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Abstract—We present Glimmer, a new multilevel algorithm for multidimensional scaling designed to exploit modern graphics processing

unit (GPU) hardware. We also present GPU-SF, a parallel force-based subsystem used by Glimmer. Glimmer organizes input into a

hierarchy of levels and recursively applies GPU-SF to combine and refine the levels. The multilevel nature of the algorithm makes local

minima less likely, while the GPU parallelism improves the speed of computation. We propose a robust termination condition for GPU-SF

based on a filtered approximation of the normalized stress function. We demonstrate the benefits of Glimmer in terms of speed,

normalized stress, and visual quality against several previous algorithms for a range of synthetic and real benchmark data sets. We also

show that the performance of Glimmer on GPUs is substantially faster than a CPU implementation of the same algorithm.

Index Terms—Multidimensional scaling, multilevel algorithms, optimization, GPGPU.
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1 INTRODUCTION

MULTIDIMENSIONAL scaling (MDS) is a technique for
dimensionality reduction, where data in a measured

high-dimensional space is mapped into some lower-
dimensional target space while minimizing spatial distor-
tion. MDS is used when the dimensionality of the data set
is conjectured to be smaller than dimensionality of the
measurements. When dimensionality reduction is used for
information visualization applications, the low-dimen-
sional target space is 2D or 3D, and the points in that
space are drawn directly, in the hope of helping people
understand the data set structure in terms of clusters or
other proximity relationships of interest [4].

In MDS, the goal is to find coordinates for N points in a
low-dimensional space, where the low-dimensional dis-
tance dij between points i and j is as close as possible to the
corresponding high-dimensional distance or dissimilarity �ij.
Input can consist of high-dimensional points, with �ij
computed from coordinates, or of an N �N distance
matrix �, allowing an arbitrarily complex distance metric.

MDS algorithms work by minimizing an objective
function based on the discrepancy of these distances. A
standard stress error metric is the normalized stress metric
between D, the matrix of low-dimensional distances dij, and
�, the matrix of high-dimensional distances �ij:

stressðD;�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijðdij � �ijÞ

2

P
ij �

2
ij

vuut ; ð1Þ

which has a significant cost of OðN2Þ to compute for the
N points of the data set. If the embedded distances match
the original distances of the data, then stress ¼ 0. Stress
becomes larger as the spatial distortion between the
embedding and the original data increases.

MDS algorithms vary in precisely what form the stress
function takes and in how they minimize the stress
function. Some are approximate, while others are exact;
some are iterative, while others are completely analytical.
Such diversity in algorithms leads to diversity in the quality
of the results and the speed at which they are computed.
Section 2 gives a brief overview of various relevant
classes of existing MDS algorithms and their underlying
characteristics.

One class of MDS algorithms that has had significant
influence in information visualization is the class of iterative
force-directed algorithms. In such algorithms, data points
are modeled as particles in space attached to other particles
with springs with an ideal length proportional to the
original distance �. The algorithm computes a simulation by
integrating forces until the physical system settles down
into a state of minimal energy. At this point, computation
halts, and the final positions of the particles are assigned the
resulting coordinates of the data. Naı̈ve implementations of
such algorithms can be computationally expensive and
prone to converge to local minima.

We present three substantial improvements to the
iterative class of MDS algorithms based on simulated
forces. First, we improve algorithm speed by exploiting
the modern PC graphics processing unit (GPU) as a
computational engine. Second, we introduce a cheap and
reliable linear-time termination condition based on the
convergence of an approximation of stress. Finally, we
devise a simple multilevel strategy that demonstrably
reduces convergence to local minima. We compare the
resulting algorithm, called Glimmer, to a wide variety of
MDS algorithms, showing the advantages of our approach
in terms of speed and accuracy.

Below, we discuss the rich previous work in Section 2
and then present the core ideas of the Glimmer multilevel
algorithm and GPU-SF algorithm in Section 3. We cover
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GPU considerations in Section 4, providing the details of
our GPU-based algorithms. In Section 5, we compare
Glimmer to several other MDS algorithms in terms of
complexity, speed, quantitative accuracy with respect to the
stress error metric, and qualitative accuracy of layouts for
data sets where the ground truth is known for shape or
clustering.

2 PREVIOUS WORK

The foundational ideas behind MDS were first proposed by
Young and Householder [25] and then further developed by
Torgerson [24] and given the name of MDS. Considerable
research has gone into devising faster and more robust
solutions. In the interests of space, we focus on the
foundational work and the three most commonly employed
categories of current techniques: classical scaling methods,
distance scaling by nonlinear optimization, and distance
scaling by force-directed approaches. In the descriptions
below, N is the number of points, and L is the dimension-
ality of the low-dimensional target space, while H is the
dimensionality of the high-dimensional input space.

2.1 Classical Scaling

Classical scaling methods compute exact or approximate
analytical solutions to the minimum of the strain function.
Although strain is closely related to stress, it may have a
very different minimum. These spectral methods find
embedding coordinates by computing the top eigenvectors
of a “double-centered” transformation of the distance matrix
sorted by decreasing eigenvalue. The original algorithm,
Classic MDS [24], [25], computed a costly OðN3Þ singular
value decomposition of this matrix. Modern classical scaling
methods quickly estimate the eigenvectors using the power
method or other more sophisticated iterative methods that
employ OðN2Þ matrix-vector products.

A host of Nyström methods [20] have recently been
proposed to avoid the OðN2Þ computation of � altogether,
using a subset of that matrix to approximate the eigenvec-
tors. These include FastMap [7], LLE [23], Landmark MDS
[6], and PivotMDS [2]. We use PivotMDS as an exemplar in
the Glimmer performance comparison in Section 5, since it
was shown to be a fast and accurate classical scaling
approximation algorithm [2]. All of these techniques
achieve dramatic speed improvements by reducing the
complexity to essentially OðNÞ. However, in Section 5, we
discuss the limitations of these approaches in handling
sparse data sets. The Glimmer approach of distance scaling
yields higher quality layouts in these cases and has
competitive speeds whenever the visual quality is equal.

