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ABSTRACT

The physical interpretation of mathematical features of tensor fields
is highly application-specific. Existing visualization methods for
tensor fields only cover a fraction of the broad application areas. We
present a visualization method tailored specifically to the class of
tensor field exhibiting properties similar to stress and strain tensors,
which are commonly encountered in geomechanics.

Our technique is a global method that represents the physical
meaning of these tensor fields with their central features: regions
of compression or expansion. The method is based on two steps:
first, we define a positive definite metric, with the same topologi-
cal structure as the tensor field; second, we visualize the resulting
metric. The eigenvector fields are represented using a texture-based
approach resembling line integral convolution (LIC) methods. The
eigenvalues of the metric are encoded in free parameters of the tex-
ture definition. Our method supports an intuitive distinction be-
tween positive and negative eigenvalues.

We have applied our method to synthetic and some standard data
sets, and “real” data from Earth science and mechanical engineering
application.

CR Categories: I.3.3. [COMPUTER GRAPHICS]: Pic-
ture/Image Generation—Line and curve generation; J.2. [Physical
Science and engineering]: Engineering

Keywords: tensors field, stress tensor, strain tensor, LIC

1 INTRODUCTION

Tensor data play an important role in many disciplines. In geome-
chanics or solid state physics for example tensors are used to ex-
press the response of material to applied forces; in geometry, the
curvature and metric tensors describe the fundamental properties of
surfaces; the gradient tensor of a flow field provides a characteri-
zation of flow structure. A very different application area is med-
ical imaging, where the diffusion tensor describes the directional
dependence of molecule motion. These areas are only a few ex-
amples. Mathematically, a tensor is a linear function that relates
different vectorial quantities. Its high dimensionality makes it very
complex and difficult to understand. Thus, there is much need for
tensor field visualization that enables easy and intuitive understand-
ing. Because the physical interpretation of mathematical features is
highly application-specific it is important that the visualization is
closely driven by the special application.

We present a visualization method for symmetric tensor fields
of second order that are similar to stress, strain and the symmetrical
part of the gradient tensor. Our method provides a continuous repre-
sentation of the tensor field, which is closely related to the physical
meaning of the tensor field and emphasizes regions of expansion
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and compression. This behavior is strictly connected to the sign of
the eigenvalues. A change of sign indicates regions where the ma-
terial tends to crack. Therefore, we do not focus on the isotropy
behavior of tensor fields but on the integration of the sign of the
eigenvalues. The underlying idea of our method is to transform the
tensor field into a metric, which is visualized. To represent the re-
sulting metric we use a texture that is aligned to the eigenvector
fields, similarly to LIC [2, 13]. The metric eigenvalues are included
using the free parameters of the convolution filter, like filter length,
and free parameters of the input noise texture. Finally, we obtain
a dense texture in regions of compression and a sparse texture in
regions of expansion. By an animation of these parameters we can
enhance the impression of stretching and compression. The repre-
sentation expresses what is physically happening in the field.

In Section 2, we provide an overview of related work. We review
the mathematical basics of tensor fields in Section 3. In Section 4,
we explain our method, its motivation and realization. Section 5
discusses results.

2 RELATED WORK

In contrast to the visualization of scalar or vector fields, tensor field
visualization is still in its infancy. Even symmetric tensors with
six independent values contain so much information at each point
that it is not easy to capture at once. Several good visualization
techniques exist for tensor fields, but they only cover a few spe-
cific applications. Many of the existing visualization methods are
extensions from vector field visualization, which focus on the tech-
nical generalization without providing an intuitive physical inter-
pretation of the resulting images. These methods often concentrate
on the representation of eigendirections and neglect the importance
of the eigenvalues. Therefore, in many application areas traditional
2D plots are still used, which represent the interaction of two scalar
variables.

A basic way to represent a tensor field is using icons. They il-
lustrate the characteristics of a field at some selected points. One
simple example icon that represents a symmetric tensor is the ellip-
soid. The principal axes of the ellipsoid are aligned to the eigendi-
rections and scaled according to the corresponding eigenvalues (see
for example Kriz et al. or Haber, [6, 12]). More complex glyphs
were constructed by Leeuw et al. showing additional features us-
ing flow probes [3]. Even though these icons represent the tensor
value at one point well they fail to give a global view of the tensor
field. The problem of choosing appropriate points to examine is
left to the user. Thus, these methods have limited usage in explo-
ration of complete data sets. Furthermore, they hold the problem or
cluttering.

