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Abstract

This document consists of the collection of handouts for a two-
week summer workshop entitled ’Geometry and the Tmagination’, led
by John Conway, Peter Doyle, Jane Gilman and Bill Thurston at the
Geometry Center in Minneapolis, June 17-28, 1991. The workshop
was based on a course ‘Geometry and the Immagination” which we had
taught twice before at Princeton.

1 Preface

This document consists of the collection of handouts for a two-week summer
workshop entitled 'Geometry and the Imagination’, led by John Conway, Pe-
ter Doyle, Jane Gilman and Bill Thurston at the Geometry Center in Min-
neapolis, June 17-28, 1991. The workshop was based on a course ‘Geometry
and the Imagination” which we had taught twice before at Princeton.

The handouts do not give a uniform treatment of the topics covered in the
workshop: some ideas were treated almost entirely in class by lecture and
discussion, and other ideas which are fairly extensively documented were
only lightly treated in class. The motivation for the handouts was mainly to
supplement the class, not to document it.

The primary outside reading was ‘The Shape of Space’, by Jeff Weeks.
Some of the topics discussed in the course which are omitted or only lightly
covered in the handouts are developed well in that book: in particular, the



concepts of extrinsic versus intrinsic topology and geometry, and two and
three dimensional manifolds. Our approach to curvature is only partly doc-
umented in the handouts. Activities with scissors, cabbage, kale, flashlights,
polydrons, sewing, and polyhedra were really live rather than written.

The mix of students—high school students, college undergraduates, high
school teachers and college teachers—was unusual, and the mode of running
a class with the four of us teaching was also unusual. The mixture of peo-
ple helped create the tremendous flow of energy and enthusiasm during the
workshop.

Besides the four teachers and the official students, there were many
people who put a lot in to help organize or operate the course, including
Jennifer Alsted, Phil Carlson, Anthony lano-Fletcher, Maria Iano-Fletcher,
Kathy Gilder, Harvey Keynes, Al Marden, Delle Maxwell, Jeff Ondich, Tony
Phillips, John Sullivan, Margaret Thurston, Angie Vail, Stan Wagon.
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2 Philosophy

Welcome to Geometry and the Imagination!



This course aims to convey the richness, diversity, connectedness, depth
and pleasure of mathematics. The title is taken from the classic book by
Hilbert and Cohn-Vossen, “Geometry and the Imagination’. Geometry is
taken in a broad sense, as used by mathematicians, to include such fields
as topology and differential geometry as well as more classical geometry.
Imagination, an essential part of mathematics, means not only the facility
which is imaginative, but also the facility which calls to mind and manipulates
mental images. One aim of the course is to develop the imagination.

While the mathematical content of the course will be high, we will try
to make it as independent of prior background as possible. Calculus, for
example, is not a prerequisite.

We will emphasize the process of thinking about mathematics. Assign-
ments will involve thinking and writing, not just grinding through formulas.
There will be a strong emphasis on projects and discussions rather than lec-
tures. All students are expected to get involved in discussions, within class
and without. A Geometry Room on the fifth floor will be reserved for stu-
dents in the course. The room will accrete mathematical models, materials
for building models, references related to geometry, questions, responses and
(most important) people. There will be computer workstations in or near
the geometry room. You are encouraged to spend your afternoons on the
fifth floor.

The spirit of mathematics is not captured by spending 3 hours solving
20 look-alike homework problems. Mathematics is thinking, comparing, an-
alyzing, inventing, and understanding. The main point is not quantity or
speed the main point is quality of thought. The goal is to reach a more
complete and a better understanding. We will use materials such as mirrors,
Polydrons, scissors and tissue paper not because we think this is easier than
solving algebraic equations and differential equations, but because we think
that this is the way to bring thinking and reasoning to the course.

We are very enthusiastic about this course, and we have many plans to
facilitate your taking charge and learning. While you won’t need a heavy
formal background for the course, you do need a commitment of time and
energy.



3  Organization

3.1 People

We are experimenting with a diverse group of participants in this course:
high school students, high school teachers, college students, college teachers,
and others.

Topics in mathematics often have many levels of meaning, and we hope
and expect that despite—no, because of—the diversity, there will be a lot
for everyone (including we the staff) to get from the course. As you think
about something, you come to understand it from different angles, and on
successively deeper levels.

We want to encourage interactions between all the participants in the
course. It can be quite interesting for people with sophisticated backgrounds
and with elementary backgrounds to discuss a topic with each other, and the
communication can have a high value in both directions.

3.2 Scheduled meetings

The officially scheduled morning sessions, which run from 9:00 to 12:30 with
a half-hour break in the middle, form the core of the course. During these
sessions, various kinds of activities will take place. There will be some more-
or-less traditional presentations, but the main emphasis will be on encourag-
ing you to discover things for yourself. Thus the class will frequently break
into small groups of about 5-7 people for discussions of various topics.

3.3 Discussion groups

We want to enable everyone to be engaged in discussions while at the same
time preserving the unity of the course. From time to time, we will break
into discussion groups of 5-7 people.

