vi and position ri of
each body using the classical force equation F = ma:

2

2
t

v
tvrr

vvv

m

tf
v

i
iii

iii

i

i
i

!
!
+!+="

!+="

!
=!

Now, we have the updated positions in ri, and can
repeat for another timestep t! .

To measure the performance of an N-body algorithm,
we typically refer to the interaction rate, or the

number of interactions between bodies we calculate
per unit time, defined as:

k

k

t

nn
tnR

)1(
),(

!
=

Where tk is the average time per iteration. We will
use this metric for our results in Section 7.

3. Single GPU Implementation
In this section, we present our single-GPU N-body
algorithm. This implementation follows the steps
described in Section 2 very closely, and we focus
mainly on the key issue of mapping this algorithm to
the programming model of modern graphics
hardware.

 Our single-GPU implementation stores the
bodies as a standard red, green, blue, alpha (RGBA)
texture with either 16 or 32 bits per color value,
depending on whether we use half or single precision
floating point numbers for computation on the GPU.
Each texel represents a single body. The R, G, and B
channels are used to store the x, y, and z coordinates
of the body’s position, and the A channel is used to
store its mass. This texture is stored on the GPU with
arbitrary dimensions. Its total size need only be n
texels.

 For our force calculation, we render an n x n
quad into a force texture, where each pixel rendered
represents a partial force fij. We use a Cg fragment
program and a lookup texture to compute the color
values of each pixel in the force quad. The lookup
texture is a standard RGBA texture of the same
dimensions as the body texture. Its values map linear
indices from 1..n to two-dimensional indices in the
position texture of bodies to interact. For each
rendered pixel (x,y) in the force quad, we look up the
xth and yth texels in the lookup texture and use the
resulting values to find the appropriate texels in the
body texture. We then use the retrieved position and
mass values to compute fij and store this value in the

force texture.

 Once all fij are computed, we compute each fi
using a parallel log reduction. We begin with the
n x n force texture, and render a quad half its height
into a texture. The ith row in the rendered quad is the
sum of the ithand 2ith rows in the force texture. We
then successively render log2(n)-1 more quads in a
similar fashion, where each is half the size of the
previous one. When we are finished, we are left with
an n x 1 quad, where the ith element corresponds to an
fi.

 Finally, we use very simple fragment programs
to update velocities and positions. The velocity
program takes as its inputs the fi texture and the body
texture, and it renders the updated vi into the velocity
texture. Similarly, the body program takes as its
inputs the velocity and body textures, and renders
updated body positions back into another body
texture.

 For simplicity, our simple single-GPU version is
restricted to datasets no larger than 2048 x 2048.
This is the maximum allowed texture size on a
GeForce 6800 card. Our parallel algorithms,
described in Sections 5 and 6, demonstrate how this
limitation can be circumvented.

4. Cluster Description
In this section we describe the hardware
configuration of our cluster. We also describe the

Table 1: Configurations of Cluster Nodes

Node(s) CPU Configuration GPU Configuration
0-2 3GHz Pentium 4 with Hyperthreading nVidia GeForce 6800 GT

3 3.4 GHz Pentium 4 with Hyperthreading nVidia GeForce 6800 Ultra
4 2.8 GHz AMD Athlon 64 FX-53 nVidia GeForce 6800 Ultra
5 Dual 2.8GHz Pentium Xeon nVidia GeForce 6800
6 2.4GHz Pentium Xeon nVidia GeForce 6800

Figure 1: Force Matrix

Each of the red buffers is
a texture containing

bodies’ positions and
mass,, and each pair

(shown as yellow and
blue) of bodies is

interacted to find a partial
force (shown in green)

software infrastructure used for message-passing
between nodes.

4.1 CPU/GPU Configuration

Our cluster was constructed ad-hoc from computers
around the department. We used all available
machines with an nVidia GeForce 6800 series
graphics card. We chose this card for four reasons:

1. Full 32-bit floating point support: At the time of
the cluster’s inception, the 6800 had the highest -
precision floating point implementation of any
commercially available card.