A more advanced but still discrete approach uses hyperstream-
lines. This approach is strongly related to streamline methods used
for vector fields. They were introduced by Delmarcelle and Hes-
selink [5] and have been utilized in a geomechanical context by
Jeremic et al. [11]. Given a point p in the field, one eigenvector field
is used to generate a vector field streamline. The other two eigendi-
rections and eigenvalues are represented by the cross section along
the streamline. Even though this method extracts more information
than icons, it still leaves the problem of choosing appropriate seed
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points and is limited to low resolution due to cluttering.
To generate a more global view, a widely accepted solution for

vector fields is the reduction of the field to its topological structure.
These methods generate topologically similar regions that lead to a
natural separation of a field. The concept of topological segmen-
tation was also applied to two-dimensional tensor fields [7, 8, 14].
The topological skeleton consists of field singularities and connect-
ing separatrices. For tensor fields the vector field singularities are
replaced by degenerate points, which are points where the tensor
has multiple eigenvalues. Although the tensor field can be recon-
structed on the basis of topological structure, physical interpretation
is difficult. One reason is the fact that high multiplicity of eigenval-
ues has no general physical significance. (For example, for stress
fields they are points of high symmetry).

A very different approach was chosen by Pang et al. [1, 16].
They considered the tensor field as a force field that deforms an ob-
ject placed inside the field. The local deformation of these probes,
such as planes and spheres, illustrate the tensor field. The defor-
mation is computed by multiplying the local tensor with a user-
specified vector in this point. These point-probe techniques can be
used at interactive rates. However, the inner product reduces the
tensor field to a vector field and thus only displays the tensor in-
formation corresponding to one direction. In addition, only a small
number of probes can be included in one picture to avoid visual
clutter. Zheng et al. extended this method [18] by applying it to
light rays that are bended by the local tensor value.

Zhukov and Barr [19] developed a technique to visualize diffu-
sion tensors of magnetic resonance data with the goal of tracing
anatomical fibers. Their method is based on the assumption that
there exists one large and two small eigenvalues inside the fibers,
and fiber direction corresponds to the dominant eigenvector. This
approach is an adaptation of hyperstreamlines to diffusion tenors.
An approach that arose in a similar context is an adaptation of direct
volume rendering to diffusion tensor fields presented by Kindlmann
et al. [15]. After a classification of a field with respect to anisotropy,
it is divided into three categories: linear, planar and spherical. This
property is then used to define barycentric coordinates of a trans-
fer function over a triangular domain that highlights regions of dif-
ferent anisotropic properties. These approaches are specially de-
signed for the visualization of diffusion tensors that only have pos-
itive eigenvalues and thus are not appropriate for stress, strain or
gradient tensor fields.

An approach that does attempt to provide a continuous global
view is the adaptation of LIC-similar texture approaches to tensor
fields by Pang et al. [17]. Here a white noise textures is blurred
according to the tensor field. In contrast to LIC images, the con-
volution filter is a two-dimensional area determined by the local
tensor field. This visualization is especially good at showing the
anisotropy of a tensor field. However, one problem of this method
is the need for integration of the sign of the eigenvalues. Points with
eigenvalues with opposite sign are illustrated as isotropic.

A geometrical approach was followed by Hotz et al. [9, 10]. This
approach uses a metric interpretation of a tensor field to emphasize
the physical meaning of tensors behaving similarly to stress, strain
or gradient tensors. An isometric embedding is used to visualize the
resulting abstract metric. The problem with this approach is that, in
general, no global Euclidean embedding exists for arbitrary metrics,
and several “patches” must be used to cover the entire domain [9].

3 MATHEMATICAL BASICS

A tensor is a type of geometrical entity that generalizes the concept
of scalars, vectors and linear operators in a way that is independent
of any chosen coordinate system. It is the mathematical idealiza-
tion of a geometric or physical quantity that expresses a linearized
relation between multidimensional variables. The curvature tensor

used in geometry, for example, relates a direction to the change of
the surface normal. The physical stress, strain or elasticity tensors
express the response of material to an applied force. We now review
some required basics.