2.2 Distance Scaling by Nonlinear Optimization

Optimizing the stress function using gradient descent to
find a low-error embedding was pioneered by Kruskal [15].
Optimization approaches can easily incorporate weights to
emphasize certain types of distances over others or handle
missing values gracefully in a way that is difficult using
spectral methods. De Leeuw’s accurate SMACOF [5]
monotonically converges to a stationary point by minimiz-
ing a quadratic approximation at each iteration, resulting in
provably linear convergence but at a large cost of OðN2LÞ

per iteration. Gansner et al. [10] use a SMACOF-based
approach to stress majorization for graphs, but the
sparsification and edge-weighting modifications they pro-
pose are not suitable for general MDS because in general,
data topology is unknown. Computing the nearest neighbor
topology of general data sets is an OðN2Þ preprocessing
procedure. Accelerations of this technique are not straight-
forward to apply in high dimensions.

The recent Multigrid MDS [3] algorithm employs the
multigrid method for discretized optimization problems,
using SMACOF as a relaxation operator and terminating in
a small constant number of iterations. The hierarchical
approach reduces convergence to local minima and makes
substantial speed improvements over SMACOF alone, but
the scalability is still limited, with a layout of 2,048 points
taking 117 seconds and requiring precomputation of the
data topology. We were inspired by the power of a
hierarchical multigrid approach in the design of Glimmer
but use very different operators for the three multigrid
operations of restriction, relaxation, and interpolation
(described in more detail in Section 3.1).

2.3 Distance Scaling by Force Simulation

Force-based MDS algorithms use a mass-spring simulation
to optimize the stress function, generating forces in
proportion to the residual between low- and high-
dimensional distances. They can be considered a type of
gradient descent with local linear gradients. These
methods are intuitive to understand and easy to program,
can support weights and interactivity, and typically
produce lower stress results than Classic MDS. Their
drawbacks include numerous parameters to the physical
system such as damping constants and time-step size, the
introduction of oscillatory minima, and the possibility of
local minima.

The basic force-directed approach has a complexity of
OðN3Þ, with an OðN2Þ cost per iteration for N iterations.
The CPU-based stochastic force approach introduced by
Chalmers [4] reduces the per-iteration cost to OðNÞ, for a
total of OðN2Þ cost. This stochastic algorithm is used as a
subsystem to two further refinements, with complexity
OðN5=4Þ [16] and OðN logNÞ [11]. Glimmer uses a GPU
variant of the stochastic approach (GPU-SF) with an
improved termination condition as a subsystem. We discuss
its limitations with respect to accuracy and convergence
below. We compare Glimmer against three of these
approaches in Section 5.

2.4 Graph Layout Algorithms

MDS has a strong connection to graph drawing. In fact,
performing MDS on a data set is equivalent to performing
Kamada and Kawai’s energy-based graph layout on a
complete graph whose vertices correspond to points in the
data set and whose edges are weighted by the high-
dimensional distance between the corresponding points.

Many fast graph drawing algorithms such as ACE and
Subspace Optimization [13], [12] that have been proposed
make order-of-magnitude speed gains with quality results
by leveraging the sparseness of the graph Laplacian matrix.
The sparseness of the Laplacian matrix depends on the
distribution of edges in the graph. When you consider the
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problem of a fully connected graph as we do in MDS, these
algorithms become OðN2Þ or worse.

One may argue that nearest neighbor strategies may be
used to build a graph over the original vertices with a sparse
Laplacian, thus permitting fast graph layout algorithms to
compute layouts for the data. In practice, such graph-
building techniques always make potentially faulty assump-
tions regarding the underlying topology of the data. First,
nearest neighbor search algorithms that are not computa-
tionally exhaustive degrade as a function of the dimension
of the data. For example, the popular Approximate Nearest
Neighbor algorithm [1] computes a ð1þ �Þ-approximate
nearest neighbor of a point in OððHd1þ 6H=�ÞH logNÞ time.
This approach is far too expensive for high-dimensional
data where H ¼ 28; 374, as it is in one of our test data sets in
Section 5. Second, measurement noise can destabilize the
topology of such graphs, making the results sensitive to the
parameters of the algorithm used to construct the graph.
Finally, care must be taken to ensure that the resulting graph
is fully connected. Due to the number of complications
involved with this strategy, we do not consider graph layout
algorithms that rely on a sparse topology to be examples of
MDS algorithms.

These arguments do not imply that MDS algorithms
cannot employ subsampling strategies for sparse iterations.
For example, the stochastic force algorithm uses a different
random sampling of distances at each iteration. We further
discuss the advantages of the constant-size random selec-
tion strategy in Section 4.2.

2.5 GPU Layout Approaches

GPUs have been shown to improve the speed of many
general-purpose algorithms including graph layout and
classical scaling but have not been previously applied to
minimizing the stress function directly.

Reina and Ertl [21] proposed a GPU version of the
FastMap algorithm, a classical scaling approximation
algorithm, achieving considerable speedup over a CPU
implementation. However, the technique only accelerates
the mapping into low-dimensional space. The initial
computation of the high-dimensional distances, the costliest
part of the Nyström algorithms, is not sped up.

Frishman and Tal [9], [8] take advantage of GPU
parallelism to increase the speed of graph layout algo-
rithms. As mentioned above, force-directed graph layout
does have deep similarities to force-directed MDS. How-
ever both algorithms’ acceleration strategies break down in
the case of weighted complete graphs. In the dynamic
algorithm, an edge collapsing step requires computing
OðN2Þ edge weights. In the static algorithm, their initial
partitioning strategy uses graph Laplacian, which is OðN2Þ
in the case of a complete graph. As with other fast graph
algorithms, they are able to make productive use of graph-
topology assumptions that may not hold for the full MDS
problem. Furthermore, the energy function they minimize
on the GPU ignores pairwise distances and thus does not
minimize stress. Finally, they use the CPU for initial
placement and for spatial partitioning, whereas Glimmer
runs all stages entirely on the GPU.

We further discuss the suitability of previous algorithms
for speedup using GPU parallelism in Section 4.1.

3 GLIMMER MULTILEVEL ALGORITHM

Glimmer is a force-based MDS algorithm that uses a
recursive hierarchical framework to improve accuracy and
to reduce computation. Unlike other hierarchical MDS
algorithms, Glimmer is specifically designed to exploit
GPU parallelism at every stage of the algorithm. We use the
multigrid vocabulary, because we were inspired by those
methods, but we call our algorithm multilevel because our
final formulation differs from the strict definition of
multigrid algorithms. Similarly, our multilevel heuristic is
justified empirically, rather than analytically.