2. Memory: The 6800 series can be outfitted with
up to 256MB DDR video memory. This was
both the largest and highest-throughput memory
available on any graphics card at the time of
writing.

3. Speed: Save for the ATI Radeon X800 XT
series, the GeForce 6800 series was the fastest
GPU available to us at the time of writing. We
chose the nVidia cards over the ATI cards
primarily because the ATI cards support only up
to 24-bit floating point numbers.

4. Programmability: The GeForce 6800 series
offers support for custom vertex and pixel
shaders, written in nVidia’s Cg shader language.
This enabled us to implement our custom N-
body algorithm.

The names and configurations of all machines in our
cluster are shown in Table 1.

All nodes in our system ran Microsoft Windows XP
Professional, with Service Pack 2. Although there
are drivers for the GeForce 6800 series for both
Windows and Linux, we chose to run Windows
because of driver quality. In our experience, the
nVidia drivers for Windows tend to stay slightly
ahead of those for Linux in terms of performance
optimizations.

 4.2 Network Configuration

The network infrastructure for our cluster was
Ethernet. For our measurements on the algorithm
described in Section 5, we used an 8-port 3com
Superstack-3 Gigabit Ethernet switch. For
measurements on the algorithm presented in Section
6, we used a NetGear FS108 8-port 100baseT switch.
During the experiments, the cluster machines had
exclusive access to these switches so that there would
be no interference from other traffic.

4.3 MPI Software

Communication between cluster nodes was
accomplished using MPI (Message Passing
Interface), the de-facto standard for inter-node
communication in distributed-memory clusters. For
our tests of the algorithm in Section 5, we used
MPI/Pro from VerariSoft, Inc, a commercial
implementation available for Windows, Linux, and
Mac OS X. We used MPI/Pro for our first set of
tests, but we experienced serious stability problems
with the implementation. We then switched to
MPICH, a freely available, open-source
implementation available from Argonne National
Lab. MPICH proved to be remarkably robust, and
we used it in tests of our final algorithm in Section 6.

5. Initial Parallel Implementation
In this section we discuss our first attempt at
designing a parallel algorithm to run on the cluster.
This algorithm was intended as a simple extension to
the sequential algorithm described in Section 3. Our
main goal was efficient scaling.

 At the high level, our parallel implementation
follows the same basic steps as the sequential
algorithm. We first compute partial forces, then sum
them, and then use this information to update
positions and velocities. The key change is the way
that work is divided up among processors in this
version. For ease of illustration, we have again
required certain restrictions on the input of this
problem. We require that the total number of bodies
n be of the form n’·p, where n’ = n/p. For any one
node in the cluster, we say that n’ bodies belong to
that node. Last, we require that n’ be a power of two.

 One simple way to think of our modification to
the force computation is as a repeated application of
the sequential case. Figure 2 provides an instructive
illustration of this approach. We break up the all-

Computation

M
em

or
y

on
 e

ac
h

pr
oc

es
so

r

Processors

Computation

M
em

or
y

on
 e

ac
h

pr
oc

es
so

r

Processors

Figure 2: Initial Parallel N-body implementation

pairs force texture into four chunks of size n’·n, each
to be computed by a particular node. Each node can
now use the sequential algorithm as a subroutine for
computing chunks of n’ bodies. To compute partial
forces, we run the sequential algorithm p times,
interacting our “own” n’ bodies p times, once for
each set of n’ chunks belonging to a node.

 The reduction we used in the simple GPU
algorithm was fairly time consuming, as it required
iterative rendering of quads. To minimize this
overhead, rather than having each node compute a
reduction on an entire column, we accumulate force
values as we apply the sequential algorithm. Each
pixel in the rendered quad is the sum of
corresponding pixels in chunks rendered so far. After
p iterations, we are left with one chunk of pixels
representing accumulated forces, and we perform the
same reduction as before on this chunk.

