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Abstract. We propose in this paper a visualization approach for large online 
databases using the Hilbert space–filling curve to map N–dimensional data 
points to 2D or 3D points. Dimensionality reduction methods like principal 
component analysis (PCA), multi dimensional scaling (MDS) or self organizing 
maps (SOMS) can map N–dimensional data points with N>>3 into 3 
dimensional or 2 dimensional values that allow us to visualize the data. These 
methods although popular, require either the calculation of a scatter matrix, 
eigenvalues and eigenvectors, or the iteration of learning algorithms. Therefore 
these methods cannot perform online, can be slow with large databases and 
always produce information loss when the data is mapped from the 
multidimensional space to the 2D or 3D image. Space–filling curves like the 
Peano, Z, and Hilbert curve, on the contrary, produce a 1–to–1 mapping 
between points in a line segment and an arbitrary N–Dimensional hypercube. 
This 1–to–1 mapping guarantees that there is no information loss on the 
transformation. Specifically the Hilbert space–filling curve is known to 
preserve the Lebesgue measure and has been proven to produce an optimal 
mapping in the sense that an arbitrary contiguous block of information will 
receive the minimum number of splits in the mapped space. The Hilbert space–
filling curve has been extensively used for indexing and clustering by mapping 
N–dimensional data points to 1–dimensional values. We propose here to use the 
curve to map to 2 or 3 dimensions for purposes of visualization: By taking 
advantage of its 1–to–1 nature, a new and generic method to map N–
dimensional data points to 2D or 3D points using the Hilbert space–filling curve 
is developed. We prove theoretically that the calculation of the mapping can be 
done in constant time if we fix the order of approximation, thereby giving linear 
O(n) performance on the number of data points to map. We create a Hilbert 
space–filling curve visualization tool that is much faster than the other methods 
mentioned and allows us to generate quickly for very large datasets various 
different visualizations of the data, thereby compensating the lack of use of 
statistical information in the calculation of the mapped points. We compare our 
approach to MDS and PCA with a benchmark data set and three real datasets 
using the distance preserving and topology preserving measure as benchmarks. 
Our experiments indicate that the Hilbert space–filling curve produces 
acceptable quality of mapping while achieving much faster visualization and is 
therefore especially useful for online visualization of very large data sets. 
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1   Introduction 

Dimensionality reduction methods like principal component analysis (PCA) (Duda et 
al 2000), multi dimensional scaling (MDS) or self organizing maps (SOMS) (Estévez 
et al 2000) have been extensively used to map N–dimensional data points with N>>3 
into 3 dimensional or 2 dimensional values. These techniques have many uses, one of 
them being the visualization of complex multidimensional data.  

Although quite popular, PCA and related approaches require either the calculation 
of a scatter matrix, eigenvalues and eigenvectors, or the iteration of time consuming 
learning algorithms, and as a consequence degrade considerably when the number of 
dimensions and/or data points grows. Another consequence of applying these 
techniques is that the learning algorithm or PCA matrix compresses the data in a loss-
full transformation when the data is mapped from the multidimensional space to the 
2D or 3D image (this loss is intentional, since PCA and learning algorithms are meant 
to extract the meaningful information from the data and eliminate the superfluous 
features).  Also the use of population information for the mapping like the scatter 
matrix makes it difficult, if not impossible, to create an online visualization of the 
data points. 

In this paper we propose the use of space–filling curves like the Peano, Z, and 
Hilbert curve for the purpose of data visualization. This approach, like any other, has 
advantages and disadvantages, and these algorithm trade offs should be known by the 
visualizer to be able to take good advantage of the technique. We particularly test the 
Hilbert space–filling curve using the topology preserving measure and the distance 
preserving measure. 

This paper is organized as follows: In the second section we review quickly the 
principles behind the statistically based techniques and the patter recognition 
techniques that we will be comparing to (PCA and Sammon Mapping). In the third 
section we introduce the space filling curves and their different variants focusing 
specifically on the Hilbert space–filling curve (HSFC). This section ends with a 
detailed description for the HSFC algorithm that we developed that is a simplified 
version of Butz original algorithm (Butz 1968). The computation complexity of this 
method is linear (optimal) with respect to the number of patterns to draw in the data 
set. Section four explains the distance preserving and topology preserving comparison 
methods we used and then proceeds in explaining the test sets. Section five presents 
and discusses the results of our experimentation. We end with conclusions and 
indications of further research directions that we intend to pursue. 

