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1. Introduction 
 

Programmable Graphics Processing Units (GPUs) are 
becoming ubiquitous on consumer PCs.  Successive 
models have increasingly rich feature sets, enabling 
the GPU to be used effectively as a coprocessor for 
general purpose computation.  The GPU is well 
suited to this task, as it provides much higher 
potential floating point performance at a lower cost 
than today’s CPUs.  Also, the performance of GPUs 
is increasing at a rate faster than Moore’s law, so 
harnessing their power should prove to be a good 
investment. Furthermore, commodity hardware is 
being used more and more to construct high 
performance clusters of machines. 

 The intersection of these trends makes the GPU 
an appealing option for accelerating scientific 
computation on cluster systems.  However, while the 
performance of the GPU is increasing quite rapidly, 
memory performance is increasing at a slower rate.  
Using the GPU as a coprocessor necessitates read-
back of data to the CPU.  Current graphics processors 
are not optimized for this operation: it causes a stall 
in the GPU.  Programmers must be careful to use it 
sparingly. 

 In this paper, we investigate the potential of the 
GPU to speed up N-body gravitational simulation.  
N-body is an important problem in cosmology and 
astronomy, as it enables scientists to visualize and 
understand the behavior of galaxies, nascent 
planetary systems, and the evolution of the universe 
(to name a few applications).  The problem requires 
significant computational power, as each body may, 
in the worst case, have a strong effect on every other 
body in the system, leading to O(n2) performance.  
Large simulations can thus take many CPU hours to 
complete.  Accelerating this process will speed the 
pace of discovery. 

 

1.1 Related Work 

Much work has been done on using the GPU to 
accelerate scientific computation [1,6,7,8,9,10].  Each 
of these papers covers a specific application and its 
implementation on the GPU.  None of these have yet 
covered N-body simulation, and none have covered 
GPU applications on clusters. 

 A group at Stony Brook University [12] has 
constructed a cluster from 32 Dual 3Ghz Pentium 
Xeon systems equipped with nVidia GeForce 5800 
graphics cards. They have implemented the Lattice 
Boltzmann method to run on the cluster’s GPUs.  
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They report a speedup of 4.6 times the speed of a 
CPU implementation, and this is approximately half 
the performance of the algorithm on a 32 node IBM 
Power4 BladeServer cluster.  Also, they find that a 
single GPU is 6.6 times faster than a single CPU in 
the system.  Had they used a GeForce 6800, this 
number would jump to 16.6. 

 Work has been done on analyzing the memory 
performance of graphics hardware.   Igehy, et al. [3] 
present a graphics architecture optimized for 
rendering.  While the system they present is not 
implemented directly in any commercial system, the 
optimizations they make and the tradeoffs they 
analyze are instructive in understanding design 
decisions and expected memory reference patterns in 
modern graphics hardware.  Fatahalian, et al. [4] look 
at matrix-matrix multiplication on modern GPUs, and 
discuss the bandwidth limitations of the hardware.  
These two papers are instructive in understanding 
optimization on the GPU. 

Finally, a tremendous amount of work has gone into 
optimizing the performance of N-body algorithms for 
traditional parallel architectures [5,2,11].  These 
algorithms use far more sophisticated numerical 
methods and optimizations than does our 
implementation. As we are interested only in 
showing that N-body can be run with a good speedup 
across multiple GPUs in a cluster, we chose a simpler 
algorithm for this first attempt. 

 
1.2 Main Contribution 

The main contributions of this paper are outlined as 
follows: 

• Algorithm: We present an algorithm for all-
pairs N-body simulation and show how it can be 
adapted and optimized for the GPU. We describe 
the steps we took to optimize the application 
both for low CPU-GPU bandwidth and for low 
bandwidth over the network. 

• Cluster:  We describe how to build an ad-hoc 
cluster out of commodity hardware and graphics 
cards.   

• Speedup: We show that by using a cluster of 
GPUs, the speed of an N-body simulation can be 
increased by almost eight times. We also show 
that with our algorithm, this speedup scales 
linearly with the number of nodes in the cluster. 