Every member of each group is expected to take part in the discussion
and to make sure that everyone is involved: that everyone is being heard,
everyone is listening, that the discussion is not dominated by one or two
people, that everyvone understands what is going on, and that the group
sticks to the subject and really digs in.



Each group will have a reporter. The reporters will rotate so that ev-
eryone will serve as reporter during the next two weeks. The main role of
the reporters during group discussions is to listen, rather than speak. The
reporters should make sure they understand and write down the key points
and ideas from the discussion, and be prepared to summarize and explain
them to the whole class.

After a suitable time, we will ask for reports to the entire class. These
will not be formal reports. Rather, we will hold a summary discussion among
the reporters and teachers, with occasional contributions from others.

3.4 Texts

The required texts for the course are: Weeks, The Shape of Space and Cox-
eter, Introduction to Geometry. There are available at the University Book-
store.

Coxeter’s book will mainly be used as a reference book for the course,
but it is also a book that should be useful to you in the future.

Here is a list of reading assignments from The Shape of Space by Weeks.
As Weeks suggests it is important to “ .. read slowly and give things plenty
of time to digest”, as much as is possible in a condensed course of this type.

¢ Monday, June 17: Chapters 1 and 2.

o Tuesday, June 18: Chapter 3.

o Wednesday, June 19: Chapter 4.

e Thursday, June 20: Chapter 5, pages 67-77, and Chapter 6, 85-90.
e Friday. June 21  Sunday. June 23: Chapters 7 & 8.

e Monday, June 24: Chapters 9 and 10.

o Tuesday, June 25: Chapter 11 and 12.

e Wednesday, June 26: Chapter 13.

e Thursday, June 27: Chapter 16.



In addition, there is a long list of recommended reading. The geometry
room has a small collection of additional books, which you may read there.
There are several copies of some books which we highly recommend such
as Flatland by Abbott and What is Mathematics by Courant and Robbins.
There are single copies of other books.

3.5 Other materials

We will be doing a lot of constructions during class. Beginning this Tuesday
(June 18th), you should bring with you to class each time: scissors, tape,
ruler, compass, sharp pencils, plain white paper. It would be a capital idea
to bring extras to rent to your classmates.

3.6 Journals

Each participant should keep a journal for the course. While assignments
given at class meetings go in the journal, the journal is for much more: for
independent questions, ideas, and projects. The journal is not for class notes,
but for work outside of class. The style of the journal will vary from person
to person. Some will find it useful to write short summaries of what went
on in class. Any questions suggested by the class work should be in the
journal. The questions can be either speculative questions or more technical
questions. You may also want to write about the nature of the class meetings
and group discussions: what works for you and what doesn’t work, etc.

You are encouraged to cooperate with each other in working on anything
in the course, but what you put in your journal should be you. If it is
something that has emerged from work with other people, write down who
you have worked with. Ideas that come from other people should be given
proper attribution. If you have referred to sources other than the texts for
the course, cite them.

Exposition is important. If you are presenting the solution to a problem,
explain what the problem is. If you are giving an argument, explain what
the point is before you launch into it. What you should aim for is something
that could communicate to a friend or a colleague a coherent idea of what
you have been thinking and doing in the course.

Your journal should be kept on loose leaf paper. Journals will be collected
every few days and read and commented upon by the instructors. If they



are on loose leaf paper, you can hand in those parts which have not yet been
read, and continue to work on further entries. Pages should be numbered
consecutively and except when otherwise instructed, you should hand in only
those pages which have not previously been read. Write your name on each
page, and, in the upper right hand corner of the first page you hand in each
time, list the pages you have handed in (e.g. [7,12] on page 7 will indicate
that you have handed in 6 pages numbered seven to twelve).

Mainly, the journal is for you. In addition, the journals are an important
tool by which we keep in touch with you and what you are thinking about.
Our experience is that it is really fun and enjoyable when someone lets us
into their head. No matter what your status in this course, keep a journal.

Journals will be collected and read as follows:

Wed. June 19th

Friday June 21st

Tuesday, June 25th

Thursday June 26th

Your entire journal should be handed in on Friday June 27th with your final
project. We will return final journals by mail.

3.7 Constructions

Geometry lends itself to constructions and models, and we will expect every-
one to be engaged in model-making. There will be minor constructions that
may take only half an hour and that everyone does, but we will also expect
larger constructions that may take longer.

3.8 Final project

We will not have a final exam for the course, but in its place, you will
undertake a major project. The major project may be a paper investigating
more deeply some topic we touch on lightly in class. Alternatively, it might be
based on a major model project, or it might be a computer-based project. To
give you some ideas, a list of possible projects will be circulated. However,



you are also encouraged to come up with your own ideas for projects. If
possible, your project should have some visual component, for we will display
all of the projects at the end of the course at the Geometry Fair. The project
will be due on the morning of Friday June 28th. The fair will be in the
afternoon.

3.9 Geometry room/area

The fifth floor houses the Geometry Room. We hope that it will actually spill
out into the hallways and corridors and thus become the geometry area. Thus
the fifth floor will serve as a work and play room for this course. This is where
you can find mathematical toys, games, models, displays and construction
materials. Copies of handouts and books and other written materials of
interest to students in the course will be kept here as well. It should also
serve as a place to go if you want to talk to other students in the course, or
to one of the teachers. Our current plan is to have this area open from 1:30
to 4:00 PM Monday through Friday, beginning right away. There will be a
tour of the area at the end of Monday’s morning session.