Let V be a vector space of dimension n, and let V ∗ be its dual
space. In typical applications, V is the tangent space at a point of
a manifold; the elements of V may represent velocities or forces.
A tensor of order (q, p) is a multilinear mapping from the tensor
product of p copies of V and q copies of the dual vector space V ∗
into the space of real numbers, i.e.,

T : v∗⊗ . . .⊗V ∗︸ ︷︷ ︸
q−times

⊗V ⊗ . . .⊗V︸ ︷︷ ︸
p−times

→ IR. (1)

According to a basis of V and V ∗, T can be expressed by a np+q-
dimensional array of real numbers. It must be emphasized that the
tensor T and the representing array are not the same. Tensors of
order zero (p = q = 0) are scalars, tensors of first order (q = 1, p =
0) are vectors. A tensor field over some domain D assigns to every
point P ∈ D a tensor T(P).

We restrict ourselves to tensors of second order (q = 2, p = 0)
defined over three-dimensional Cartesian space. Using a fixed co-
ordinate basis, each tensor can be expressed as a 3×3 matrix, given
by nine independent scalars:

T = (ti j) =


 t11 t12 t13

t21 t22 t23
t31 t32 t33


 . (2)

A tensor T is called symmetric if for any coordinate basis, the corre-
sponding array of scalars is symmetric, i.e., ti j = t ji for i, j = 1, ..,n.
It is called antisymmetric if ti j =−t ji for i, j = 1, ..,n. Every tensor
can be decomposed in a symmetric S and an antisymmetric A part:

T = S+A (3)

where

si j =
1
2
(ti j + t ji) and ai j =

1
2
(ti j − t ji). (4)

The antisymmetric part is defined by three independent scalars and
can be interpreted as a rotation around the three-dimensional vector
a = (a23,−a13,a12). The symmetric part of the tensor S, is de-
fined by six independent scalars and is represented by a symmetric
matrix:

S = (si j) =


 s11 s12 s13

s12 s22 s23
s13 s23 s33


 . (5)

The tensor S is characterized by its eigenvalues λ1, λ2 and λ3 and
corresponding eigenvectors w1, w2 and w3, implied by the eigen-
value equation:

Swi = λiwi (6)

For symmetric tensors the eigenvalues are always real and the
eigenvectors mutually orthogonal. The transformation of the basis
to the eigenvectors basis is given by the orthogonal matrix

U = (w1,w2,w3). (7)

If UT defines the transposed matrix of U , then

U ·S ·UT =


 λ1 0 0

0 λ2 0
0 0 λ3


 = diag(λ1,λ2,λ3) (8)
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4 THE METHOD

4.1 Basic Idea

Because the physical interpretation of mathematical features of ten-
sor fields strongly depends on the application, we want to restrict
ourselves to a class of related tensor fields. These are stress and
strain tensor fields and the symmetrical part of the gradient tensor
field of a vector field. To motivate our approach we start with an
exemplary analysis of the symmetrical part of a gradient tensor S,
given by:

si j =
1
2

(
vi, j + v j,i

)
, (9)

where v = (v1,v2,v3) is the basic flow field. The variable vi, j de-
notes the partial derivative of the ith component of v with respect to
the coordinate x j . The tensor S describes the separation of neigh-
boring particles in the flow field. This behavior is expressed by the
following equation:

d
dt

(ds2) =
3

∑
i,k=1

sik dxi dxk =
3

∑
j=1

λ j du2
j . (10)

Here, ds = (dx1,dx2,dx3) and ds2 is the quadratic distance of two
neighboring points. λ j, j = 1,2,3 are the eigenvalues of T, and du j
are the components of dx corresponding to the eigenvector basis
{w j, j = 1,2,3}. If we reduce the observation to one eigendirection
wi the change of ds2 is defined by the corresponding eigenvalue λi.
We must consider these cases:

λi > 0 −→ d
dt

ds2 > 0,

λi = 0 −→ d
dt

ds2 = 0,and

λi < 0 −→ d
dt

ds2 < 0.

(11)

A similar behavior can be observed for the deformation of a probe
in a stress field (see Fig. 1).

To summarize we observe that for a gradient field as well as for
stress and strain tensors positive eigenvalues lead to a separation of
particles or expansion of a probe. Eigenvalues equal to zero imply
no change in distances and negative eigenvalues indicate a conver-
gence of the particles or compression of the probe.