  

 

 

1.3 Organization 

The rest of this paper is organized as follows: In 
Section 2 we outline the N-body problem.  In Section 
3, we present a simple N-body algorithm for a single 
GPU.  In Section 4, we describe the implementation 
of our GPU cluster.  In Section 5, we present our 
algorithm adapted for use on multiple GPUs.  Section 
6 improves on this algorithm and optimizes it to limit 
CPU-GPU data transfer.  In Section 7 we discuss our 
results from running these algorithms, and address 
the issue of numerical error in N-body systems.  
Finally, we conclude with future directions for this 
work. 

 
2. The N-body Problem  
In this section, we give a brief overview of the N-
body gravitation problem. 

The initial inputs to the problem are a set of n bodies, 
b1,...,bn, where each body bi has a mass mi, a velocity 
vi, and position ri.  The distance between any two 
bodies bi and bj is written rij, and the gravitational 
force on bi as a result of bj is written fij.  

Let the total gravitational force on a body bi be 
written fi. For each iteration, given a timestep t! , we 
want to compute the new positions of each body 
after t! has elapsed.  This can be done in three phases. 

1. First we compute partial forces fij for all pairs of 
bodies: 
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G here is the universal gravitational force constant, 
and it is equal to 6.673e-11 m3/kg s2

.   

2. Next, we compute the total force fi on each bi: 
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3. Finally, we update the velocity vi and position ri of 
each body using the classical force equation F = ma: 
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Now, we have the updated positions in ri, and can 
repeat for another timestep t! . 

To measure the performance of an N-body algorithm, 
we typically refer to the interaction rate, or the 



number of interactions between bodies we calculate 
per unit time, defined as: 
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Where tk is the average time per iteration.  We will 
use this metric for our results in Section 7. 

 

3. Single GPU Implementation 
In this section, we present our single-GPU N-body 
algorithm.  This implementation follows the steps 
described in Section 2 very closely, and we focus 
mainly on the key issue of mapping this algorithm to 
the programming model of modern graphics 
hardware. 

 Our single-GPU implementation stores the 
bodies as a standard red, green, blue, alpha (RGBA) 
texture with either 16 or 32 bits per color value, 
depending on whether we use half or single precision 
floating point numbers for computation on the GPU.  
Each texel represents a single body.  The R, G, and B 
channels are used to store the x, y, and z coordinates 
of the body’s position, and the A channel is used to 
store its mass.  This texture is stored on the GPU with 
arbitrary dimensions.  Its total size need only be n 
texels.  

 For our force calculation, we render an n x n 
quad into a force texture, where each pixel rendered 
represents a partial force fij. We use a Cg fragment 
program and a lookup texture to compute the color 
values of each pixel in the force quad.  The lookup 
texture is a standard RGBA texture of the same 
dimensions as the body texture.  Its values map linear 
indices from 1..n to two-dimensional indices in the 
position texture of bodies to interact.  For each 
rendered pixel (x,y) in the force quad, we look up the 
xth and yth texels in the lookup texture and use the 
resulting values to find the appropriate texels in the 
body texture.  We then use the retrieved position and 
mass values to compute fij and store this value in the 

force texture. 

 Once all fij are computed, we compute each fi 
using a parallel log reduction.  We begin with the      
n x n force texture, and render a quad half its height 
into a texture.  The ith row in the rendered quad is the 
sum of the ithand 2ith rows in the force texture.  We 
then successively render log2(n)-1 more quads  in a 
similar fashion, where each is half the size of the 
previous one.  When we are finished, we are left with 
an n x 1 quad, where the ith element corresponds to an 
fi. 

 Finally, we use very simple fragment programs 
to update velocities and positions.  The velocity 
program takes as its inputs the fi texture and the body 
texture, and it renders the updated vi into the velocity 
texture.  Similarly, the body program takes as its 
inputs the velocity and body textures, and renders 
updated body positions back into another body 
texture. 

 For simplicity, our simple single-GPU version is 
restricted to datasets no larger than 2048 x 2048.  
This is the maximum allowed texture size on a 
GeForce 6800 card.  Our parallel algorithms, 
described in Sections 5 and 6, demonstrate how this 
limitation can be circumvented. 

