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1 Introduction

Direct volume rendering is a standard technique for projecting all
the optically-encoded samples onto the screen at once to allow us
to peer into the inner structures involved in a volume data. Data-
centric approaches to the design of transfer functions (TFs) have
recently been well-established, which perform mathematical analy-
sis of the data prior to pertinent rendering. The advent of multi-
dimensional TFs is one of the latest major achievements in the
volume visualization research. As opposed to the traditional one-
dimensional TFs that only consider a voxel’s scalar field value,
the multi-dimensional TFs assign auxiliary attributes to the vox-
els to construct their sophisticated parametric domains. For exam-
ple, when visualizing volumes obtained by scientific simulations,
the observers can utilize their own knowledge about the simulation
settings to extract the global characteristics of the volumes and to
locate regions of particular interest. If they are allowed to design
multi-dimensional TFs using staff attributes so as to encapsulate
such advance knowledge, they can readily yield visualization re-
sults to fulfill their purposes. Nevertheless, nearly all attributes for
the conventional multi-dimensional TFs are based on local features,
such as differentials and curvatures, and are difficult to capture the
global structure of the volume contrary to the observer’s purposes.

This paper therefore introduces a new set of topological at-
tributes to establish a new framework that is intended to realize
objective-based assistance. Topological attributes proposed herein
are derived from the level-set graph, which delineates the topologi-
cal evolution of an isosurface with respect to the scalar field.

2 Topological Volumetric Skeletonization

We assume that a volume dataset is represented by sample points
of a single-valued function. Cutting a volume dataset at different
scalar field values will produce topological changes of isosurfaces,
including isosurface splitting and merging. We represent such iso-
surface transition using a level-set graph, called volume skeleton
tree (VST)[1] that delineates such global isosurface trajectories
passing through their local topological transitions.

The node of the VST represents critical point that has the change
either in the number of isosurface connected components or in the
genus of each of the isosurface components. They are classified into
four groups: maxima (C3), saddles (C2), saddles (C1), and minima
(C0), which represent isosurface appearance, merging, splitting, and
disappearance, respectively, as the scalar field value reduces. The
link of the VST represents an isosurface component which is de-
fined solid if it expands as the scalar field value reduces while hol-
low if it shrinks. The isosurface merging at C2 and splitting at C1
have both four topological transition paths with different isosurface
spatial configurations as shown in Fig. 1. In what follows, VST
uses the notation for the critical points with its own connectivity
as illustrated in Fig. 1, where the orange incident link represents
a solid isosurface while the blue link represents hollow. For later
convenience, all the boundary voxels are assumed to be connected
to the virtual minimum having −∞ as its scalar field value [1]. Note
that the link incident to a C0 node is solid when the node is the vir-
tual minimum as shown in Fig. 1. In our implementation, the node
has its coordinates and scalar field value, and the link has its genus
and index of adjacent nodes.
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Figure 1: The connectivity of a critical point of each type in the
VST: The orange and blue lines represent the links that correspond
to solid and hollow isosurfaces, respectively.

3 Designing Multi-Dimensional Transfer
Functions with Topological Attributes

In this section, we illustrate that adaptive usage of topological at-
tributes, which are formulated using the VST, makes it possible to
obtain visualization results emphasizing various structures of vol-
umes through effective usage of multi-dimensinal TFs.

(1) Inclusion level

A volume dataset often includes a complicated nested structure
where one feature subvolume completely encloses others within
some range of the scalar field value. Here, the inclusion level of a
voxel represents the depth of its associated isosurface in the nested
structure at the corresponding scalar field value. It is clear from
Fig. 1 that isosurface nested structures originate only from the tran-
sition paths in C2(b) and C3(b). This suggests that we can locate
such isosurface inclusions directly from the VST if we can identify
the nodes C2(b) and C1(b).

Fig. 2 visualizes a snapshot volume for 3D fuel density distribu-
tion simulating the process of implosion in laser fusion [2], where
small bubble-spike structures evolve around a contact surface be-
tween a fuel ball (inner) and pusher (outer) during the stagnation
phase. The fuel-pusher contact surface can be identified with an
isosurface extracted by observing the rapid gradients of the fuel
density field, whereas the extracted isosurface has two nested con-
nected components, and the contact surface of our interest is oc-
cluded by the other outer component residing in the pusher domain,
which is a phantom surface induced by the action-reaction effect.