3.1 Multigrid/Multilevel Terminology

In our description of the multilevel hierarchy, we consider
the highest level to be the input data, with lower levels
being nested subsets of that data reduced in size by a fixed
decimation factor. Multigrid methods use three operators at
each level: restriction, relaxation, and interpolation, as shown
in Fig. 1. Loosely speaking, restriction performs the
decimation to build the hierarchy, relaxation is the core
computation operator that reduces the error at a specific
level, and interpolation passes the benefit of the latest
relaxation computation up to the next level. In typical
multigrid methods, a so-called v-cycle of restriction, relaxa-
tion, and interpolation is repeated several times. However,
the Glimmer operators were designed to converge in a
single cycle.

3.2 Multilevel Algorithm

Fig. 1 shows a diagram of the Glimmer multilevel algorithm
as a single v-cycle. The pseudocode is given in Fig. 3. The
restriction operator we use to construct the multilevel
hierarchy simply extracts a random subset of points from
the current level. In Glimmer, we use a decimation factor of
eight between each level and stop when the size of the
lowest level is less than 1,000 points. These parameter
choices were empirically chosen after analyzing the speed/
quality behavior for decimation factors of several powers of
two and a variety of minimum set sizes above and below
our final choices. Then, we traverse upwards to the top,
alternating runs of the relaxer for the current level with
interpolating the results up to the next level. In this
traversal, we use stochastic force as our relaxation operator;
that is, we perform iterations of a stochastic-force MDS
algorithm (GPU-SF) for all the points at a particular level
until the system converges. Perhaps surprisingly, we also
use the stochastic-force algorithm as our interpolation

INGRAM ET AL.: GLIMMER: MULTILEVEL MDS ON THE GPU 251

Fig. 1. (a) The multigrid v-cycle. (b) The Glimmer multilevel algorithm.
The restriction operator builds the hierarchy by sampling points. GPU-SF
is used as the relaxation operator at each level, with all points allowed to
move, and as the interpolation operator, with only new points allowed to
move. Lower levels untwist complex layouts, while higher levels
converge quickly because of the computation at the lower levels.



operator. We fix the locations of previously relaxed points,
moving just the newly added points to fit the current
configuration. Again, we stop the interpolation step when
the stochastic-force subsystem converges. We continue with
the traversal, freeing the formerly fixed points for the
relaxation step. We halt after running the relaxation
operator on the highest level that contains all points.

At the low levels, only a small subset of the points are
involved in the computation, so the system converges
quickly. The higher levels converge in few iterations
because the points placed at lower levels are likely to be
close to their final positions. In particular, although the
relaxation step at the highest level involves running
stochastic force on all the points in the input data set, the
system converges more quickly than it would if the
stochastic-force algorithm was run with the points at
random initial positions.

The major difference between Glimmer and the GPU-SF
subsystem alone is accuracy and convergence. Fig. 2 illus-
trates the convergence problems of GPU-SF compared to
Glimmer. After a threshold of approximately 12,000 points,
the gray GPU-SF algorithm consistently converges to a much
higher stress configuration than the purple Glimmer line.
The existence of some purple spikes in the figure also
provides evidence that Glimmer is not immune to these local
minima but is much less likely than GPU-SF to converge to
them. Local minima can give rise to twisted manifolds in the
low-dimensional placement, as shown in Fig. 4. Suscept-
ibility to local minima is often cited as a weakness of the
force-based methods, but using a multilevel approach atop a
force-based subsystem allows the accurate global structure
of the point set to be found during the cheap iterations at the
lower levels. At the higher levels, the local structure is
refined within the global context inherited from lower levels
through interpolation.

3.3 GPU Considerations

The Glimmer algorithm can run on a CPU, and we have
implemented an optimized C prototype to allow direct
timing comparisons. However, our restriction, relaxation,

and interpolation operators are all carefully designed to
exploit GPU parallelism. Our use of the GPU does not affect
convergence or accuracy but brings a dramatic speed
improvement over previous MDS approaches.

Modern GPUs have a user-programmable pipeline of
highly parallel processing stages, called shaders. The first
stage operates on a stream of vertices, the second stage
operates on a stream of geometry, and the final stage
operates on a stream of pixels. The GPU pixel processors
can be considered as a single-instruction, multiple-data
(SIMD) unit operating in parallel on a subset of pixels in the
stream, where the SIMD batch size varies from 16 to 1,024 in
recent GPUs. These units have random read/write access to
the data stored in texture memory, so textures can be used in
place of arrays. Computation occurs when a textured
polygon is rendered using a shader. Typical computations
take multiple rendering passes, where the only communica-
tion channel between processing units is writing a texture in
one pass, then reading from it in a later pass. We refer the
reader to the work of Owens et al. [18] for a good survey on
the use of GPUs for general-purpose computation.

Glimmer and GPU-SF are general approaches that do not
depend on specific hardware features of a particular GPU.
The most recent Nvidia GPUs (G80 and later) handle all
three shader types with a shared set of SIMD clusters that
can be programmed with a general-purpose parallel
language called CUDA [17]. Although our algorithms could
be implemented on CUDA, we can operate across several
generations of GPUs by using a more generic model of GPU
processing. Our algorithms run on any card that supports
pixel shaders, and we compare speeds on two different
generations of cards in Section 5.
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Fig. 2. Graph of final stress of single-level GPU-SF versus multilevel
Glimmer on a large range of input data set cardinalities. After
approximately 12,000 points, GPU-SF terminates too soon. Consistent
problems with convergence on large data sets disqualifies GPU-SF as a
scalable MDS algorithm.

Fig. 3. Pseudocode for the Glimmer algorithm.

Fig. 4. Visual quality differences between (a) Glimmer and (b) GPU-SF
for grid instance with cardinality 8,000. Glimmer exhibits more stable
convergence behavior than GPU-SF, which more frequently yields a
twisted layout when it is caught in a local minimum and terminates with a
high stress value. This layout corresponds to the spike at 8,000 for the
GPU-SF in Fig. 2.