Considering a time-independent vector field, the integration of
the separation Equation (10) results in the following expression for
ds2:

ds2(t) = ds2(0)+∑
ik

(sik · t)dxi dxk. (12)

Using
ds2(0) = a ·∑

i
dxi dxi (13)

we obtain:

ds2(t) = ∑
ik

(aδik + sik · t︸ ︷︷ ︸
=: gik

)dxi dxk (14)

Where δik is the Kronecker-delta. The tensor g with components
gik = aδik + sik · t can be interpreted as metric of the underlying pa-
rameter space D. The constant a plays the role of a unit length, and
t is a time variable that can be used as a scaling factor. This met-
ric definition is the basis of our tensor field visualization method.
The transformation of the tensor field into a metric is described in
the next section and the visualization of the resulting metric is dis-
cussed in Section 4.3.

λ  < 0iwi

iλ  > 0

iλ  = 0

Figure 1: Deformation of a unit probe under influence of a stress
tensor in direction of eigenvector wi. Eigenvalues larger than zero
correspond to a tensile, and eigenvalues smaller than zero to a com-
pressive force in the direction of the eigenvector.

4.2 The Transformation

Based on the observations made in Section (4.1), we define a trans-
formation of the tensor field into a metric. We do not exactly follow
the motivating Equation (14) but use a more flexible approach.

Let T be a tensor field defined on a domain D. The tensor in a
point P ∈ D is given by T(P). For each point P the tensor T(P)
is mapped to a metric tensor g(P) describing the metric in P. In
the most general form, the assignment is achieved by the following
three steps:

1. Diagonalization of the tensor field:
Switching from the original coordinate basis to the eigenvec-
tor basis {w1,w2,w3}, we obtain a diagonal tensor T′ with the
eigenvalues of T on its diagonal:

T �→ T′ = U ·T ·UT = diag(λ1,λ2,λ3) . (15)

U is the diagonalization matrix defined in Equation (7).

2. Transformation and scaling of the eigenvalue, to define the met-
ric g′ according to the eigenvector basis:

T′ �→ g′ = diag(F(λ1),F(λ2),F(λ3)) , (16)

where F : [−λmax,λmax] → IR+ is a positive monotone function,
where

λmax = max{|λi(P)|;P ∈ D, i = 1,2,3} (17)

is the largest eigenvalue according to absolute value.

3. We obtain the metric g in the original coordinate system by
inverting the diagonalization defined in Equation (15):

g = UT ·g′ ·U. (18)

If the mapping F is linear, the three steps can be combined into
one step and F can be applied to the tensor components, indepen-
dently of the chosen basis.

We now consider the function F , which defines the metric. To
underline the motivation defined by (14), we can rewrite Equation
(16) in the following way:

g′ = a · I+σ ·diag( f (λ1), f (λ2), f (λ3)) . (19)

Here I is the unit matrix, a = F(0) defines the unit length, and σ �= 0
is an appropriate scaling factor, that guarantees that the resulting
metric is positive definite. The function f : IR → IR is a monotone
function with f (0) = 0.

The resulting metric g has the following properties:
• It is positive definite and symmetric.
• Its eigenvector field is the same as the eigenvector field of the

original tensor field T, which means the tensor field topology in
the sense of Delmarcelle et al. [4] is preserved.
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Figure 2: Two examples for a anti-symmetric transformation function
f . Left: Logarithmic function; right: arc-tangent for two different
slopes for λ = 0.
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Figure 3: Example for a non-symmetric transformation function F
for two different slopes in the origin.

• The zero tensor is mapped to a multiple of the unit matrix a · I.
Its eigenvalues γ j are given by F(λ j). Positive eigenvalues are
mapped to eigenvalues greater than a, negative eigenvalues are
mapped to eigenvalues smaller than a but larger then zero.

• Since the transformation is invertible, a one-to-one correspon-
dence of the metric and the tensor field is given.
Examples for the transformation function F:
We can define the function F by using the scalars a, σ , and the

function f as given in Equation (19): F(λ ) = a+σ f (λ ).
• Identity: f = id , f (λ ) = λ

Since f is linear, the metric g is defined as:

gi j = F(ti j) = a+σ · ti j. (20)

This equation corresponds exactly to our motivating Equation
(14), where σ plays the role of the time variable t. With σ <
a/λmax we can guarantee that the metric is positive definite. The
value λmax is defined by (17).