Fig. 2(a) shows the VST for the implosion dataset, where the
skeletal structure of the complex fuel density distribution has been
extracted with an intentional control of VST simplification. A
glance at the VST around the scalar field interval [14,176] finds
a nested structure where connected isosurface components corre-
sponding to the links P2P3, P3P4, and P3P5 are included by an-
other connected isosurface component corresponding to the link
P2P6. A volume-rendered image is shown with the topologically-
accentuated 1D opacity TF in Fig. 2(b), from which we can see that
after the scalar field itself has been topologically-accentuated, we
still suffer from a problem that the inner isosurface components of
interest for the observer are indeed occluded by the outer spherical
isosurface component. Contrary to that, as shown in Fig. 2(c), if we
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Figure 2: Visualizing simulated implosion in laser fusion: (a) The
corresponding VST, (b) topologically-accentuated 1D opacity TF,
(c) 2D opacity TF depending also on the inclusion level.

devise the 2D opacity TF which depends on the inclusion level as
well to assign a lower opacity value to voxels on the outer isosur-
face component than to voxels on the inner ones, we can observe
the optically-deeper bubble-spike structures more clearly than in
Fig. 2(b).

(2) Isosurface-trajectory distances

Simulated volume datasets such as distributions of energy func-
tions often contain a symmetric isosurface trajectory with respect
to the mean scalar field value. Such datasets involve an isosurface
transition where the outermost isosurface component gradually ex-
pands and occupies the whole volume domain when the scalar field
reaches a center value of symmetry. In our framework, isosurface-
trajectory distance is defined as the difference in the scalar field
between any two points along the shortest path on the VST. Using
the integral of this quantity, we can identify the center of the its
VST as the isosurface component that hides the inner structures of
the volume.

For example, as shown in Fig. 3, the High Potential Iron Protein
(HIPIP) dataset has a symmetric wave function with respect to the
mean scalar field value, and thus the isosurface component around
the mean value covers up the entire volume. Fig. 3(a) shows the
VST of the HIPIP dataset, and Fig. 3(b) shows a visualization re-
sult obtained using topologically-accentuated 1D opacity TFs. As
seen in Fig. 3(a), the VST is almost symmetric and it has many crit-
ical points around the mean scalar field value 127. However, the
corresponding isosurface component actually occludes many sig-
nificant features as shown in Fig. 3(b) if we assign a large opacity
value to voxels associated with the occluding isosurface compo-
nent. This observation motivates us to improve the result, as shown
in Fig. 3(c), by lowering the opacity values of the voxels that have
the small integral values of the distance in exchange of equalizing
all the accentuation levels at the largest integral value. Indeed, this
allows us to eliminate the occluding isosurface component from the
important structures inside the volume.

(3) Isosurface genus

The change in genus of each component of an isosurface may
provide an important clue which allows us to visually understand
the complexity of the structures embedded in a volume dataset. An
isosurface genus is equivalent to the number of holes on each of
the isosurface connected components. Actually, the change in this
number often outlines some distinctive feature subvolume embed-
ded in the given dataset. This attribute is already accessible from
VST.

For example, Fig. 4 visualizes the half domain of positive charge
distribution simulated around two 16O nucleons. From the VST
shown in Fig. 4(a), we can see that two isosurface components cor-
responding to the links P6P9 and P7P8 are included by the outer
isosurface component. Fig. 4(b) shows a visualization result ren-
dered with an accentuated 2D TF based on its nested structure. This
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Figure 3: Visualizing the HIPIP dataset: (a) The correspond-
ing VST, (b) topologically-accentuated 1D opacity TF, and (c)
2D opacity TF depending also on the integral of the isosurface-
trajectory distance.

resultant image certainly provides useful information for us to un-
derstand the nested structure, though the image cannot be said to
provide sufficient information for us to realize the complex inter-
action between the two nucleons. A resultant image rendered with
a new 2D TF is shown in Fig. 4(c), where voxels which belong to
isosurface components of genus 1 corresponding to the links P2P4
and P4P5 are emphasized. In fact, the region topologically equiv-
alent to a torus coincides with the subspace having complex inter-
actions between the two nucleons, and attracts much attention from
the observers. Furthermore, the visualization result pinpoints the
locations where the change in genus is invoked, and provides the
observers with important visual cues about the detailed spatial con-
figuration of each of the 16O nucleons.
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Figure 4: Visualizing the 16O nucleon dataset: (a) The correspond-
ing VST, (b) 2D opacity TF depending also on the inclusion level,
and (c) 2D opacity TF depending also on the isosurface genus.

4 Conclusion
In this paper, we proposed a set of topological attributes derived
from level-set graphs, and presented the basic design principles of
multi-dimensional TFs depending on these attributes.

Remaining issues for our future research include enriching the
set of topological attributes towards more powerful analysis, and
identifying the mutual relationships between the topological at-
tributes and the traditional local features such as gradients and cur-
vatures for realizing more advanced visualization operations.
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