3.4 Restriction

The restriction operator creates a multilevel hierarchy from
nested subsets of the input data, randomly sampled from
the enclosing set. We first run an OðNÞ preprocessing step
to randomly permute the input data on the CPU before
loading it into texture memory on the GPU. We then can
easily access nested rectangles in texture memory to solve
the sampling problem. Traversing the hierarchy from
bottom to top in the second leg of our v-cycle is handled
by merely enlarging the size of the rendering polygon, with
no shader code or extra storage required to create the
hierarchy of levels. Our solution avoids the need to do
random sampling on the GPU, which would be slow.

Our restriction operator does not require any explicit
extra computation and specifically does not rely on
having any geometric locality information. In contrast,
the previous Multigrid MDS approach [3] must carry out
a preprocessing step to find nearest neighbors. In our
approach, neighborhoods around each point are gradually
discovered during the stochastic interpolation and relaxa-
tion operations.

4 GPU STOCHASTIC FORCE

GPU-SF is our GPU-friendly stochastic force MDS solver
used as a subsystem in Glimmer, inspired by the Chalmers [4]
algorithm. Without GPU acceleration, the GPU-SF algorithm
has nearly identical runtime characteristics with the CPU-
based Chalmers one. The only differences are the new
termination criteria that we propose, and the asymmetric
force calculations.

4.1 GPU-Friendly MDS

Glimmer’s relaxation and interpolation operators both
benefit from rapid execution of a simple MDS subsystem,
so we propose a GPU-friendly MDS algorithm. In general,
algorithms whose iterations exploit a form of sparseness
perform best on graphics hardware. By sparse, we mean a
limited number of computations and nonlocal accesses per
point, a number far less than the total number of points N .
This restriction immediately disqualifies most MDS algo-
rithms because of their reliance on dense matrices or
submatrices for matrix-matrix or matrix-vector operations.
Traditional force-based MDS is also dense, since each point
must access every other point to compute its force.

On the other hand, most of the accelerated MDS
algorithms that exploit sparseness may fail to achieve
accuracy on certain data sets. For example, PivotMDS,
Landmark MDS, and the parent-finding approaches of
accelerated force-directed MDS [2], [16] achieve their
speedups by only considering a subset of rows of the input
distance matrix. While distance matrices frequently exhibit
considerable redundancy, these algorithms may discard
important information in the selection of these rows.

We have identified the stochastic-force algorithm [4] as
especially appropriate for our requirements. Each point
only references a small set of other points during an
iteration step, and the selection of this set changes each
iteration and is not limited to any subset of the input. Thus,
in a single iteration of the stochastic-force algorithm, each
point performs a constant amount of computation and

accesses only a constant number of other points, regardless
of data set size.

4.2 Stochastic-Force Algorithm

The stochastic-force algorithm iteratively moves each point
until a stable state is reached, but the forces acting on a
point are based on stochastic sampling rather than on the
sum of all pairwise distance residuals. More specifically,
two sets of a small fixed size are maintained for each point:
a Near set and a Random set. The forces acting on a point
are computed using only the pairwise distances between
the points in its two associated sets. Each set initially
contains random points. After each iteration, any members
of the Random set whose high-dimensional distance to the
point is less than those in the Near set are swapped into that
Near set. The Random set is then replaced with a new set of
random points. After many iterations, the Near set will
converge to the actual set of nearest neighbors. Chalmers
proposes a Random set of size 10 and a Near set of size five.
We use four for the size of each set to match the four-
element vector types supported by the GPU.

The heuristic behind the selection rules is simple: a
point’s coordinates are derived from both local and global
position information. The local information comes from the
iteratively refined Near set, and the global information
comes from the always changing Random set. The heuristic
has two advantages over preselection and sparse-graph
construction strategies. First, a fixed number of neighbors
are referenced, and so, GPU storage is known a priori. This
is in contrast to techniques that select all neighbors under a
given threshold because the number of neighbors cannot be
known for an arbitrary data set. Second, it reduces the bias
of global position information. In strategies where land-
mark points are randomly chosen once at the start of the
algorithm, the layout of all points biased in favor of those
points. In the case of Chalmers, the global distance
information is a weighted combination of a much larger
random set.

4.3 Termination

Some previous iterative MDS algorithms do not have an
explicit termination criterion and depend on the user to
monitor the layout progress and halt the computation
when deemed appropriate [22]. Because we use the
GPU-SF algorithm as a subsystem in Glimmer, we need
to quickly and automatically determine the correct time
to terminate the computation. In other approaches [11],
[16], the computation is run for a fixed number of
iterations, usually N . Although linear convergence was
proven for the SMACOF algorithm [5], it has been
generally assumed for many force-directed approaches.
We show in Section 5 that this assumption is not safe to
make, frequently leading to overkill that wastes time or
underkill that halts computation before the layout is
accurate.

A standard termination criterion for nonlinear optimiza-
tion is to terminate when the gradient of the function
converges to zero. In MDS, this criterion implies that the
difference between iterations in the stress error metric given
by (1) converges to some small number �. Computing stress
for a configuration requires OðN2Þ computations. Producing
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this value at each iteration would be far more expensive
than the Glimmer algorithm itself.

We instead use an approximation of stress that we call
sparse normalized stress based on the differences in distance
values already computed. More specifically, sparse normal-
ized stress is defined as

sparsestressðD;�Þ2 ¼
P

i

P
j2NearðiÞ[RandomðiÞðdij � �ijÞ

2

P
i

P
j22NearðiÞ[RandomðiÞ �

2
ij

:

ð2Þ

Here, NearðiÞ [RandomðiÞ is the union of the index sets for
point i, requiring only OðNÞ computations to compute the
stress for a configuration.

Because the contents of these sets change at each iteration,
the sparse stress value is noisy, making the raw function
values inadequate as a convergence criterion. To remove this
noise, we treat sparse stress as a signal and apply a low-pass
filter, a windowed sinc in our implementation. The resulting
smooth signal closely mimics the behavior of the true
normalized stress function, as shown in Fig. 5. Since we are
interested in the behavior of the derivative of the stress
function and not the function itself, we convolve the sparse
stress signal with the derivative of the low-pass filter. This
optimization follows from the theorem that

derivðf ? gÞ ¼ derivðfÞ ? g ¼ f ? derivðgÞ;

where ? is the convolution operator, and deriv is the
derivative. The algorithm thus terminates by comparing the
filtered signal directly to �.