4 Bicycle tracks

Here is a passage from a Sherlock Holmes story, The Adventure of the Priory
School (by Arthur Conan Doyle):

‘This track, as you perceive, was made by a rider who was going from the
direction of the school.’

‘Or towards it?’

‘No, no, my dear Watson. The more deeply sunk impression is, of course,
the hind wheel, upon which the weight rests. You perceive several places
where it has passed across and obliterated the more shallow mark of the
front one. It was undoubtedly heading away from the school.’

1. Discuss the passage above.
2. Visualize, discuss, and sketch what bicycle tracks look like.

3. When we present actual bicycle tracks, determine the direction of mo-
tion.

=1



4. What else can you tell about the bike from the tracks?

5 Polyhedra

A polyhedron is the three-dimensional version of a polygon: it is a chunk of
space with flat walls. In other words, it is a three-dimensional figure made
by gluing polygons together. The word is Greek in origin, meaning many-
seated. The plural is polyhedra. The polygonal sides of a polyhedron are
called its faces.

5.1 Discussion

Collect some triangles, either the snap-together plastic polydrons or paper
triangles. Try gluing them together in various ways to form polyhedra.

1. Fasten three triangles together at a vertex. Complete the figure by
adding one more triangle. Notice how there are three triangles at every
vertex. This figure is called a tetrahedron because it has four faces (see
the table of Greek number prefixes.)

2. Fasten triangles together so there are four at every vertex. How many
faces does it have? From the table of prefixes below, deduce its name.

3. Do the same, with five at each vertex.

4. What happens when you fasten triangles six per vertex?

5. What happens when you fasten triangles seven per vertex?
1 | mono 2| di 3 tri 4 | tetra 5 | penta
) | hexa 7 | hepta 8 | octa 9 | ennia 10 | deca
11 | hendeca 12 | dodeca 13 | triskaideca || 14 | tetrakaideca | 15 | pentakaideca
16 | hexakaideca || 17 | heptakaideca || 18 | octakaideca || 19 | enniakaideca || 20 | icosa

Table 1: The first 20 Greek number prefixes



5.2 Homework

A regular polygon is a polygon with all its edges equal and all angles equal.
A regular polyhedron is one whose faces are regular polygons, all congruent,
and having the same number of polygons at each vertex.

For homework, construct models of all possible regular polyhedra, by
trying what happens when you fasten together regular polygons with 3, 4, 5,
6, 7, etc sides so the same number come together at cach vertex.

Make a table listing the number of faces, vertices, and edges of each.

What should they be called?

6 Knots

A mathematical knot is a knotted loop. For example, you might take an
extension cord from a drawer and plug one end into the other: this makes a
mathematical knot.

It might or might not be possible to unknot it without unplugging the
cord. A knot which can be unknotted is called an unknot.

Two knots are considered equivalent if it is possible to rearrange one to
the form of the other, without cutting the loop and without allowing it to
pass through itself. The reason for using loops of string in the mathematical
definition is that knots in a length of string can always be undone by pulling
the ends through, so any two lengths of string are equivalent in this sense.

If you drop a knotted loop of string on a table, it crosses over itself in a
certain number of places. Possibly, there are ways to rearrange it with fewer
crossings—the minimum possible number of crossings is the crossing number
of the knot.

6.1 Discussion

Make drawings and use short lengths of string to investigate simple knots:
1. Are there any knots with one or two crossings? Why?
2. How many inequivalent knots are there with three crossings?

3. How many knots are there with four crossings?



Figure 1: This is drawing of a knot has 7 crossings. Is it possible to rearrange
it to have fewer crossings?
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4. How many knots can you find with five crossings?

5. How many knots can you find with six crossings?

7 Maps

A map in the plane is a collection of vertices and edges (possibly curved)
joining the vertices such that if you cut along the edges the plane falls apart
into polygons. These polygons are called the faces. A map on the sphere or
any other surface is defined similarly. Two maps are considered to be the
same if you can get from one to the other by a continouous motion of the
whole plane. Thus the two maps in figure 2 are considered to be the same.

A map on the sphere can be represented by a map in the plane by remov-
ing a point from the sphere and then stretching the rest of the sphere out to
cover the plane. (Imagine popping a balloon and stretching the rubber out
onto on the plane, making sure to stretch the material near the puncture all
the way out to infinity.)

Depending on which point you remove from the sphere, you can get differ-
ent maps in the plane. For instance, figure 3 shows three ways of representing
the map depicting the edges and vertices of the cube in the plane; these three
different pictures arise according to whether the point you remove lies in the
middle of a face, lies on an edge, or coincides with one of the vertices of the
cube.

7.1 Euler numbers

For the regular polyhedra, the Fuler number V' — E + F takes on the value
2, where V' is the number of vertices, F is the number of edges, and F' is the
number of faces.