 Each node is left with the total forces on its own
n’ bodies. The node updates its own velocities and
positions in the same way that was done in the
sequential algorithm. The only difference here is that
the operation is performed for the local n’ and not the
global n bodies. Once this update completes, we use
MPI_All_gather to transfer all the positions to all
processors. Once this is done, we are back to the
start, and can begin another iteration.

 This algorithm incurs additional overhead over
the single-GPU implementation because it repeatedly
swaps sets of n’ bodies in and out of the GPU in the
force accumulation stage. Note, however, that this is
only for the multi-GPU case, as for a single GPU we
only have to interact with ourselves, and we have all
the information for our own bodies on-hand. Thus,
there is no swap as we accumulate down columns for
1 GPU, but there is an additional copy overhead for
multiple GPUs.

6. Optimized Parallel Algorithm
We made two main modifications to the algorithm in
our final, optimized version. First, we removed the
restrictions on input size that we had placed on
previous implementations. This enabled us to put
more bodies on the GPU, and to take much greater
advantage of the GeForce 6800 series’ 256 MB main
memory. This change required a slight modification
to the algorithm, as well. Our final algorithm works
much like our unoptimized N-body algorithm, but
instead of distributing each of the columns shown in
Figure 2 to an individual GPU, it is capable of
allocating multiple columns to the same GPU. This
effectively removes the dependence on number of

nodes, from which our earlier algorithms suffered,
and it enables us to perform N-body computations
with very high body counts on GPU-equipped
machines.
 With this first optimization, we also see some
significant memory advantages. Earlier algorithms
required that each buffer of bodies use a separate all-
pairs render buffer, i.e. 1024 bodies on one GPU
required a 1024 x 1024 all-pairs render texture where
we accumulated the results. By using multiple local
buffers of bodies on each node, we are able to reuse
our all-pairs render texture.
 The second optimization we performed with the
new algorithm was changing the mechanism by
which bodies not local to the GPU were transferred
there. The algorithm described in Section 5 has one
texture for bodies belonging to other nodes, and it
swaps these in and out of the GPU during each
iteration of force accumulation. We noted that on the
GPU, doing two write-backs in different places was
more than twice as slow as doing two write-backs to
the GPU back to back. We changed our approach to
store the positions of all other nodes on the GPU at
all times, and we write all of them to the GPU in a
batch, once per timestep.

7. Results
In this section we describe our results for all of our
implementations of N-body for the GPU. We
compare interaction rates, as well as speedup and
efficiency on multiple GPUs. We also compare our
interaction rates to those of an equivalent single-CPU
algorithm, and to the interaction rates of a parallel
CPU algorithm. Finally, we examine the numerical
stability of our algorithm as compared to a CPU
implementation.

7.1 Single-GPU and First Parallel Implementation

Figure 4 shows results for our single-GPU algorithm,
our unoptimized parallel algorithm, and a

Figure 3: Optimized N-body algorithm. Black squares
represent force matrices on different processors, and
different color rectangles represent different subsets of
body positions.

corresponding unoptimized CPU implementation.
The CPU implementations shown use the same steps
and the same order of computations as our GPU
algorithms. We observe that the single-GPU
implementation runs at a rate of 71 million
interactions per second, which is nearly three times as
fast as the corresponding CPU-based algorithm’s
24million interactions/second. The CPU
implementation scales perfectly to two and three
processors, but its interaction rate remains almost the
same when a larger number of bodies are used per

processor.

 Our GPU implementation scales almost
identically to the CPU version for both 1024 and
2048 bodies. However, we do see that for the single-
GPU the interaction rate is higher for 2048 bodies,
while for 2 and 3 processors the opposite is true.
This can be attributed to the additional copying
overhead for the force accumulation, which was
described in Section 5.