4. Cluster Description 
In this section we describe the hardware 
configuration of our cluster.  We also describe the 

 

 
 
 
 
 

Table 1: Configurations of Cluster Nodes 

Node(s) CPU Configuration  GPU Configuration 
0-2 3GHz Pentium 4 with Hyperthreading nVidia GeForce 6800 GT 

3 3.4 GHz Pentium 4 with Hyperthreading nVidia GeForce 6800 Ultra 
4 2.8 GHz AMD Athlon 64 FX-53 nVidia GeForce 6800 Ultra 
5 Dual 2.8GHz Pentium Xeon nVidia GeForce 6800 
6 2.4GHz Pentium Xeon nVidia GeForce 6800 

Figure 1: Force Matrix 

Each of the red buffers is 
a texture containing 

bodies’ positions and 
mass,, and each pair 

(shown as yellow and 
blue) of bodies is 

interacted to find a partial 
force (shown in green) 

 



software infrastructure used for message-passing 
between nodes. 

 

4.1 CPU/GPU Configuration 

Our cluster was constructed ad-hoc from computers 
around the department.  We used all available 
machines with an nVidia GeForce 6800 series 
graphics card.  We chose this card for four reasons: 

1. Full 32-bit floating point support:  At the time of 
the cluster’s inception, the 6800 had the highest -
precision floating point implementation of any 
commercially available card. 

2. Memory:  The 6800 series can be outfitted with 
up to 256MB DDR video memory.  This was 
both the largest and highest-throughput memory 
available on any graphics card at the time of 
writing. 

3. Speed: Save for the ATI Radeon X800 XT 
series, the GeForce 6800 series was the fastest 
GPU available to us at the time of writing.  We 
chose the nVidia cards over the ATI cards 
primarily because the ATI cards support only up 
to 24-bit floating point numbers.  

4. Programmability: The GeForce 6800 series 
offers support for custom vertex and pixel 
shaders, written in nVidia’s Cg shader language.  
This enabled us to implement our custom N-
body algorithm. 

The names and configurations of all machines in our 
cluster are shown in Table 1. 

All nodes in our system ran Microsoft Windows XP 
Professional, with Service Pack 2.  Although there 
are drivers for the GeForce 6800 series for both 
Windows and Linux, we chose to run Windows 
because of driver quality.  In our experience, the 
nVidia drivers for Windows tend to stay slightly 
ahead of those for Linux in terms of performance 
optimizations. 

 

 4.2 Network Configuration 

The network infrastructure for our cluster was 
Ethernet.  For our measurements on the algorithm 
described in Section 5, we used an 8-port 3com 
Superstack-3 Gigabit Ethernet switch.  For 
measurements on the algorithm presented in Section 
6, we used a NetGear FS108 8-port 100baseT switch.  
During the experiments, the cluster machines had 
exclusive access to these switches so that there would 
be no interference from other traffic. 

 

4.3 MPI Software 

Communication between cluster nodes was 
accomplished using MPI (Message Passing 
Interface), the de-facto standard for inter-node 
communication in distributed-memory clusters.  For 
our tests of the algorithm in Section 5, we used 
MPI/Pro from VerariSoft, Inc, a commercial 
implementation available for Windows, Linux, and 
Mac OS X.  We used MPI/Pro for our first set of 
tests, but we experienced serious stability problems 
with the implementation.  We then switched to 
MPICH, a freely available, open-source 
implementation available from Argonne National 
Lab.  MPICH proved to be remarkably robust, and 
we used it in tests of our final algorithm in Section 6. 

 

5. Initial Parallel Implementation 
In this section we discuss our first attempt at 
designing a parallel algorithm to run on the cluster.  
This algorithm was intended as a simple extension to 
the sequential algorithm described in Section 3.  Our 
main goal was efficient scaling. 

 At the high level, our parallel implementation 
follows the same basic steps as the sequential 
algorithm.  We first compute partial forces, then sum 
them, and then use this information to update 
positions and velocities.  The key change is the way 
that work is divided up among processors in this 
version.  For ease of illustration, we have again 
required certain restrictions on the input of this 
problem.  We require that the total number of bodies 
n be of the form n’·p, where n’ = n/p. For any one 
node in the cluster, we say that n’ bodies belong to 
that node.  Last, we require that n’ be a power of two. 