After empirical testing across many data sets, we arrived
at the value of 50 iterations for the low-pass filter window.
The termination criterion � controls the accuracy of the
layout; in our experiments, we chose � ¼ 1=10;000. Our
linear-time termination criteria could benefit any iterative
MDS algorithm relying on the convergence of stress,
including SMACOF, the Chalmers algorithm [4], and others
that use it as a subsystem [11], [16].

4.4 Stochastic Force on the GPU

GPU-SF is a version of the stochastic-force algorithm that
runs on the GPU as a series of pixel shaders, with data
storage in texture memory. The first stage of GPU-SF
updates the random index set of each point. Next, the set of
high- and low-dimensional distances are computed or
fetched. This information is reorganized to update the near
index set. The final series of steps uses this information to
calculate the proper force to apply to the point and move it
accordingly. Control is then shifted back to the first step
unless the termination condition is triggered.

In order to minimize GPU overhead and to work within
system constraints, GPU-SF has a quite different organiza-
tion of code and data from the original Chalmers algorithm.
Each point in the stochastic-force algorithm maintains a
fixed-size cache of state information such as the low-
dimensional position and near-set membership.

The per-point state information is divided into vectors
and tables, which are stored in texture memory. Fig. 7 lists
the textures used to store this information. The vectors are
posHi and posLo, the high- and low-dimensional posi-
tions of the points. Each element of posHi has size H,
where H is the dimensionality of the high-dimensional
space. The size of posLo elements is L, the dimensionality
of the low-dimensional space, which in Glimmer is two. The
velocity texture keeps track of point velocities in the low-
dimensional space and also has size-L elements. The tables
all have eight elements, divided into two equal sections for
points in the Near and Random sets. The distHi and
distLo textures contain the high- and low-dimensional
distances between the point in question and the items in the
Near and Random sets. The index table contains the
pointers to the items in these sets. The total size in bytes of
each texture is the element size in pixels � 4 floats per pixel
� 4 bytes per float � N , the number of points in the input
data set.

The remaining three textures are used as resources in
the computation. The perm texture contains a permutation
of all indices that was precomputed on the CPU, of total
size N . The 2HN scratch texture is used for inter-
mediate storage.

Fig. 6 summarizes the overall organization of GPU-SF,
showing the seven stages and which textures they update. A
single iteration step is carried out in 10þ dlog4ðL �H �NÞe
texture rendering passes. The number of pixelsNi processed
in each pass is also given in Fig. 6, as an approximation of
the total work involved. When GPU-SF is invoked as a
subsystem of Glimmer, the memory footprint of these
textures is always a function of the entire data set sizeN , but
the number of pixels processed in each pass changes
depending on the Glimmer level. The procedure is
described as follows:

1. Stage 1. The first step of GPU-SF is to update the
Random section of the index set using perm. We
acquire new random indices by sampling at a location
in this resource determined by P ½P ½x� þ iteration�,
where P is the permutation array, x is the cardinality
of the point, and iteration is the overall iteration
number. This strategy is inspired by the Perlin noise
algorithm [19].
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Fig. 5. GPU-SF uses a sparse approximation (green) of the normalized
stress function (orange), which converges simultaneously and requires
only minimal overhead to compute. We use a low-pass filter (red),
because the noise in the unfiltered signal is much larger than the
convergence threshold of � ¼ 0:0001.



2. Stages 2 and 3. We need to compute distHi, the

euclidean distances in high-dimensional space. We

indirectly reference the points in posHi using the

index set to compute the differences between these

points and the current one, storing them in the

scratch texture. We square each item in scratch,

sum them together, and put the square root of that

number into distHi. The fast approach to summing
k values on the GPU is a reduction shader that takes

log4 k passes, which is far cheaper than looping

through the values. A similar computation produces

distLo from posLo, with log4 L passes.
3. Stage 4. Updating the Near set with points in

Random that are closer is slightly tricky. If we sort

by distance and pick the first four to be in the Near
set, then an item that appears in both Near and

Random would be duplicated in the Near set.

Instead, we first sort by index, mark duplicates as

having infinite high-dimensional distance, and then

resort by distHi. We sort each of the three textures

index, distHi, and distLo twice, using six

rendering passes, combining the duplicate-marking

operation with the first sorting pass. All GPU sorting
is done using an even-odd sorting network.

4. Stage 5. To do the force calculation, we compute the
vectors between the point and the eight others in the
Near/Random sets using index to look up their
low-dimensional positions in posLo. We scale these
vectors by the difference between distLo and
distHi and then use the velocity texture for

damping. Damping is designed to inhibit excessive
particle oscillation and improve convergence. Our
damping scheme computes the relative velocity
vector between each vertex and its indexed vertices
and subtracts it from the force vector between these
vertices. We sum these damped force vectors and
save the resulting vector into the scratch texture.

5. Stages 6 and 7. We integrate the scratch forces into
velocity in one pass and then integrate velocity
and update posLo in another pass.

6. Stage 8. The final step of the algorithm checks the
termination condition. We can calculate the normal-
ized sum of squared distance differences in distHi

minus distLo for our termination condition in
2 log4ðNÞ rendering passes using a reduction shader
on scratch. The 4j factor in the pixel size indicates
the size reduction by a factor of four each pass, for a
total of 4=3Ni � L pixels processed.

In the Chalmers algorithm, forces are applied symme-
trically between two points, so that point i is affected not
only by forces from its own Near and Random sets but also
by any forces from other points that contain i in their Near
or Random sets. In our GPU-SF version, forces are applied
from points in the Near/Random sets to point i but not vice
versa. We abandon this explicit symmetry because it would
require a scatter random access write operation, which is not
well supported on GPUs. The effect of those symmetric
forces emerges implicitly as the Near sets of neighboring
points gradually converge to include each other.

5 RESULTS AND DISCUSSION

We compare our approaches to previous work in terms
of asymptotic complexity, speed, the quantitative metric
of normalized stress, and the qualitative visual analysis of
layouts.

The MDS algorithms that we chose to compare against
are a mix of foundational algorithms and competitive
exemplars of the major approaches. The foundational
algorithms are Classic MDS, SMACOF, and Chalmers.
These three foundational approaches are known not to be
speed competitive, so measures of stress and layout quality
are more interesting than the time performance. We
terminate SMACOF when the change in the normalized
stress function falls below 1/10,000; the same criterion used
for GPU-SF and Glimmer.
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Fig. 6. The GPU-SF algorithm carries out a single layout iteration in eight stages. We list the number of rendering passes each stage requires, the

number of pixels affected by each pass, the textures read as input arrays, and the textures written as output arrays. These stages repeat until the

termination check succeeds.