7.2 Optimized Implementation
 We ran the optimized n-body implementation
discussed in Section 6 for all node counts from 1 to 7.
We started with only node 0, and added node 1, 2,
and so on to node 6 for each successive run. For each
of these configurations, we varied the number of
bodies on each GPU from 1024 to 65,536. The
performance results are shown in Figures 5 and 6.
We should note that the nodes were ordered in such a
way that nodes 1-4 are no slower than node0, but
node6 is slower than node5, which in turn is slower
than node4 in terms of GPU computational power.

We intentionally refrained from using the fastest
nodes first, in order to show a smoother speedup as
we added nodes to the cluster.

 Our optimized version runs at 182 million
interactions per second when simulating 65,536
bodies on a single node, whereas our seven-node
simulation performs as well as 1.26 billion
interactions per second. There is a performance
decrease when running 65,536 bodies on seven
nodes, and this is due to the slower node6.

 Since all the nodes have to synchronize at a
barrier before exchanging position data, the
simulation will only run as fast as the slowest
machine. Node 6 is unable to keep up with the other

Figure 4: Single GPU vs. First Parallel Implementation

Figure 5: Millions of Interactions vs. Bodies per Node

Figure 6: Millions of Interactions vs. Total bodies

1 2 3
0

50

100

150

200

250

300

Number of Processors

M
i
l
l
i
o
n
s

o
f

I
n
t
e
r
a
c
t
i
o
n
s
/
s

CPU (1024 bodies/processor)
CPU (2048 bodies/processor)
GPU (1024 bodies/processor)
GPU (2048 bodies/processor)

10
3

10
4

10
5

10
6

10
7

0

200

400

600

800

1000

1200

1400

Total Number of Bodies

M

i

l

l

i

o

n

s

o

f

I

n

t

e

r

a

c

t

i

o

n

s

/

s

1 Node

2 Nodes

3 Nodes

4 Nodes

5 Nodes

6 Nodes

7 Nodes

1024 2048 4096 8192 16384 32768 65536
100

200

400

600

800

1000

1200

1400

Bodies per Node

M
i
l
l
i
o
n
s

o
f

I
n
t
e
r
a
c
t
i
o
n
s
/
s

1 Node
2 Nodes
3 Nodes
4 Nodes
5 Nodes
6 Nodes
7 Nodes

nodes when simulating 65,536 bodies and the entire
cluster is forced to wait for it as a result.

 Figure 6 shows the same data as Figure 5, only
the total number of bodies are used instead of the
number of bodies per node.

 Finally, we compared our GPU implementation
to evans, an SGI Origin 2000 system in our
department. Our single GPU implementation reaches
190 million interactions per second, whereas 15
processors on this system achieve only 125 million
interactions per second when performing an
equivalent shared memory implementation of the N-
body algorithm. Furthermore, Figure 9 shows that the
efficiency of our algorithm increases with the number
of bodies on each node, so we can reasonably expect
far better results with a comparable number of GPUs.

7.3 Divergence of GPU results from CPU

It is well known [2,5] that N-body algorithms diverge
at an exponential rate, and that small errors can
balloon incredibly quickly in these systems. The
very nature of the force calculation should trigger
some degree of alarm in the reader, as it requires us
to sum n force values with widely varying
magnitudes. Because gravity propagates based on an
inverse square law, it is entirely possible in an n-body
system to see very small forces incident on bodies
from very distant masses, while closer objects exert a
much larger amount of pull. The sum of these sorts
of floating-point values can easily result in the loss of
low-order bits.

 Typically when scientists refer to N-body error,
they talk about it in terms of the crossing time.
Without delving into unnecessary detail, this is the
average time that it takes for any one particle in the
system to move from one side of it to the other. In a

typical N-body system today, if the relative error per
crossing time is 10-p, then after p crossing times,
particles in the system will have error equal to its size
[2]. Put simply, we cannot know with any accuracy
where any particle in the system lies.