2   Principal Component Analysis 

The Karhunen-Loeve transform or Principal Components Analysis (PCA) is a well 
known linear orthogonal transform widely used in data projection and pattern 
recognition. In PCA we create a transform that is optimal in a sum squared error 

sense. PCA first calculates the mean x and scatter matrix S for the data set. Once this 
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is done we calculate the eigenvalues and eigenvectors ,k kλ e of S. Here, we make a 

selection of which eigenvectors to use for mapping. Usually the values of the 
eigenvalues decay rapidly, indicating that some of the dimensions in the 
multidimensional space comprise noise in the data. For visualization, we select the 2 
or 3 largest eigenvalues and their corresponding eigenvectors and create a d k×  
matrix A, where d is the number of dimensions and k is the number of chosen 
eigenvectors (2 or 3).  The transformation will be: 

' ( )t= −x A x x      (1) 

2.1   Sammon Mapping and the SAMANN Network 

Sammon Mapping (Sammon, 1969) is a useful procedure to reduce the dimensionality 
of a data set, preserving as well as possible the inter-pattern distances from the 
original input points. 

The distance measure ( )D more commonly used is the Euclidean distance and the 

error function to be minimized is the following: 
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That error function is known as the Sammon Stress function and Sammon Mapping 
minimizes it using standard gradient descent or second order methods. 

Instead of the standard Sammon Mapping, we will use a Neural Network 
implementation: SAMANN (Mao, 1995.)   

The SAMANN is usually a two layer network with sigmoid activation functions 
whose input layer has one neuron for each dimension in the input set and the output 
layer has one neuron for each dimension in the output set. The network is fed two 
patterns at a time and its trained based on the distance between them with a special 
learning rule. Please refer to the original paper for more details (Mao, 1995.). 

3   Space-Filling Curves and the Hilbert Curve 

The discovery of space-filling curves is credited to Peano (1890), when he found a 
continuous curve that visited every point of a closed square exactly once. A space-

filling curve nS  can be considered as a mapping from the unit hypercube [0,1]n  into 

the unit interval[0,1] .  
Space–filling curves in general produce a 1–to–1 mapping between points in a line 

segment and an arbitrary N–Dimensional hypercube (Mokbel et al 2002). This 1–to–1 
mapping guarantees that there is no information loss on the transformation.  

Specifically the Hilbert space–filling curve is known to preserve the Lebesgue 
measure and has been proven to produce an optimal mapping in the sense that an 
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arbitrary contiguous block of information will receive the minimum number of splits 
in the mapped space (Moon et al 2000). The Hilbert space–filling curve has been 
extensively used for indexing and clustering by mapping  N–dimensional data points 
to a 1–dimensional values (Lawder 2000, Mokbel 2004). We propose here to use the 
curve to map to 2 or 3 dimensions for purposes of visualization:  

By taking advantage of it’s 1–to–1 nature, we can map data points from an 
arbitrary d–dimensional space to a 3 dimensional or 2 dimensional space in two steps: 
first, for every point x in the data set, we map it to its one dimensional Hilbert index 

x’. Once this is done we use this x’ and map it to a value [ ]3
0,1∈y using a Hilbert 

inverse mapping (if we are visualizing in 3 dimensions). This mapping does not lose 
information because it’s 1–to–1 and therefore has an inverse mapping. 

In real life, the space-filling curves used are in fact approximations that only visit a 
finite subset of points by limiting the order of approximation of the curve, but our 
experience is that with as little as ten bits per dimension we already have a fine 
enough mapping to be able to give unique image values to every point even for large 
databases (+2 Million points).  

Formally, The thm  order approximation curve, denoted by n
mS , has a grid size of 

2m , and maps a total of 2mn  points from an n-dimensional space into a scalar value. 
The grid size is the number of divisions into which each dimension is split. The actual 
space filling curve is the limit of this sequence of curves. 

limn n
mm

S S
→∞

=  (3) 

Hilbert generalized the definition to an arbitrary number of dimensions and 
provided a general geometric procedure to construct them. There are many other 
space-filling curves like the z-curve, the gray curve, etc. However, as shown by 
(Mokbel et al 2004), the Hilbert space-filling curve produces the least number of 
splits in an index, as a product of being continuous and devoid of jumps or biased 
towards any dimension.  