Fig. 7. The GPU-SF algorithm uses textures as storage. This table lists

each texture used by the algorithm, the size in pixels of the individual

elements dedicated to each point, and a brief description of the purpose

of the texture.



We use PivotMDS [2] as the classical scaling approach,
using 50 landmarks except where noted. We use Jourdan
and Melancon’s OðN logNÞ Hybrid [11] as the fastest force-
directed approach. Bronstein et al.’s Multigrid MDS [3] is
not publicly available, but we know that it is not speed-
competitive with Hybrid or PivotMDS from the timings
given in the paper.

While Classic and PivotMDS are designed to minimize
strain rather than stress, we report on the success of their
layout using the stress metric. We do so for consistency and
also because we consider stress to be the most suitable
quantitative metric that captures our qualitative judgement
about layout quality for visualization purposes. In other
MDS applications outside of information visualization,
where direct visual inspection of the layout is not required,
stress may be a less suitable metric.

We also compare against an implementation of Glimmer
on the CPU to separate the speedup achieved by the
multilevel algorithm and the subsequent GPU speedup.

All algorithms are implemented in C by the authors.
Optimized third-party matrix-multiplication routines were
used for Classic, SMACOF, and PivotMDS. Our C im-
plementations were tested against Java1 and Matlab2

versions of the algorithms where available and verified to
have between a 1 percent to 80 percent speed improvement.

5.1 Complexity

The cost of one GPU-SF iteration is proportional to the
number of rendering passes multiplied by the number of
pixels affected at each pass. Multiplying these values from
Fig. 6 yields a per-iteration cost of ð7þ log4 H þ log4 Lþ
5:33 LÞ �Ni ¼ OðNi log4 HÞ. The cost of a full GPU-SF
invocation is OðC Ni log4 HÞ, where C is the number of
iterations performed before the system converges. As we
have discussed in Section 4.3, C is not necessarily N . We
have observed that it varies depending on data set
characteristics, ranging from constant to OðNÞ.

The number of points Ni supplied to GPU-SF at each
Glimmer level using decimation factor F ranges from 1,000
up to N , where Ni�1 ¼ Ni=F , and the number of levels is
logF N . The total number Nt of points processed across all
Glimmer levels is bounded above by ðF=ðF � 1ÞÞ �N , the
infinite sum of ð1=F iÞ �N . The cost of each Glimmer level is
two invocations of GPU-SF, one for interpolation and one
for relaxation. The restriction stage of Glimmer does not
incur any extra costs that we need to consider in our
asymptotic analysis, because the sampling is built into the
algorithm. Thus, the total complexity of Glimmer on the
CPU is OðC N log4 HÞ.

We now discuss the effects of GPU parallelism. Asymp-
totic analysis of parallel programs is difficult to present
concisely. To oversimplify, a GPU with a SIMD size of p,
where p ranges from 16 to 1,024 on current cards, speeds up
computation up to a factor of p. Since we carefully designed
our shaders and render passes to avoid conditionals and
loops, our actual speedup is close to this theoretical

maximum. The computational complexity of Glimmer on
the GPU is thus approximately OðC N log4 H=pÞ. If we
assume C to be OðNÞ and both log4 H and p to be a small
constants, then the complexity of Glimmer is essentially
OðN2Þ.

In contrast, the complexity of Hybrid is OðN logNÞ,
Chalmers is OðN2Þ, SMACOF is OðN2Þ, and Classic MDS is
OðN3Þ. Pivot MDS has a complexity of Oðk3 þ k2N þ kNÞ,
and for a fixed number k of landmarks and a large number
of points N , it is typically considered linear.

5.2 Performance Comparison

We compare Glimmer to several MDS algorithms, across a
range of real and synthetic data sets. All benchmarks are run
on an Intel Core 2 QX6700 2.66-GHz CPU with 2 Gbytes of
memory and an Nvidia 8800GTX graphics card with
768 Mbytes of texture memory. No timings in this paper
include file loading time or rendering time for any algorithm.
However, in the accompanying video, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2008.85, the tim-
ings for GPU-SF and Glimmer do include render time for
interactive display. All layout times below include comput-
ing high-dimensional distances on the fly. Although some
algorithms use an approximation of the stress function while
finding the embedding, all stress figures reported below use
the full normalized metric given in (1).

5.2.1 Data Sets

We use a mix of synthetic and real-world benchmark data
sets. The small cancer data set from the UCI ML
Repository3 has 683 points in nine dimensions. The ground
truth for the two major clusters of malignant versus benign
tumors is shown with color coding of orange and blue,
respectively. The shuttle_small data set, also from UCI,
has 14,500 points in nine dimensions, with shuttle_big

having the same structure but 43,500 points. The ground
truth for the seven clusters is shown with color coding. We
generated the well-known synthetic swissroll bench-
mark, a 2D nonlinear manifold of 1,089 points embedded in
three dimensions. We generated a set of synthetic data sets of
smoothly varying cardinality, where a 2D grid is embedded
in eight dimensions. We also tested the effects of adding
noise to those grids, specifically 1 percent noise in a third
dimension. The docs data set is a real-world example of a
large collection of unordered document metadata used to
study document clustering algorithms4 [14]. These collec-
tions can be represented as highly sparse matrices where a
row represents a document and a column represents a text
feature. In Glimmer and GPU-SF, we store this matrix
compactly in texture memory as a value-index pair. There are
28,433 points in 28,374 dimensions, with the ground truth of
six clusters again shown by color coding.

This group of data sets permits us to characterize the
speed and stress of each MDS algorithm in different
dimensionality scenarios. In the case of the regular grid,
the true dimensionality is equal to the embedding dimen-
sionality, and so, an MDS algorithm should produce stress

256 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

1. The PivotMDS software was courtesy of Christian Pich. The Hybrid
implementation was from www.lirmm.fr/~fjourdan/Projets/MDS/
MDSAPI.html.