• Anti-symmetric functions f : f (−λ ) = − f (λ ):
To empathize regions where the eigenvalues change sign it
makes sense to choose a function f with a larger slope in the
neighborhood of zero. From the large class of functions satisfy-
ing this condition we have considered two examples:
The first example is an anti-symmetric logarithmic function,

f (λ ;c) =

{
log(c ·λ +1) for λ ≥ 0

− log(1− c ·λ ) for λ < 0
. (21)

If we require σ < a/ log(c ·λmax +1) the resulting metric is pos-
itive definite.
The second example is an asymptotic function f :

f (λ ;c) = arctan(c ·λ ). (22)

Here, the limitation of σ < 2a/π is independent of λmax.
For both functions, the constant c controls the “sharpness” at
the zero crossing. For hight values of c the function becomes
steeper, see Figure 2.

As the visual perception of texture attributes is nonlinear, this
anti-symmetric approach is not always a good choice. An alterna-
tive that takes care of this aspect is defined by the class of functions
F [−λmax,λmax] → [ a

M ,a ·M], with

F(−λ ) =
a2

F(λ )
. (23)

The constant a defines again the unit, aṀ the maximum, and a
M the

minimum value for F satisfying M > 1. Functions with this prop-
erty can be obtained using anti-symmetric functions f as exponent:

F(λ ) = a · exp(σ · f (λ )) where f (−λ ) = − f (λ ). (24)

An example for such a function with a = 1 is F(λ ;c,σ) =
exp(σ arctan(c ·λ )). c determines the slope of the function in the
origin, see Figure 3. The resulting metric is always positive definite.
Therefore, the scaling factor σ is not limited.

4.3 Visualization

The problem of visualizing a tensor field has become a problem of
visualizing an abstract metric. One way to solve this problem is
an isometric embedding of the metric [9]. The disadvantage of this
approach is that it is restricted to two dimensions, and its existence
is only guaranteed locally. In general, several patches are needed
to cover the entire domain. Because we want to provide a global
representation of a field we decided to follow a different approach:
Our basic idea is to use a texture that resembles a piece of fabric
to express the characteristic properties of the metric. The texture is
stretched or compressed and bended according to the metric. Large
values of the metric, which indicate large distances, are illustrated
by a texture with low density or a stretched piece of fabric. We use
a dense texture for small values of the metric. One can also think
of a texture as probe inserted into the tensor field.

We generate the texture using LIC, a very popular method for
vector field visualization. LIC blurs a noise image along the vec-
tor field or integral curves. Blurring results in a high correlation
of the pixel along field lines, whereas perpendicular to them almost
no correlation appears. The resulting image leads to a very effective
depiction or flow direction everywhere, even in a dense vector field.
LIC was introduced in 1993 by Cabral and Leedom [2]. Since the
method was introduced there have been many publications propos-
ing extensions and improvements to make it faster [13] and more
flexible.

We compute a LIC-image for every eigenvector field to illustrate
the eigendirections of the tensor field. For the integration of the
integral curves we use Runge-Kutta of 4th order, the LIC image is
computed using Fast-LIC as proposed in [13]. In each LIC image
the eigenvalues of every eigenvector field are integrated using the
free parameters of the underlaying noise image and the convolution.
At the end we overlay all resulting LIC images to get the fabric-like
texture.

Input Noise Image

For each LIC image we need besides the direction field a specific
noise image input. We use the free parameters of this input im-
age to encode properties of the metric. Three basic parameters are
changed according to the eigenvalues. They are: density, spot size,
and color intensity of the spots. Considering these parameters, the
standard white noise image is the noise image with maximum den-
sity, minimal spot size and constant color intensity. It allows one to
obtain a very good overall impression of the field; its resolution is
only limited by the pixel size. But it is not flexible enough to inte-
grate the eigenvalues which represent fundamental field properties
besides the directions. For this reason we use sparse input images,
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(a) (b)

Figure 4: Overlay of two LIC images to illustrate to direction fields,
without integrating the eigenvalues, constant input image and con-
stant convolution length (a) white noise image (b) sparse noise image

with lower density and larger spot size even if we obtain a lower
resolution. Some examples for different input images with chang-
ing density and spot size are provided in Figure 5. The connection
of these parameters to the eigenvalues are explained in more detail
in the next sections.