The Euler number (pronounced ‘oiler number’) is also called the Euler
characteristic, and it is commonly denoted by the Greek letter x (pronounced
‘kai’, to rhyme with ‘sky’):

x=V—-E+F.

11



Figure 2: These two maps are considered the same (topologically equivalent),
because it is possible to continuously move one to obtain the other.
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(b)

(©)

Figure 3: These three diagrams are maps of the cube, stretched out in the
plane. In (a), a point has been removed from a face in order to stretch it
out. In (b), a vertex has been removed. In (c), a point has been removed
from an edge.
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7.2 Discussion

This exercise is designed to investigate the extent to which it is true that the
Euler number of a polyhedron is always equal to 2. We also want you to gain
some experience with representing polyhedra in the plane using maps, and
with drawing dual maps.

We will be distributing examples of different polyhedra.

1. For as many of the polyhedra as you can, determine the values of V|
E, F, and the Euler number y.

2. When you are counting the vertices and so forth, see if you can think of
more than one way to count them, so that you can check your answers.
Can you make use of symmetry to simplify counting?

3. The number Y is frequently very small compared with V', E, and F,
Can you think of ways to find the value of y without having to compute
V., E, and F', by ‘cancelling out’ vertices or faces with edges? This gives
another way to check your work.

The dual of a map is a map you get by putting a vertex in the each face,
connecting the neighboring faces by new edges which cross the old edges, and
removing all the old vertices and edges. To the extent feasible, draw a map
in the plane of the polyhedron, draw (in a different color) the dual map, and
draw a net for the polyhedron as well.

& Notation for some knots

It is a hard mathematical question to completely codify all possible knots.
Given two knots, it is hard to tell whether they are the same. It is harder
still to tell for sure that they are different.

Many simple knots can be arranged in a certain form, as illustrated below,
which is described by a string of positive integers along with a sign.

9 Knots diagrams and maps

A knot diagram gives a map on the plane, where there are four edges coming
together at each vertex. Actually, it is better to think of the diagram as

14



- &

Figure 4: Here are drawings of some examples of knots that Conway ‘names’
by a string of positive integers. The drawings use the convention that when
one strand crosses under another strand, it is broken. Notice that as you run
along the knot, the strand alternates going over and under at its crossings.
Knots with this property are called alternating knots. Can you find any
examples of knots with more than one name of this type?



5

3-1 (trefoil) 4-1 (figure eight)

SO

o
>
oy Q8

Figure 5: Here are the knots with up to six crossings. The names follow an
old system, used widely in knot tables, where the kth knot with n crossings
is called n — k. Mirror images are not included: some of these knots are
equivalent to their mirror images, and some are not. Can you tell which are
which?
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a map on the sphere, with a polygon on the outside. It sometimes helps
in recognizing when diagrams are topologically identical to label the regions
with how many edges they have.

10 Unicursal curves and knot diagrams

A unicursal curve in the plane is a curve that you get when you put down
your pencil, and draw until you get back to the starting point. As you draw,
your pencil mark can intersect itself, but you're not supposed to have any
triple intersections. You could say that you pencil is allowed to pass over
an point of the plane at most twice. This property of not having any triple
intersections is generic: If you scribble the curve with your eyes closed (and
somehow magically manage to make the curve finish off exactly where it
began), the curve won'’t have any triple intersections.

A unicursal curve differs from the curves shown in knot diagrams in that
there is no sense of the curve’s crossing over or under itself at an intersec-
tion. You can convert a unicursal curve into a knot diagram by indicating
(probably with the aid of an eraser), which strand crosses over and which
strand crosses under at each of the intersections.

A unicursal curve with 5 intersections can be converted into a knot dia-
gram in 2° ways, because each intersection can be converted into a crossing in
two ways. These 32 diagrams will not represent 32 different knots, however.

10.1 Assignment

1. Draw the 32 knot diagrams that arise from the unicursal curve underly-
ing the diagram of knot 5-2 shown in the previous section, and identify
the knots that these diagrams represent.

2. Show that any unicursal curve can be converted into a diagram of the
unknot.

3. Show that any unicursal curve can be converted into the diagram of
an alternating knot in precisely two ways. These two diagrams may
or may knot represent different knots. Give an example where the two
knots are the same, and another where the two knots are different.



electricity

Hilbert Klein Poincare
Figure 6: This is no good because we don’t want the lines to intersect.

4. Show that any unicursal curve gives a map of the plane whose regions
can be colored black and white in such a way that adjacent regions
have different colors. In how many ways can this coloring be done?
Give examples.

11 Gas, water, electricity
The diagram below shows three houses, each connected up to three utilities.
Show that it isn’t possible to rearrange the connections so that they don’t

intersect each other. Could you do it if the earth were a not a sphere but
some other surface?

12 Topology

Topology is the theory of shapes which are allowed to stretch, compress, flex
and bend, but without tearing or gluing. For example, a square is topologi-
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cally equivalent to a circle, since a square can be continously deformed into
a circle. As another example, a doughnut and a coffee cup with a handle for
are topologically equivalent, since a doughnut can be reshaped into a coffee
cup without tearing or gluing.