2. The Classic implementation was from cobweb.ecn.purdue.edu/
~malcolm/interval/2000-025.

3. www.ics.uci.edu/~mlearn/MLSummary.html.
4. The data was courtesy of Aaron Krowne.



results very close to zero, and the regularity should be

visually apparent in the layout. For shuttle, where the

true dimensionality is conjectured to be slightly greater than

the embedding dimension, both the global structure and the

local proximity of the data may be important, but neither

can be reconstructed without some distortion. However,

some cluster structure can be distinguished. For docs,

because the true dimensionality is believed to be at least an

order of magnitude greater than the embedding dimension,

the global relationships between points are less important

and potentially misleading. Again, the local cluster relation-

ships and their distinguishability from each other should be

emphasized.

5.2.2 Layout Quality

Fig. 8 shows the visual quality, normalized stress, and

timing of Glimmer, Hybrid, and PivotMDS layouts on four

data sets with known structure. In the case of grid, the

correct shape is known. In the other three cases, the correct

partitions of the points into clusters are available with these

benchmark data sets, so the extent to which the color coding

matches the spatial grouping created by an algorithm is a

measure of its accuracy.
Qualitatively, with cancer, the Glimmer and PivotMDS

algorithms indicate these two color-coded groups clearly

with spatial position. Quantitatively, the stress of Glimmer
is an order of magnitude lower than that of PivotMDS.
Hybrid does separate the two groups but produces
misleading subclusters in the orange group.

With shuttle_big, Hybrid produces a readable layout
separating the red cluster from the other two but is slower
by several hundred percent. Glimmer and PivotMDS both
produce useful and qualitatively comparable layouts
separating the clusters. The PivotMDS layout is twice as
fast but has noticeable occlusion and much higher stress
than the Glimmer layout.

The 10,000-point grid is accurately embedded by
Glimmer and PivotMDS in comparable times. Hybrid is
again slower but nevertheless terminated too soon, suffer-
ing from very noticeable qualitative distortion and with a
much higher quantitative stress metric compared to that of
the other layouts.

The Glimmer layout of the docs data set is qualitatively
better than the other three. It shows several spatially
distinguishable clusters, color coded by blue, red, orange,
and green. The green cluster is split into three parts. It took
approximately 2 seconds with normalized stress of 0.157.
Hybrid suffers from cluster occlusion. The stress is nearly
twice as high as that of Glimmer, and the spatial embedding
does not clearly separate any of the given clusters.
PivotMDS is very fast but almost completely fails to show
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Fig. 8. MDS layouts showing visual quality, time, and stress for the Glimmer, Hybrid, and PivotMDS algorithms. The data set name, the number of

nodes (N), and the number of dimensions (D) appear above each column. Time in seconds appears at the bottom left of each entry, with normalized

stress on the bottom right.



the data set structure. The normalized stress value of 0.928
is extremely high.

5.2.3 Speed and Stress

We use the synthetic grid data set and parameterized
random permutations of shuttle and docs to compare
algorithm speed and accuracy across a large interval of data
set cardinalities.

The timings in Figs. 9a, 9b, and 9c all exhibit the same
pattern of three equivalence classes. The first and slowest
class of algorithms is the foundational algorithms: Classic in
pink, SMACOF in blue, and Chalmers in orange. These
algorithms all show timing curves that are quadratic or
worse. Assuming enough computational resources were
present, the completion time on large data sets of
100,000 points or more for these algorithms would be on the
order of many hours or even days. The second class of
algorithms is Hybrid and GlimmerCPU. These algorithms
terminate in approximately 1 minute on very large data sets of
100,000 points. The final and fastest class of algorithms is

Glimmer and PivotMDS. These algorithms have a much
smaller slope compared to the other classes, requiring only a
handful of seconds to compute layouts of approximately
100,000 points.

The stress measurements in Figs. 9d, 9e, and 9f, with log-
scale vertical axes, each exhibit a different pattern, depend-
ing on the data set. We have placed dashed lines on the
graphs to roughly delineate the boundary where the
visualization goals for each data set are satisfied (below)
and where they are not (above). We determined the
positions of these lines empirically by computing layouts
with different stress values and making qualitative judge-
ments about their visual structure. We used the criteria
discussed in Section 5.2.1: regularity for grid and cluster
structure for shuttle and docs. We characterize an
algorithm as outperformed by a competitor when the
algorithm’s average stress across data set cardinalities falls
above this line, even if the competitor is slower.

All the algorithms satisfy the visual quality test for the
shuttle data set. For grid, the Hybrid algorithm in green
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Fig. 9. (a), (b), and (c) Detailed graphs of timings for the seven measured MDS algorithms on shuttle, grid, and docs data sets of increasing
cardinality. The graphs exhibit the same three speed classes of algorithms. The Glimmer GPU algorithm is a member of the fastest speed class.
(d), (e), and (f) Graphs of layout stress for the seven MDS algorithms on shuttle, grid, and docs data sets of increasing cardinality. Each graph
has a dashed black line demarcating unacceptable visible distortion. Glimmer is the only algorithm in the fastest speed class to regularly fall beneath
each of the visible distortion lines. (g), (h), and (i) Log-log scatterplots of stress versus time for the seven measured MDS algorithms on cancer,
swissroll, and grid1knoise data sets of increasing cardinality. These graphs illustrate a stress-time trade-off with outliers Glimmer CPU (red)
and Glimmer (violet) on the side of the trade-off with lower stress in shorter time. All timings include distance calculations and layouts, and all
stresses are the full normalized stress calculation.



regularly results in a distorted grid above the dashed line.
The remaining algorithms all regularly produce layouts
with no visible distortion. Chalmers, PivotMDS, and Classic
all produce zero-stress layouts, so they are not visible on the
graph because they coincide with the horizontal axis. In the
case of docs, where the intrinsic dimensionality is very
high, brown PivotMDS, pink Classic, and green Hybrid are
all well above the dashed line. Glimmer in purple,
Chalmers in orange, and SMACOF in blue all produce
results that group similar points together and separate
clusters.

Figs. 9g, 9h, and 9i further illustrate the relationship of
speed and stress, showing log-log scatterplots of the timing
and stress of the seven algorithms on three samller data
sets: cancer, swissroll, and a grid of 1,000 points with
1 percent noise. Each algorithm is represented by a single
colored dot, except for PivotMDS where we show a brown
line connecting three runs of 50, 100, and 300 pivots. Dots
closer to the lower left corner represent algorithms out-
performing those further toward the upper right.