Density

To define the density depending on the eigenvalues we consider the
change of the density of a fiber texture under the influence of a
stress tensor field. Only the change of density orthogonal to the
fiber structure is directly visible. A compression orthogonal to the
fibers leads to an increasing density, an expansion to a decreasing
density. For each direction field wi we define a specific density
di depending on the orthogonal eigenvalues. For two dimensional
textures this leads to the following definition of a one-dimensional
density di [spots/cm]:

di(λ ) = d0 · 1
F(λ j)

, with j =

{
2 if i = 1
1 if i = 2

. (25)

F is defined by (16). d0 defines the “unit-density”, d(0) = d0/F(0).
If we use F defined in Equation (23) we obtain as minimum density
value d0

aM and as maximum value d0M
a . An example for a density

function is shown in Figure 6.
When we switch to three dimensions we have two orthogonal

eigenvalues and thus a direction-dependent density:

di, j(λ ) = d0 · 1
F(λ j)

, in direction of w j,

di,k(λ ) = d0 · 1
F(λk)

, in direction of wk,
(26)

where j = 2,k = 3 if i = 1; j = 3,k = 1 if i = 2: and j = 1,k = 2 if
i = 3.

Spot Size

The spot size of the noise image affects the width of the fiber. In-
creasing the radius of the underlying noise image leads to thicker,
decreasing the radius leads to thinner fibers. Similar to the defini-
tion of the density this value is controlled by the orthogonal eigen-
values. The radius of the spots changes proportionally to the eigen-
values. Because a change of the spot size in direction of the integral
lines does not affect the resulting image much, we define for two-
dimensional textures circular spots specified by a radius ri. For

(a) (b) (c)

Figure 5: Example for different input images. (a) white noise im-
age with maximum resolution, (b) spot noise image with changing
density, (c) spot noise image with changing spot size

g

1

density
metric

d

eigenvalues

Figure 6: Example of a density function used to encode a metric

three dimensions, we define ellipsoids with three different diame-
ters according to the three eigenvalues:

ri, j =
r0

di, j
. (27)

Convolution Length

The defined noise image only uses the eigenvalues orthogonal to
the actual eigendirection field. A stretching or compressing in the
direction of the integral lines changes the length of the fibers. Fiber
length is correlated directly with the length of the convolution filter
li. This insight leads to the following definition of a filter length
proportional to the eigenvalues of the metric:

li = l0 ·F(λi). (28)

Color and Color Intensity

Since the influence of the density and the spot radius on the total
brightness is the same (quadratic for two and cubic for three di-
mensions), the total brightness of the fibers is constant for this spot
size and density definition. If we want to enforce the impression
of stretching and compressing along the fibers, we can in addition
change their color intensity Ii:

Ii = I0 · 1
λi

(29)

Another way to identify the regions of compression and expansion
is to use a color code. Engineers are used to red for compression
and green for tension. Therefore we use this color definition. We
apply a continuous color mapping from red for the smallest nega-
tive eigenvalues, white for zero eigenvalues and green for positive
eigenvalues. The definition of the different parameters for two di-
mensional field are summarized in Table 1, for three dimensions in
2.

4.4 Animation

According to Equation 14 we use the time variable t or the scaling
factor σ defined by Equation 19 or 24 to generate an animation
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(a) (b) (c)

(d) (e) (f)

Figure 7: These images illustrate the effect of the change of differ-
ent combinations of the image parameters on the LIC image of one
eigenvector field for a simple synthetic tensor field. In (a)-(c) only
the input image is changed corresponding to the eigenvalues of the
orthogonal eigenvector field; (a) change of density; (b) change of
spot size; (c) change of density and spot size. In images (d)-(f) we
illustrate the effect of changing the convolution length. In images
(d) and (e) the parameters of the input noise image are constant;
(d) uses a white noise; (e) shows a sparse noise image. Image (f)
shows a combination of the three parameters density, spot size, and
convolution length.

(a) (b)

(c) (d)

Figure 8: The images show the combination of two eigenvector field,
each representing both eigenvalues; (a) is based on a white noise
input image varying the convolution length. The other three images
use sparse noise. In (b) and (c) density and spot size are changed.
(d) shows a combination of the three parameters.