 Despite these depressing figures, N-body
simulation is not valued by cosmologists for its
ability to predict precisely the trajectories of
individual objects in large systems. Typically,
scientists are interested more in the large-scale
statistical behavior of the system, e.g. the formation
of clusters among bodies, or the spiral motion of a
galaxy. It is widely believed (but not proven) that
these simulations are valuable and statistically
accurate at this scale.
 Both to assess the correctness of our algorithm,
and to compare floating point error of the GPU to
that of the CPU, we computed positions for 1000 .01
second timesteps for both the CPU and GPU
implementations. We then compared results at each
step.

 Figure 10 shows the maximum Euclidean
distance between a body’s position in the GPU
simulation and its position as computed by the CPU
at each iteration. We observe that the difference
remains very small (less than 10-3) for at least the first
15 iterations, regardless of the number of bodies
simulated. We also observe that until approximately
100 iterations, the divergence is less than 1. After
this point, however, we can see that the error
propagates more rapidly.

10
0

10
1

10
2

10
3

10
-6

10
-4

10
-2

10
0

10
2

10
4

Iteration

M

a

x

2

-

n

o

r

m

o

f

R

o

w

i

n

D

i

f

f

M

t

x

1024 Bodies

2048 Bodies

4096 Bodies

8192 Bodies

Figure 10: Divergence of GPU from CPU results

 We believe that the closeness of our optimized
GPU algorithm to the CPU’s results through 15
iterations shows that our implementation is correct.

0 1 2 3 4 5 6 7

x 10
4

0.6

0.8

1

Total Number of Bodies

E
f
f
i
c
i
e
n
c
y

2 GPUs
4 GPUs

Figure 9: Efficiency of GPU Implementation

The error that we see after this point can be explained
in either of two ways:

1. Differences between CPU and GPU floating
point implementations. While CPU
manufacturers like Intel and AMD are loyal to
the IEEE floating point standard, Graphics
hardware companies such as nVidia are not
committed to compliance. GPU hardware is
driven by the game industry and applications in
visualization, where speed of implementation is
far more important than floating point accuracy
or predictability. Furthermore, images that are
“realistic enough” to fool the human eye can be
generated with fewer bits of precision than are
necessary for most scientific computations.

2. Differences in C and Cg compilers. Our GPU
computations are implemented in Cg, a shader
language which uses compilers from nVidia.
Our CPU implementation, on the other hand,
was compiled using Microsoft Visual C++,
version 7.1. The optimizations that either of
these compilers do (or do not) perform on our
code are unknown to us. Given that floating
point operations are not commutative,
associative, or transitive at a high degree of
precision, subtle optimizations in floating point
code could result in small perturbations which
might lead to very large differences between
results of these two codes.

Conclusions and Future Work
We have shown that the N-body gravitational
simulation can be implemented on the GPU. We
have also shown that such algorithms can scale
efficiently, even in the presence of limited CPU-GPU
bandwidth and high-latency readbacks.

 We showed that a system of seven cluster nodes
built ad-hoc from commodity parts and consumer
graphics hardware can significantly outperform a
comparable CPU implementation of N-body. Our
algorithm can achieve an interaction rate of 182
million interactions per second, per node, while a
CPU implementation running on the latest
microprocessors can only attain a rate of 24 million
interactions per second, per node.

 One conservative measure of FLOPS
traditionally used for CPU implementations of the
Nbody algorithm states that there are 23 FLOPS per
body interaction [11]. Applying this to our GPU

implementation yields a rate of 4.37 GFLOPS peak
performance. The theoretical maximum performance
of the GeForce 6800 is 40 GFLOPS. This shows that
even thought we are significantly outperforming CPU
implementations of N-body, we are not yet close to
utilizing the entire power of the card. We believe
that this is due to the poor bandwidth to the first level
texture cache, and that our problems are similar to
those discussed in [4]. The reference pattern of the
N-body force calculation is similar to that of a
matrix-matrix multiplication, in that it exhibits little
temporal locality and is spread over a large region of
memory.