The plots show an almost linear relationship between the
stress and timing of Chalmers (orange), PivotMDS (brown),
Hybrid (green), Classic (pink), and SMACOF (blue), indicat-
ing a simple speed-accuracy trade-off for these algorithms.
Glimmer (violet) and Glimmer-CPU (red) are outliers in the
overperforming lower left quadrant, with both fast times
and low stress. Our two algorithms break the pattern by
achieving higher speed layouts without an accuracy penalty.
On these smaller data sets, the GPU does not significantly
improve speed over the Glimmer on the CPU.

5.2.4 Summary

The Glimmer algorithm satisfies the visual quality test for
each data set and is in the fastest equivalence class. The
other algorithm in the fastest equivalence class, PivotMDS,
does not produce a usable layout for the docs data set. The
other algorithms that satisfy the visual quality test for all
data sets, SMACOF and Chalmers, do not scale to large data
sets, either running out of memory or requiring hundreds of
hours to compute.

5.3 Comparing Distance to Classical Scaling

It is interesting to consider the advantages and disadvan-
tages of distance scaling approaches that use stress such as
Glimmer, GPU-SF, Chalmers, Hybrid, and SMACOF versus
classical scaling approaches that use strain such as
PivotMDS, Landmark MDS, and Classic.

In distance scaling, individual distances are computed in
an embedding space of specified dimension L. In contrast,
classical scaling does not specifically parameterize the
embedding dimension. Layout in L dimensions occurs by
simply choosing the first L eigenvectors. If the intrinsic
dimensionality of the layout is k, then k eigenvectors will
contain layout information. By intrinsic dimensionality, we
mean the number of dimensions needed to achieve a layout
where strain is zero. When k is greater than the desired
embedding dimension (L ¼ 2 in this paper), classical
scaling implicitly uses more degrees of freedom in mini-
mizing its objective function than distance scaling. The
resulting layout may occlude points, clusters, or other
features in lower dimensions.

We illustrate this phenomenon by embedding the end-
points of a regular simplex. A simplex is a geometric object
whose endpoints are all a distance of unit length from each
other. For example, a line segment is a regular 1-simplex
and an equilateral triangle is a regular 2-simplex. Fig. 10
shows the results of embedding a regular 100-simplex in
two dimensions using classical scaling and distance scaling.
While there is no way to embed such a high-dimensional
object without loss of some information, distance scaling
constructs a layout without point occlusion roughly the
diameter of the simplex, while classical scaling places most
of the points in a region much smaller than the simplex
diameter.

When the intrinsic dimensionality of the data set is less
than or equal to the embedding dimension, then classical
scaling methods are likely to work very well. Even if the
dimensionality is greater, the greater likelihood of occlusion
may sometimes be advantageous, because clusters may be
more easily distinguished from each other. However, we
argue that for sparse very high dimensional data sets such
as docs or for tagged data sets, distance scaling is very
likely to be a better choice than classical scaling. The
PivotMDS layout of the docs data set shown in Fig. 9i,
produced by minimization of the strain objective, demon-
strates that no 2D basis in the text-feature space can be
constructed to visually separate the relevant clusters. We
consider the smearing of the ground-truth color coding into
disparate spatial regions to be evidence of the disadvan-
tages of minimizing strain when dealing with sparse data
sets. To confirm this analysis, we tested the PivotMDS
algorithm on this data set using 5,000 landmarks, and the
visual appearance was not improved. We argue that
algorithms based on distance scaling and random search
such as stochastic force are more suited to visualizing these
data sets. Glimmer is the first such algorithm that can scale
to sparse data sets of this size and produce useful results in
a matter of a dozen seconds.

5.4 GPU Speedup

We now provide quantitative measurements of the GPU
speedup for Glimmer. Fig. 11 shows the speed improve-
ment of the Glimmer algorithm on two different GPUs
versus the completely CPU-based implementation. The

INGRAM ET AL.: GLIMMER: MULTILEVEL MDS ON THE GPU 259

Fig. 10. Layouts of a regular 100-simplex produced by distance scaling

and classical scaling. Both methods distort the simplex. Distance scaling

algorithms like Glimmer produces less point occlusion and better

preserve the diameter of the simplex.



graph was constructed by dividing the CPU runtimes by
the GPU times for a synthetic grid data set over several
sample sizes. Each implementation performs roughly the
same number of computations, allowing us to very directly
gauge the magnitude of the GPU speedup. The graph
clearly shows considerable speed improvements of the
Glimmer GPU algorithm. The older Nvidia 7900GS card
converges to a constant speedup around 2.5. The newer
Nvidia 8800GTX reaches a variable speedup factor between
10 and 15 for grids of cardinality greater than 10,000.

The GPU speedup comes with start-up and overhead
costs. These include shader compilation, shader optimiza-
tion, and data initialization-upload/download. Fig. 12
shows the costs in milliseconds for each of these steps on
a variety of sample sizes of the grid data set. The GPU-SF
and Glimmer layout times do include the overhead of
uploading data from the CPU to the GPU. Shader
compilation/optimization is a step required only once for
any number of subsequent layouts and thus is not included
in any performance runtimes. For both GPU-SF and
Glimmer, shader compilation and initialization requires
4 seconds of data-set-independent start-up overhead when
the program begins, which is not included in any of our
timings.

6 CONCLUSION AND FUTURE WORK

Glimmer provides dramatic speedups compared to previous
distance scaling approximation algorithms by exploiting
GPU parallelism at every stage of their architectures. Our
new termination criterion for GPU-SF detects convergence
cheaply by approximating the normalized stress function.
The multilevel architecture of Glimmer is more likely to
converge to a lower stress embedding. Glimmer avoids the
speed-accuracy trade-off of previous distance scaling ap-
proximation algorithms, as we have shown on a mix of
synthetic and real-world data sets. It is competitive with
previous classical scaling approximations in speed and
yields readable results for sparse data sets where these
approximations fail.

It would be interesting future work to adapt the Glimmer
approach for optimized force-directed graph placement.

Also, Glimmer should be straightforward to generalize

from the current L ¼ 2 implementation to handling target

spaces of any dimension. The force calculation pass at

stage 5 of GPU-SF might be the main bottleneck, possibly

taking more passes as dimensionality increases.
The source code and executable for Glimmer is available

at http://www.cs.ubc.ca/~sfingram/glimmer.
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