 One simple way to think of our modification to 
the force computation is as a repeated application of 
the sequential case.  Figure 2 provides an instructive 
illustration of this approach.  We break up the all-
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Figure 2: Initial Parallel N-body implementation 



pairs force texture into four chunks of size n’·n, each 
to be computed by a particular node.  Each node can 
now use the sequential algorithm as a subroutine for 
computing chunks of n’ bodies.  To compute partial 
forces, we run the sequential algorithm p times, 
interacting our “own” n’ bodies p times, once for 
each set of n’ chunks belonging to a node. 

 The reduction we used in the simple GPU 
algorithm was fairly time consuming, as it required 
iterative rendering of quads.  To minimize this 
overhead, rather than having each node compute a 
reduction on an entire column, we accumulate force 
values as we apply the sequential algorithm.  Each 
pixel in the rendered quad is the sum of 
corresponding pixels in chunks rendered so far.  After 
p iterations, we are left with one chunk of pixels 
representing accumulated forces, and we perform the 
same reduction as before on this chunk. 

 Each node is left with the total forces on its own 
n’ bodies.  The node updates its own velocities and 
positions in the same way that was done in the 
sequential algorithm.  The only difference here is that 
the operation is performed for the local n’ and not the 
global n bodies.  Once this update completes, we use 
MPI_All_gather to transfer all the positions to all 
processors.  Once this is done, we are back to the 
start, and can begin another iteration. 

 This algorithm incurs additional overhead over 
the single-GPU implementation because it repeatedly 
swaps sets of n’ bodies in and out of the GPU in the 
force accumulation stage.  Note, however, that this is 
only for the multi-GPU case, as for a single GPU we 
only have to interact with ourselves, and we have all 
the information for our own bodies on-hand.  Thus, 
there is no swap as we accumulate down columns for 
1 GPU, but there is an additional copy overhead for 
multiple GPUs. 

 

6. Optimized Parallel Algorithm 
We made two main modifications to the algorithm in 
our final, optimized version. First, we removed the 
restrictions on input size that we had placed on 
previous implementations.  This enabled us to put 
more bodies on the GPU, and to take much greater 
advantage of the GeForce 6800 series’ 256 MB main 
memory.  This change required a slight modification 
to the algorithm, as well.  Our final algorithm works 
much like our unoptimized N-body algorithm, but 
instead of distributing each of the columns shown in 
Figure 2 to an individual GPU, it is capable of 
allocating multiple columns to the same GPU.  This 
effectively removes the dependence on number of 

nodes, from which our earlier algorithms suffered, 
and it enables us to perform N-body computations 
with very high body counts on GPU-equipped 
machines. 
 With this first optimization, we also see some 
significant memory advantages.  Earlier algorithms 
required that each buffer of bodies use a separate all-
pairs render buffer, i.e. 1024 bodies on one GPU 
required a 1024 x 1024 all-pairs render texture where 
we accumulated the results.  By using multiple local 
buffers of bodies on each node, we are able to reuse 
our all-pairs render texture. 
  The second optimization we performed with the 
new algorithm was changing the mechanism by 
which bodies not local to the GPU were transferred 
there.  The algorithm described in Section 5 has one 
texture for bodies belonging to other nodes, and it 
swaps these in and out of the GPU during each 
iteration of force accumulation.  We noted that on the 
GPU, doing two write-backs in different places was 
more than twice as slow as doing two write-backs to 
the GPU back to back.  We changed our approach to 
store the positions of all other nodes on the GPU at 
all times, and we write all of them to the GPU in a 
batch, once per timestep.  
 

 

7. Results 
In this section we describe our results for all of our 
implementations of N-body for the GPU.  We 
compare interaction rates, as well as speedup and 
efficiency on multiple GPUs.  We also compare our 
interaction rates to those of an equivalent single-CPU 
algorithm, and to the interaction rates of a parallel 
CPU algorithm.  Finally, we examine the numerical 
stability of our algorithm as compared to a CPU 
implementation. 

 

7.1 Single-GPU and First Parallel Implementation 

Figure 4 shows results for our single-GPU algorithm, 
our unoptimized parallel algorithm, and a 

  
Figure 3: Optimized N-body algorithm.  Black squares 
represent force matrices on different processors, and 
different color rectangles represent different subsets of 
body positions. 



corresponding unoptimized CPU implementation.  
The CPU implementations shown use the same steps 
and the same order of computations as our GPU 
algorithms.  We observe that the single-GPU 
implementation runs at a rate of 71 million 
interactions per second, which is nearly three times as 
fast as the corresponding CPU-based algorithm’s 
24million interactions/second.  The CPU 
implementation scales perfectly to two and three 
processors, but its interaction rate remains almost the 
same when a larger number of bodies are used per 

processor. 