The performance of our cluster could be easily
improved by incorporating the following changes:

• Faster memory access in the GPU, for reasons
discussed above.

• Faster interconnect between nodes: Our most
optimized implementation was run using
standard 100baseT connections. We could easily
improve latency and throughput by upgrading
these to gigabit Ethernet, or to a more advanced
interconnect such as Infiniband.

• Faster bus between GPU and CPU: We showed
with our first parallel implementation that
transfer of data between CPU and GPU can
impact performance. Improving this data path
can only serve to speed up our algorithm.

• Faster algorithm: The all-pairs algorithm is the
most straightforward solution to the N-body
problem. Our performance could be improved
by adopting a more sophisticated algorithm.
Today’s N-body simulation algorithms take into
account spatial decomposition and adaptive
methods. These algorithms would take
considerably more effort to adapt for the GPU,
but could yield considerable improvements in
performance.

We leave these improvements as future work.

References

1. Feng Qiu, Ye Zhao, Zhe Fan, Xiaoming Wei,
Haik Lorenz, Jianning Wang, Suzanne
Yoakum-Stover, Arie Kaufman and Klaus
Mueller. Dispersion Simulation and
Visualization for Urban Securit., IEEE
Visualization 2004, Austin Texas.

2. Hayes, Wayne. A Brief Survey of Issues
Relating to the Reliability of Simulation of the
Large Gravitational N-body Problem. Ph.D.

Qualifying Depth Paper, Computer Science
Department, University of Toronto.
http://www.cs.toronto.edu/~wayne/research/th
esis/depth/depth.html

3. Homan Igehy, Matthew Eldridge, and Kekoa
Proudfoot. Prefetching in a Texture Cache
Architecture. In Proceedings of the 1998
Eurographics/SIGGRAPH Workshop on
Graphics Hardware.

4. Kayvon Fatahalian, Jeremy Sugerman, and Pat
Hanrahan. Understanding the Efficiency of
GPU Algorithms for Matrix-Matrix
Multiplication. To appear in Graphics
Hardware 2004.

5. University of Washington High Performance
Computing and Communications Group.
http://www-hpcc.astro.washington.edu/

6. Wei Li, Xiaoming Wei, and Arie Kaufman.
Implementing Lattice Boltzmann
Computation on Graphics Hardware. The
Visual Computer, vol. 19, no.7-8, pp. 444-456,
2003.

7. Wei Li, Zhe Fan, Xiaoming Wei, and Arie
Kaufman. GPU-Based Flow Simulation with
Complex Boundaries. Technical Report
031105, Computer Science Department,
SUNY at Stony Brook, Nov 2003.

8. F. Xu and K. Mueller. Accelerating Popular
Tomographic Reconstruction Algorithms
On Commodity PC Graphics Hardware.
IEEE Transactions on Nuclear Science (to
appear).

9. F. Xu and K. Mueller. Towards a Unified
Framework for Rapid Computed
Tomography on Commodity GPUs. IEEE
Medical Imaging Conference (MIC) 2003,
Portland, OR, October 2003.

10. F. Xu and K. Mueller. Ultra-Fast 3D Filtered
Backprojection on Commodity Graphics
Hardware. IEEE International Symposium on
Biomedical Imaging (ISBI 2004), Arlington,
VA, April 2004.

11. Andrew G. Zaferakis, Kenneth Hoff, and Chris
Weigle. BSP N-body Particle System
MPI Parallel Processing. UNC Chapel Hill,
Spring 2000.
http://www.cs.unc.edu/~andrewz/comp203/hw
2/

12. Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne
Yoakum-Stover. GPU Cluster for High
Performance Computing. ACM, IEEE

Supercomputing Conference 2004, Pittsburgh
PA.