The first 3 approximations of the Hilbert curve for a 2-dimensional space can be 
seen in Figure 1. 

 

Fig. 1. First 3 approximations for the Hilbert curve in 2 dimensions 
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3.1   The Hilbert Mapping Algorithm 

There are different algorithms for calculating the Hilbert mapping. The one presented 
is a slight simplification of (Lawder 2000), which in turn is a modification of an 
iterative algorithm originally presented by (Butz 1968). 

The algorithm maps numbers in binary representation and the precision achieved is 
determined by the order of approximation employed. The output scalar and 
coordinates of the input vector are real values in [0,1[ but the algorithm uses integer 
variables only with the first bit representing the first bit after the decimal point, so the 
number 0.11010001 for example would get represented as the integer 11010001.  

Please note that all the sub-indexes used in the algorithm are zero-based to ease the 
programming in any language with zero-based arrays such as C or C++1.  
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Where: 
n  is the number of dimensions. 
m  is the order of approximation. 

                                                           
1 Please refer to the Appendix for sample code in C++ for the mapping algorithms. 
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r  is the scalar output of the algorithm (the mapped value) in the range [0,1] 
     represented in n m⋅ bits. 

ir  is the thi word of n bits from r  with [0, 1]i m∈ − such that 0 1 1... mr r r r −= .  

ja  is the thj coordinate of the input vector 0 1 1, ,..., na a a − being mapped 

represented in m bits, with [0, 1]j n∈ − . 
iα  is a word of n bits whose thj bit has the same value as the thi  bit of ja . 

, , , , totJ Jω σ τ  are auxiliary variables of the algorithm with no special meaning. 

Parity: number of bits of a word whose value is non-zero. 
Principal Position: If all the n bits of the word have the same value, the principal 

position is by definition 1n − . Otherwise, it’s the zero-based index of the 
rightmost bit whose value differs from the bit in the last position (n-1). 

Finally, and are the standard bit-shift operators,  and represent 

circular bit-shift operations and ⊗ stands for the bitwise XOR. 
The reverse mapping is the exact same algorithm executed in reverse and it’s 

omitted for the sake of brevity. Nevertheless, the source code for the mapping in both 
directions is included in the Appendix.  

The algorithm is clearly ( )O nm  which is a clear advantage over the other 
techniques presented.  

4   Comparison Measures 

In order to compare numerically the different mapping procedures we use two 
different measures. The former quantifies the topology preservation of the data 
whereas the latter measures the conservation of the distances. Both measures provide 
numerical values for comparison and analysis. 

4.1   Topology Preservation 

The Topology Preservation Measure (Andreas 2000) provides a way to quantify the 
conservation of the local neighborhood for each element in the data set. 

The index of the thi nearest neighbor for a given pattern jx in the original high-

dimensional space gets denoted by ( , )NNX j i . Therefore ( ,1)NNX jx would be the 

nearest neighbor for jx .  

Following the same notation, the thi nearest neighbor for the corresponding pattern 

jy  in the low-dimensional space is ( , )NNY j i . The following credit scheme is then 

applied: 
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3 if  ( , ) ( , )
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(4) 

Basically, each one of the n nearest neighbors of  jx  gets a score between 0 and 3. 

The highest score means their relative position was preserved exactly by the mapping. 
The following score applies if their position changed but stayed within the 
neighborhood of the nearest n elements. Finally, the lowest non-zero score applies if 
the element is found in a broader neighborhood of k elements. Usual values for n and 
k are 4 and 10 respectively (Andreas 2000, Estévez et al 2005). 

Summing the scores through the whole dataset and dividing by a normalizing 
factor we obtain the Topology Preservation Measure: 

1 1

1
3

N n

ji
j i

qm qm
nN = =

= ∑∑  
(5) 

As it can be seen from the equation above, the measure is a real number between 0 
and 1, where 1qm =  would indicate a perfect preservation of the topology for the 
given parameters. 

The topology preservation measure ignores the explicit values of the Euclidean 
distances and only cares about their relative ordering. Therefore, it’s invariant to 
translations, rotations and uniform rescaling of all coordinates of the data set in one or 
both dimensional spaces. 