 Our GPU implementation scales almost 
identically to the CPU version for both 1024 and 
2048 bodies.  However, we do see that for the single-
GPU the interaction rate is higher for 2048 bodies, 
while for 2 and 3 processors the opposite is true.  
This can be attributed to the additional copying 
overhead for the force accumulation, which was 
described in Section 5. 

 

7.2 Optimized Implementation 
 We ran the optimized n-body implementation 
discussed in Section 6 for all node counts from 1 to 7.   
We started with only node 0, and added node 1, 2, 
and so on to node 6 for each successive run.  For each 
of these configurations, we varied the number of 
bodies on each GPU from 1024 to 65,536.  The 
performance results are shown in Figures 5 and 6. 
We should note that the nodes were ordered in such a 
way that nodes 1-4 are no slower than node0, but 
node6 is slower than node5, which in turn is slower 
than node4 in terms of GPU computational power. 

We intentionally refrained from using the fastest 
nodes first, in order to show a smoother speedup as 
we added nodes to the cluster. 

 Our optimized version runs at 182 million 
interactions per second when simulating 65,536 
bodies on a single node, whereas our seven-node 
simulation performs as well as 1.26 billion 
interactions per second.  There is a performance 
decrease when running 65,536 bodies on seven 
nodes, and this is due to the slower node6.   

 

 Since all the nodes have to synchronize at a 
barrier before exchanging position data, the 
simulation will only run as fast as the slowest 
machine. Node 6 is unable to keep up with the other  

Figure 4: Single GPU vs. First Parallel Implementation 

 

Figure 5: Millions of Interactions vs. Bodies per Node 

 

Figure 6: Millions of Interactions vs. Total bodies 
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nodes when simulating 65,536 bodies and the entire 
cluster is forced to wait for it as a result.   

 Figure 6 shows the same data as Figure 5, only 
the total number of bodies are used instead of the 
number of bodies per node. 

 Finally, we compared our GPU implementation 
to evans, an SGI Origin 2000 system in our 
department.  Our single GPU implementation reaches 
190 million interactions per second, whereas 15 
processors on this system achieve only 125 million 
interactions per second when performing an 
equivalent shared memory implementation of the N-
body algorithm. Furthermore, Figure 9 shows that the 
efficiency of our algorithm increases with the number 
of bodies on each node, so we can reasonably expect 
far better results with a comparable number of GPUs. 

7.3 Divergence of GPU results from CPU 

It is well known [2,5] that N-body algorithms diverge 
at an exponential rate, and that small errors can 
balloon incredibly quickly in these systems.  The 
very nature of the force calculation should trigger 
some degree of alarm in the reader, as it requires us 
to sum n force values with widely varying 
magnitudes.  Because gravity propagates based on an 
inverse square law, it is entirely possible in an n-body 
system to see very small forces incident on bodies 
from very distant masses, while closer objects exert a 
much larger amount of pull.  The sum of these sorts 
of floating-point values can easily result in the loss of 
low-order bits. 

 Typically when scientists refer to N-body error, 
they talk about it in terms of the crossing time.  
Without delving into unnecessary detail, this is the 
average time that it takes for any one particle in the 
system to move from one side of it to the other.  In a 

typical N-body system today, if the relative error per 
crossing time is 10-p, then after p crossing times, 
particles in the system will have error equal to its size 
[2].  Put simply, we cannot know with any accuracy 
where any particle in the system lies. 

 Despite these depressing figures, N-body 
simulation is not valued by cosmologists for its 
ability to predict precisely the trajectories of 
individual objects in large systems.  Typically, 
scientists are interested more in the large-scale 
statistical behavior of the system, e.g. the formation 
of clusters among bodies, or the spiral motion of a 
galaxy.  It is widely believed (but not proven) that 
these simulations are valuable and statistically 
accurate at this scale. 
 Both to assess the correctness of our algorithm, 
and to compare floating point error of the GPU to 
that of the CPU, we computed positions for 1000 .01 
second timesteps for both the CPU and GPU 
implementations.  We then compared results at each 
step.    