12.1 Letters

As a starting exercise in topology, let’s look at the letters of the alphabet.
We think of the letters as figures made from lines and curves, without fancy
doodads such as serifs.

Question. Which of the capital letters are topologically the same, and
which are topologically different? How many topologically different capital
letters are there?

13 Surfaces

A surface, or 2-manifold, is a shape any small enough neighborhood of which
is topologically equivalent to a neighborhood of a point in the plane. For
instance, a the surface of a cube is a surface topologically equivalent to the
surface of a sphere. On the other hand, if we put an extra wall inside a cube
dividing it into two rooms, we no longer have a surface, because there are
points at which three sheets come together. No small neighborhood of those
points is topologically equivalent to a small neighborhood in the plane.

Recall that you get a torus by identifying the sides of a rectangle as in
Figure 2.10 of SS (The Shape of Space). If you identify the sides slightly
differently, as in Figure 4.3, you get a surface called a Klein bottle, shown in
Figure 4.9.

13.1 Discussion

1. Take some strips and join the opposite ends of each strip together as
follows: with no twists; with one twist (half-turn)—this is called a
Mobius strip; with two twists; with three twists.

2. Imagine that you are a two-dimensional being who lives in one of these
four surfaces. To what extent can you tell exactly which one it is?

19
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Figure 7: Here are some pictures of qulfaces The pictures are intended to
indicate things like doughnuts and pretzels rather than flat strips of paper.
Can you identify these surfaces, topologically? Which ones are topologically
the same intrinsically, and which extrinsically?




3. Now cut each of the above along the midline of the original strip. De-
scribe what you get. Can you explain why?

4. What is the Euler number of a disk? A Mobius strip? A torus with
a circular hole cut from it?7 A Klein bottle? A Klein bottle with a
circular hole cut from it?

. What is the maximum number of points in the plane such that you
can draw non-intersecting segments joining each pair of points? What
about on a sphere? On a torus?

Ot

14 How to knit a Mobius Band

Start with a different color from the one you want to make the band in. Call
this the spare color. With the spare color and normal knitting needles cast
on 90 stitches.

Change to your main color yarn. Knit your row of 90 stitches onto a
circular needle. Your work now lies on about 2/3 of the needle. One end
of the work is near the tip of the needle and has the yarn attached. This
is the working end. Bend the working end around to the other end of your
work, and begin to knit those stitches onto the working end, but do not slip
them off the other end of the needle as you normally would. When you have
knitted all 90 stitches in this way, the needle loops the work twice.

Carry on knitting in the same direction, slipping stitches off the needle
when you knit them, as normal. The needle will remain looped around the
work twice. Knit five ‘rows’ (that is 5 x 90 stitches) in this way.

Cast off. You now have a Mobius band with a row of your spare color
running around the middle. Cut out and remove the spare colored yarn.
You will be left with one loose stitch in your main color which needs to be
secured.

(Expanded by Maria Iano-Fletcher from an original recipe by Miles Reid.)

15 Geometry on the sphere

We want to explore some aspects of geometry on the surface of the sphere.
This is an interesting subject in itself, and it will come in handy later on
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Figure 8: A Mobius band.

when we discuss Descartes’s angle-defect formula.

15.1 Discussion

Great circles on the sphere are the analogs of straight lines in the plane.
Such curves are often called geodesics. A spherical triangle is a region of the
sphere bounded by three arcs of geodesics.

1. Do any two distinct points on the sphere determine a unique geodesic?
Do two distinet geodesics intersect in at most one point?

2. Do any three ‘non-collinear’ points on the sphere determine a unique
triangle? Does the sum of the angles of a spherical triangle always
equal 77 Well, no. What values can the sum of the angles take on?

The area of a spherical triangle is the amount by which the sum of its
angles exceeds the sum of the angles (7) of a Euclidean triangle. In fact, for
any spherical polygon, the sum of its angles minus the sum of the angles of
a Euclidean polygon with the same number of sides is equal to its area.
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A proof of the area formula can be found in Chapter 9 of Weeks, The
Shape of Space.

16 Course projects

We expect everyone to do a project for the course. On the last day of the
course, Friday, June 28th, we will hold a Geometry Fair, where projects will
be exhibited. Parents and any other interested people are invited.

Here are some ideas, to get you started thinking about possible projects.
Be creative

don’t feel limited by these ideas.

o Write a computer program that allows the user to select one of the 17
planar symmetry groups, start doodling, and see the pattern replicate,
as in Escher’s drawings.

o Write a similar program for drawing tilings of the hyperbolic plane,
using one or two of the possible hyperbolic symmetry groups.

o Make sets of tiles which exhibit various kinds of symmetry and which
tile the plane in various symmetrical patterns.

o Write a computer program that replicates three-dimensional objects
according to a three-dimensional pattern, as in the tetrahedron, octa-
hedron, and icosahedron.

o Construct kaleidoscopes for tetrahedral, octahedral and icosahedral
symmetry.

e Counstruct a four-mirror kaleidoscope, giving a three-dimensional pat-
tern of repeating symmetry.

e The Archimidean solids are solids whose faces are regular polygons (but
not necessarily all the same) such that every vertex is symmetric with
every other vertex. Make models of the the Archimedean solids

o Write a computer program for visualizing four-dimensional space.

o Make stick models of the regular four-dimensional solids.
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Make models of three-dimensional cross-sections of regular four-dimensional
solids.