4.2   Distance Preservation: Sammon Stress 

This measure can be interpreted as an error or penalty assigned to the differences 
between the distances in the original space and the mapped space, see (2). Note that 
the first part of the equation is a constant normalizing factor that can be calculated 
beforehand. 

Since this measure is based solely on distances between the points, it’s insensitive 
to translations of the data set and it’s said to be invariant to uniform rescaling (D. 
Ridder 1997). 

However, from (2) it can be seen that the measure remains invariant only if both 
sets of points in both dimensional spaces get rescaled equally and simultaneously. 
Therefore for a constant set of points in the original high-dimensional space, multiple 
rescaled versions of given mapping would yield different Sammon Stress measures. 

Some dimensionality reduction techniques such as the Hilbert curve or the 
SAMANN (with sigmoid outputs) produce mapped patterns whose values are 
restricted to the unitary interval. Rescaling the input data set is not an option because 
it’s not known beforehand how large could get the mapped coordinate values (D. 
Ridder 1999) and this limits the minimum Sammon Stress they can obtain. 
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After the mapping process is finished, we propose scaling the output data set by a 
factor β that minimizes the stress function: 
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Solving that equation we find the appropriate scaling factor to be applied to avoid 
unnecessary penalties caused by scale differences: 
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(7) 

The calculation of this factor we propose is 2( )O n which is no different than the 
calculation of the Sammon Stress itself. 

5   Experiments 

Three real-world databases of three different sizes were used. For the bigger databases 
random subsets were taken to run the experiments instead of using the database as a 
whole because the comparative measures employed, specially the Sammon Stress, are 
quadratic with respect to the number of cases. 

 
1. Iris Database: The Iris database from the UCI Machine Learning Repository is 

used extensively in pattern recognition and it’s also referenced by most of the 
referenced works about dimensional mapping. It contains information about 150 
iris plants of three different classes: Setosa, Versicolor and Virginica. Each 
element is represented by four different attributes: petal length, petal width, sepal 
length and sepal width. This database is rather small and we include it solely for 
comparative purposes. 

 

2. Letter Image Recognition Data: Also from the UCI MLR, contains data about the 
26 capital letters in the English alphabet. Each letter was rendered in one out of 20 
possible fonts and distorted randomly afterwards.  The data set contains 20000 
different patterns with 16 attributes relative to their position, pixels, dimensions 
and their means, variances and correlations. Three different data sets of 1000, 2000 
and 5000 records were randomly selected to perform the experiments. 

 

3. Forest Covertype: From the Department of Forest Sciences of the Colorado State 
University, contains information about 581012 trees with seven different classes of 
cover type. The original database presented 54 attributes but number 11 to 14 were 
mutually exclusive booleans that could get represented as a single integer between 
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1 and 4. Attributes 15 to 54 presented the same behavior and were also reduced to 
a value between 1 and 40 leaving us with a total of 12 attributes for this database. 
Just like before, the experiments were performed over three random data sets of 
1000, 2000 and 5000 records.  

 

The high-dimensional data sets were mapped onto a low-dimensional space using 
the Hilbert Space-filling curve. First each pattern vector is reduced to a single scalar 
value using the described algorithm. Arbitrary-precision integers were employed in 
the code preventing any loss of information and allowing this operation to be 
completely reversible. The scalar value is then expanded using the reverse algorithm 
to a vector in the 2 or 3-dimensional space for visualization. 

This methodology is not employed by any of the reviewed references. It differs 
from the traditional approach (Keim 1995, Wettenberg 2005) where the Hilbert curve 
is used to arrange the points of one single dimension into a rectangular area or sub-
window, later each dimension gets its own sub-window on the screen and there is no 
dimensionality reduction taking place whatsoever. 

For each one of the data sets, 50 independent runs were performed with a different 
random order of the dimensions. The Hilbert curve is not biased towards any 
dimension (Moon et al 2001) therefore similar results are expected from all of them.  

For each run, both 2-dimensional and 3-dimensional mappings were created and 
the Topology Preservation Measure was calculated along with the Sammon Stress 
after scaling the mapped data according to (7). 

Principal Components Analysis was run on the same data sets and the same 
measures were also calculated for its 2-dimensional and 3-dimensional mappings. 
PCA is our main point of comparison through the experiments. 