 Figure 10 shows the maximum Euclidean 
distance between a body’s position in the GPU 
simulation and its position as computed by the CPU 
at each iteration.  We observe that the difference 
remains very small (less than 10-3) for at least the first 
15 iterations, regardless of the number of bodies 
simulated.  We also observe that until approximately 
100 iterations, the divergence is less than 1.  After 
this point, however, we can see that the error 
propagates more rapidly. 
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Figure 10:  Divergence of GPU from CPU results 

 We believe that the closeness of our optimized 
GPU algorithm to the CPU’s results through 15 
iterations shows that our implementation is correct.  
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Figure 9: Efficiency of GPU Implementation 



The error that we see after this point can be explained 
in either of two ways: 

1. Differences between CPU and GPU floating 
point implementations.  While CPU 
manufacturers like Intel and AMD are loyal to 
the IEEE floating point standard, Graphics 
hardware companies such as nVidia are not 
committed to compliance.  GPU hardware is 
driven by the game industry and applications in 
visualization, where speed of implementation is 
far more important than floating point accuracy 
or predictability.  Furthermore, images that are 
“realistic enough” to fool the human eye can be 
generated with fewer bits of precision than are 
necessary for most scientific computations. 

2. Differences in C and Cg compilers.  Our GPU 
computations are implemented in Cg, a shader 
language which uses compilers from nVidia.  
Our CPU implementation, on the other hand, 
was compiled using Microsoft Visual C++, 
version 7.1.  The optimizations that either of 
these compilers do (or do not) perform on our 
code are unknown to us.  Given that floating 
point operations are not commutative, 
associative, or transitive at a high degree of 
precision, subtle optimizations in floating point 
code could result in small perturbations which 
might lead to very large differences between 
results of these two codes. 

 

 

 

Conclusions and Future Work 
We have shown that the N-body gravitational 
simulation can be implemented on the GPU.  We 
have also shown that such algorithms can scale 
efficiently, even in the presence of limited CPU-GPU 
bandwidth and high-latency readbacks. 

 We showed that a system of seven cluster nodes 
built ad-hoc from commodity parts and consumer 
graphics hardware can significantly outperform a 
comparable CPU implementation of N-body.  Our 
algorithm can achieve an interaction rate of 182 
million interactions per second, per node, while a 
CPU implementation running on the latest 
microprocessors can only attain a rate of 24 million 
interactions per second, per node. 

 One conservative measure of FLOPS 
traditionally used for CPU implementations of the 
Nbody algorithm states that there are 23 FLOPS per 
body interaction [11].  Applying this to our GPU 

implementation yields a rate of 4.37 GFLOPS peak 
performance.  The theoretical maximum performance 
of the GeForce 6800 is 40 GFLOPS.  This shows that  
even thought we are significantly outperforming CPU 
implementations of N-body, we are not yet close to 
utilizing the entire power of the card.  We believe 
that this is due to the poor bandwidth to the first level 
texture cache, and that our problems are similar to 
those discussed in [4].  The reference pattern of the 
N-body force calculation is similar to that of a 
matrix-matrix multiplication, in that it exhibits little 
temporal locality and is spread over a large region of 
memory. 

The performance of our cluster could be easily 
improved by incorporating the following changes: 

• Faster memory access in the GPU, for reasons 
discussed above. 

• Faster interconnect between nodes: Our most 
optimized implementation was run using 
standard 100baseT connections. We could easily 
improve latency and throughput by upgrading 
these to gigabit Ethernet, or to a more advanced 
interconnect such as Infiniband. 

• Faster bus between GPU and CPU: We showed 
with our first parallel implementation that 
transfer of data between CPU and GPU can 
impact performance.  Improving this data path 
can only serve to speed up our algorithm. 

• Faster algorithm: The all-pairs algorithm is the 
most straightforward solution to the N-body 
problem.  Our performance could be improved 
by adopting a more sophisticated algorithm.  
Today’s N-body simulation algorithms take into 
account spatial decomposition and adaptive 
methods.  These algorithms would take 
considerably more effort to adapt for the GPU, 
but could yield considerable improvements in 
performance. 

We leave these improvements as future work. 
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