Design and implement three-dimensional tetris.

Make models of the regular star polyhedra (Kepler-Poinsot polyhe-

dron).

Knit a Klein bottle, or a projective plane.
Make some hyperbolic cloth.

Sew topological surfaces and maps.
Infinite Euclidean polyhedra.
Hyperbolic polyhedra.

Make a (possibly computational) orrery.
Design and make a sundial.

Astrolabe (Like a primitive sextant).
Calendars: perpetual, lunar, eclipse.
Cubic surface with 27 lines.

Spherical Trigonometry or Geometry: Explore spherical trigonometry
or geometry. What is the analog on the sphere of a circle in the plane?
Does every spherical triangle have a unique inscribed and circumscribed
circle? Answer these and other similar questions.

Hyperbolic Trigonometry or Geometry: Explore hyperbolic trigonome-
try or geometry. What is the analog in the hyperbolic plane of a circle
in the Euclidean plane? Does every hyperbolic triangle have a unique
inscribed and circumscribed circle? Answer these and other similar
questions.

Make a convincing model showing how a torus can be filled with circular
circles in four different ways.
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e Turning the sphere inside out.

e Stereographic lamp.

e Flexible polyhedra.

e Models of ruled surfaces.

e Models of the projective plane.

o Puzzles and models illustrating extrinsic topology.
e Folding ellipsoids, hyperboloids, and other figures.
e Optical models: elliptical mirrors, etc.

e Mechanical devices for angle trisection, etc.

e Panoramic polyhedron (similar to an astronomical globe) made from
faces which are photographs.

17 The angle defect of a polyhedron

The angle defect at a vertex of a polygon is defined to be 27 minus the sum
of the angles at the corners of the faces at that vertex. For instance, at any
vertex of a cube there are three angles of 7/2, so the angle defect is 7/2.
You can visualize the angle defect by cutting along an edge at that vertex,
and then flattening out a neighborhood of the vertex into the plane. A little
gap will form where the slit is: the angle by which it opens up is the angle
defect.

The total angle defect of the polyhedron is gotten by adding up the angle
defects at all the vertices of the polyhedron. For a cube, the total angle
defect is 8 x 7/2 = 4.

17.1 Discussion
1. What is the angle sum for a polygon (in the plane) with n sides?

2. Determine the total angle defect for each of the 5 regular polyhedra,

and for the polyhedra handed out.

25



18 Descartes’s Formula.

The angle defect at a vertex of a polygon was defined to be the amount by
which the sum of the angles at the corners of the faces at that vertex falls
short of 27 and the total angle defect of the polyhedron was defined to be
what one got when one added up the angle defects at all the vertices of the
polyhedron. We call the total defect T". Descartes discovered that there is a
connection between the total defect, T, and the Euler Number £ — V' — F.
Namely,

T=2xr(V-—E+F). (1)

Here are two proofs. They both use the fact that the sum of the angles of a
polygon with n sides is (n — 2)7.

18.1 First proof

Think of 27(V — E + F) as putting +27 at each vertex, —27 on each edge,
and +27 on each face.

We will try to cancel out the terms as much as possible, by grouping
within polygons.

For each edge, there is —27 to allocate. An edge has a polygon on each
side: put —7 on one side, and —7 on the other.

For each vertex, there is +27 to allocate: we will do it according to the
angles of polygons at that vertex. If the angle of a polygon at the vertex is
a, allocate a of the 27 to that polygon. This leaves something at the vertex:
the angle defect.

In each polygon, we now have a total of the sumn of its angles minus nw
(where n is the number of sides) plus 27. Since the sum of the angles of any
polygon is (n — 2)m, this is 0. Therefore,

2m(V—E+F)=T.
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18.2 Second proof

We begin to compute:

T = Z the angle defect at the vertex.
Vertices

= Z (2r—the sum of the angles at the corners of those faces that meet at the vertex).
Vertices

=27V — Z (the sum of the angles at the corners of those faces that meet at the vertex).
Vertices
=27V — Z the sum of the interior angles of the face.
Faces

=27V — > (ny—2)7.

Faces

Here ny denotes the number of edges on the face f.

T =27V — Z nym+ Z 2.

Faces Each face

Thus

T =27V —( ) the number of edges on the face - 7) + 27 F.
Faces

If we sumn the number of edges on each face over all of the faces, we will have
counted each edge twice. Thus

T =27V —2E7n + 27 F.

Whence,
T=2n(V—-—E+F).

18.3 Discussion

Listen to both proofs given in class.

1. Discuss both proofs with the aim of understanding them.
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2. Draw a sketch of the first proof in the blank space above.

3. Discuss the differences between the two proofs. Can you describe the
ways in which they are different? Which of you feel the first is easier
to understand? Which of you feel the second is easier to understand?
Which is more pleasing? Which is more conceptual?