(a) (b) (c)

Figure 9: These images are the result of a single top-load data set,
where the force is applied in z-direction. A yz-plane slice is shown;
(a) and (b) illustrate the two eigenvector fields separately, in (c)
they are overlaid. In all images, spot size and density are changed
according to eigenvalues.

of the compression or expansion process. We start with an image
where only the eigendirections and no eigenvalues are illustrated
(pure LIC image with constant density, spot size, color intensity
and convolution length). We can then scale the factor σ slowly to
intensify the impression of expansion or compression, which are
the most important features to capture the data.

5 RESULTS

We have evaluated our method using synthetic and real data sets.
We started with a simple tensor field where the eigenvector fields
are aligned to the coordinate axes. These examples allow us to val-
idate the effect of the change of the texture parameters depending
on the eigenvalues. In a second step, we used a datasets where we
changed the eigenvector fields by rotating them by 90 degrees. Fig-
ure 7 shows some results for one eigenvector field for these datasets
using different texture parameters. In the first three images (a) - (c)
only the input texture is changed. In images (d) and (e) only the
convolution length is changed. The last image (f) shows a result of
changing all three texture parameters. Images for the same datasets
showing both eigendirections are shown in Figure 8. Again, differ-
ent input textures and parameter mappings were applied.

The next examples are results from numerical finite element sim-
ulations of the stress field applying different load combinations on
a solid block. These datasets are well-studied and therefore appro-
priate to evaluate our method. For the simulation, a 10x10x10 gird,
each cell consisting of 33 = 27 Gauss-points had been used. The
tensor field resulting from the simulation is continuous inside each
cell, but not on cell boundaries. This fact can also be observed in
our images. Figure 9 and Figure 10 show different slices of the
three-dimensional dataset from a single point load. Figure 11, 12
and 13 represent a block with a couple of forces with opposite sign
applied to the block. These images make possible a good visual
segmentation of regions of compression and expansion. Red indi-
cates compression, white reflects for no change, and green means
expansion.

6 CONCLUSIONS AND FUTURE WORK

We have discussed an intuitive method to visualize symmetric sec-
ond order tensor fields with similar behavior as stress and strain
fields. The interpretation of a tensor field as distortion of a flat met-
ric results in a visualization based on the real physical effect of the
tensor field. The distortion of the texture according to the metric
supports a flexible representation of the tensor field, which is easy
to understand. We evaluated our method for two-dimensional data
sets and two-dimensional slices of three-dimensional tensor fields.
The foundation for an extension to three dimensions now exists.
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(a) (b)

Figure 10: This figure again shows a single-top-load. Spot size and
density of the input images are adapted to the corresponding eigen-
vectors. Red shows regions of compression, green expansion accord-
ing the respective eigenvector field: (a) shows a yz-plane slice paral-
lel to the applied force; (b) shows a xy-plane slice orthogonal to the
force.

(a) (b)

Figure 11: This image shows a yz-plane slice of a two-force data set:
(a) shows the minor eigenvector field; (b) both eigenvector fields.

Figure 12: The image represents a yz-plane slice of a two-force
dataset. In the lower-left corner we see a region of compression,
a result mainly of the left pushing force; in the upper-right corner
expansion dominates as a result of the right pulling force.

Figure 13: The image represents a xz-plane slice of a two-force
dataset. The left circle corresponds to the pushing and the right
to the pulling force. The fluctuation of the color is a result of the
low resolution of the simulation.

eigenvector field
free parameters i = 1 i = 2
density value di

1
λ2

1
λ1

color intensity Ii
1
λ1

1
λ2

convolution length li λ1 λ2

spot size ri λ2 λ1

Table 1: Assignment of eigenvalues to free parameters for a two-
dimensional texture.

The transformation to a metric and the definition of the texture pa-
rameters has already been discussed in this paper. For visualization
purpose we plan to use volume rendering methods, where we have
opacity as an additional parameter. It will be used to enhance re-
gions of interest like for example, regions of compression.
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eigenvector field
free parameters i = 1 i = 2 i = 3
density value di, j

1
λ2

1
λ1

1
λ1

di,k
1
λ2

1
λ1

1
λ1

color intensity Ii
1
λ1

1
λ2

1
λ3

convolution length li λ1 λ2 λ3

spot diameter ri, j λ2 λ3 λ1
ri,k λ3 λ1 λ2

Table 2: Assignment of eigenvalues to free parameters for three di-
mensions.
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