19 Exercises in imagining

How do you imagine geometric figures in your head? Most people talk about
their three-dimensional imagination as ‘visualization’, but that isn’t exactly
right. A visual image is a kind of picture, and it is really two-dimensional.
The image you form in your head is more conceptual than a picture
locate things in more of a three-dimensional model than in a picture. In
fact, it is quite hard to go from a mental image to a two-dimensional visual
picture. Children struggle long and hard to learn to draw because of the
real conceptual difficulty of translating three-dimensional mental images into
two-dimensional images.

Three-dimensional mental images are connected with your visual sense,
but they are also connected with your sense of place and motion. In forming
an image, it often helps to imagine moving around it, or tracing it out with
your hands. The size of an image is important. Imagine a little half-inch
sugarcube in your hand, a two-foot cubical box, and a ten-foot cubical room
that you're inside. Logically, the three cubes have the same information, but
people often find it easier to manipulate the larger image that they can move
around in.

Geometric imagery is not just something that you are either born with
or you are not. Like any other skill, it develops with practice.

Below are some images to practice with. Some are two-dimensional, some
are three-dimensional. Some are easy, some are hard, but not necessarily in
numerical order. Find another person to work with in going through these
images. Evoke the images by talking about them, not by drawing them.
It will probably help to close your eyes, although sometimes gestures and
drawings in the air will help. Skip around to try to find exercises that are
the right level for you.

When you have gone through these images and are hungry for more, make

you
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some up yourself.

=~

10.

11.

. Picture your first name, and read off the letters backwards. If you can’t

see your whole name at once, do it by groups of three letters. Try the
same for your partner’s name, and for a few other words. Make sure
to do it by sight, not by sound.

Cut off each corner of a square, as far as the midpoints of the edges.
What shape is left over? How can you re-assemble the four corners to
make another square?

. Mark the sides of an equilateral triangle into thirds. Cut off each corner

of the triangle, as far as the marks. What do you get?

. Take two squares. Place the second square centered over the first square

but at a forty-five degree angle. What is the intersection of the two
squares?

. Mark the sides of a square into thirds, and cut off each of its corners

back to the marks. What does it look like?

. How many edges does a cube have?

. Take a wire frame which forms the edges of a cube. Trace out a closed

path which goes exactly once through each corner.

. Take a 3 x 4 rectangular array of dots in the plane, and connect the

dots vertically and horizontally. How many squares are enclosed?

. Find a closed path along the edges of the diagram above which visits

each vertex exactly once? Can you do it for a 3 x 3 array of dots?

How many different colors are required to color the faces of a cube so
that no two adjacent faces have the same color?

A tetrahedron is a pyramid with a triangular base. How many faces
does it have? How many edges? How many vertices?

2. Rest a tetrahedron on its base, and cut it halfway up. What shape is

the smaller piece? What shapes are the faces of the larger pieces?
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13.

14.

16.

17.

18.

19.

21.

23.

Rest a tetrahedron so that it is balanced on one edge, and slice it
horizontally halfway between its lowest edge and its highest edge. What
shape is the slice?

Cut off the corners of an equilateral triangle as far as the midpoints of
its edges. What is left over?

. Cut off the corners of a tetrahedron as far as the midpoints of the edges.

What shape is left over?

You see the silhouette of a cube, viewed from the corner. What does
it look like?

How many colors are required to color the faces of an octahedron so
that faces which share an edge have different colors?

Imagine a wire is shaped to go up one inch, right one inch, back one
inch, up one inch, right one inch, back one inch, .... What does it look
like, viewed from different perspectives?

The game of tetris has pieces whose shapes are all the possible ways
that four squares can be glued together along edges. Left-handed and
right-handed forms are distinguished. What are the shapes, and how
many are there?

. Someone is designing a three-dimensional tetris, and wants to use all

possible shapes formed by gluing four cubes together. What are the
shapes, and how many are there?

An octahedron is the shape formed by gluing together equilateral tri-
angles four to a vertex. Balance it on a corner, and slice it halfway up.
What shape is the slice?

2. Rest an octahedron on a face, so that another face is on top. Slice it

halfway up. What shape is the slice?

Take a 3 X 3 X 3 array of dots in space, and connect them by edges up-
and-down, left-and-right, and forward-and-back. Can you find a closed
path which visits every dot but one exactly once? Every dot?



24. Do the same for a 4 x 4 x 4 array of dots, finding a closed path that
visits every dot exactly once.

25. What three-dimensional solid has circular profile viewed from above,
a square profile viewed from the front, and a triangular profile viewed
from the side? Do these three profiles determine the three-dimensional
shape?

26. Find a path through edges of the dodecahedron which visits each vertex
exactly once.

20 Curvature of surfaces

If you take a flat piece of paper and bend it gently, it bends in only one
direction at a time. At any point on the paper, you can find at least one
direction through which there is a straight line on the surface. You can bend
it into a cylinder, or into a cone, but you can never bend it without crumpling
or distorting to the get a portion of the surface of a sphere.

If you take the skin of a sphere, it cannot be flattened out into the plane
without distortion or crumpling. This phenomenon is familiar from orange
peels or apple peels. Not even a small area of the skin of a sphere can be
flattened out without some distortion, although the distortion is very small
for a small piece of the sphere. That’s why rectangular maps of small areas
of the earth work pretty well, but maps of larger areas are forced to have
considerable distortion.

The physical descriptions of what happens as you bend various surfaces
without distortion do not have to do with the topological properties of the
surfaces. Rather, they have to do with the intrinsic geometry of the surfaces.
The intrinsic geometry has to do with geometric properties which can be
detected by measurements along the surface, without considering the space
around it.

There is a mathematical way to explain the intrinsic geometric property
of a surface that tells when one surface can or cannot be bent into another.
The mathematical concept is called the Gaussian curvature of a surface, or
often simply the curvature of a surface. This kind of curvature is not to
be confused with the curvature of a curve. The curvature of a curve is an



extrinsic geometric property, telling how it is bent in the plane, or bent in
space. Gaussian curvature is an intrinsic geometric property: it stays the
same no matter how a surface is bent, as long as it is not distorted, neither
stretched or compressed.

To get a first qualitative idea of how curvature works, here are some
examples.

A surface which bulges out in all directions, such as the surface of a
sphere, is positively curved. A rough test for positive curvature is that if you
take any point on the surface, there is some plane touching the surface at
that point so that the surface lies all on one side except at that point. No
matter how you (gently) bend the surface, that property remains.

A flat piece of paper, or the surface of a cylinder or cone, has 0 curvature.

A saddle-shaped surface has negative curvature: every plane through a
point on the saddle actually cuts the saddle surface in two or more pieces.

Question. What surfaces can you think of that have positive, zero, or
negative curvature.

Gaussian curvature is a numerical quantity associated to an area of a
surface, very closely related to angle defect. Recall that the angle defect of
a polyhedron at a vertex is the angle by which a small neighborhood of a
vertex opens up, when it is slit along one of the edges going into the vertex.

The total Gaussian curvature of a region on a surface is the angle by
which its boundary opens up, when laid out in the plane. To actually measure
Gaussian curvature of a region bounded by a curve, you can cut out a narrow
strip on the surface in neighborhood of the bounding curve. You also need to
cut open the curve, so it will be free to flatten out. Apply it to a flat surface,
being careful to distort it as little as possible. If the surface is positively
curved in the region inside the curve, when you flatten it out, the curve will
open up. The angle between the tangents to the curve at the two sides of
the cut is the total Gaussian curvature. This is like angle defect: in fact,
the total curvature of a region of a polyhedron containing exactly one vertex
is the angle defect at that vertex. You must pay attention pay attention
not just to the angle between the ends of the strip, but how the strip curled
around, keeping in mind that the standard for zero curvature is a strip which
comes back and meets itself. Pay attention to 7’s and 27’s.

If the total curvature inside the region is negative, the strip will curl
around further than necessary to close. The curvature is negative, and is
measured by the angle by which the curve overshoots.
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Figure 9: This diagram illustrates how to measure the total Gaussian cur-
vature of a patch by cutting out a strip which bounds the patch, and laying
it out on a flat surface. The angle by which the strip ‘opens up’ is the total
Gaussian curvature. You must pay a%ention not just to the angle between
the lines on the paper, but how it got there, keeping in mind that the stan-
dard for zero curvature is a strip which comes back and meets itself. Pay
attention to 7’s and 27’s.



A less destructive way to measure total Gaussian curvature of a region is
to apply narrow strips of paper to the surface, e.g., masking tape. They can
be then be removed and flattened out in the plane to measure the curvature.

Question. Measure the total Gaussian curvature of

1. a cabbage leaf.

2. a kale leaf

3. a piece of banana peel
4. a piece of potato skin

If you take two adjacent regions, is the total curvature in the whole equal to
the sum of the total curvature in the parts? Why?

The angle defect of a convex polyhedron at one of its vertices can be
measured by rolling the polyhedron in a circle around its vertex. Mark one
of the edges, and rest it on a sheet of paper. Mark the line on which it contacts
the paper. Now roll the polyhedron, keeping the vertex in contact with the
paper. When the given edge first touches the paper again, draw another line.
The angle between the two lines (in the area where the polyhedron did not
touch) is the angle defect. In fact, the area where the polyhedron did touch
the paper can be rolled up to form a paper model of a neighborhood of the
vertex in question.

A polyhedron can also be rolled in a more general way. Mark some closed
path on the surface of the polyhedron, avoiding vertices. Lay the polyhedron
on a sheet of paper so that part of the curve is in contact. Mark the position
of one of the edges in contact with the paper. now roll the polyhedron,
along the curve, until the original face is in contact again, and mark the new
position of the same edge. What is the angle between the original position
of the line, and the new position of the line?

21 (Gaussian curvature

21.1 Discussion

1. What is the curvature inside the region on a sphere exterior to a tiny
circle?



2. On a polyhedron, what is the curvature inside a region containing a
single vertex? two vertices? all but one vertex? all the vertices?

22 The celestial image of a polyhedron

We want now to discuss the celestial image of a polyhedron, and use it to
get yet another proof of Descartes’s angle-defect formula.

22.1 Discussion

1. What patter