Finally, we created a SAMANN network and initialized its first layer with the 
eigenvector matrix as shown by (Lerner et al 2000). It was run for all the data sets with 
1000 or less points and only for a two-dimensional projection. The training was stopped 
when the change in the error was less than 0.00001 or when a time limit had elapsed. 

5.1   Experimental Results 

The summarized results for the mappings using the Hilbert curve can be seen in the 
Table 1. For each of the 50 runs of each data set the best value, the mean and the 
standard deviation of both quality measures are presented. As expected from the 
properties of the curve, the standard deviations are low. 

The results for the PCA are listed in the Table 2. It gives better topology 
preservation than the Hilbert curve for smaller databases like the Iris, but 
underperforms for the Letter-recognition database and the Cover-type database in the 
two dimensional cases. 

Also, for those two bigger databases the quality of the topology preservation 
measures for PCA seems to decrease as the sample size gets larger. All the statistics 
of the PCA are based on the d d× covariance matrix which seems to become less 
representative of the nature of the data as the number of instances grows. 
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For the Hilbert mapping the topology preservation doesn’t decrease as the size of 
the data sets increases. Actually for the Letter Recognition database the best topology 
preservation was obtained when using the biggest sample size of 5000 rows. The 
obtained values are also surprisingly similar for the 2D and 3D cases. 

Table 1. Experimental results using the Hilbert Mapping 

Best Mean StDev Best Mean StDev

 Iris 150(all) 2D 0.451 0.430 0.012 0.218 0.338 0.066

Letter-rec 1000 2D 0.222 0.200 0.009 0.233 0.307 0.043

Letter-rec 2000 2D 0.223 0.208 0.006 0.227 0.302 0.042

Letter-rec 5000 2D 0.243 0.234 0.004 0.234 0.305 0.040

Cover-type 1000 2D 0.282 0.271 0.006 0.168 0.392 0.088

Cover-type 2000 2D 0.276 0.266 0.005 0.245 0.386 0.093

Cover-type 5000 2D 0.269 0.262 0.004 0.239 0.382 0.104

 Iris 150(all) 3D 0.446 0.416 0.017 0.201 0.281 0.042

Letter-rec 1000 3D 0.224 0.200 0.009 0.185 0.228 0.025

Letter-rec 2000 3D 0.225 0.208 0.007 0.182 0.227 0.030

Letter-rec 5000 3D 0.243 0.234 0.004 0.179 0.223 0.025

Cover-type 1000 3D 0.289 0.272 0.008 0.191 0.311 0.069

Cover-type 2000 3D 0.279 0.267 0.004 0.156 0.300 0.061

Cover-type 5000 3D 0.271 0.264 0.004 0.152 0.293 0.065

Sammon StressTopology P.M.
Dataset Dims

Sample 
size

 

Table 2. Experimental results using PCA 

Dataset Sample Dims TPM SS

 Iris 150(all) 2D 0.558 0.009

Letter-rec 1000 2D 0.118 0.202

Letter-rec 2000 2D 0.102 0.198

Letter-rec 5000 2D 0.080 0.198

Cover-type 1000 2D 0.267 0.075

Cover-type 2000 2D 0.211 0.074

Cover-type 5000 2D 0.165 0.072

 Iris 150(all) 3D 0.782 0.001

Letter-rec 1000 3D 0.262 0.108

Letter-rec 2000 3D 0.243 0.110

Letter-rec 5000 3D 0.205 0.109

Cover-type 1000 3D 0.342 0.045

Cover-type 2000 3D 0.295 0.044

Cover-type 5000 3D 0.262 0.043  

PCA shows better performance for the 3D case which was expected because as the 
number of dimensions in the mapped space grows, the output data set approaches the 
original data (but on different coordinate axes). 
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As far as the Sammon Stress, both mapping techniques perform similarly for the 
Letter recognition database in 2 dimensions, but PCA seems to preserve the distances 
better for the rest of the cases.  

The Hilbert mapping seems to create clusters of points that are very close together 
and usually share the same class. This could favor class separability but hurts the 
distance preservation measure. 

Figures 2 to 7 show different visualizations obtained by both mapping methods. 
As far as the SAMANN network, we found that it gets stuck very easily in local 

minima and as (D.Ridder 1997) mentions, they are slower and harder to train than 
ordinary ANNs and there are full papers devoted to its initialization. Nevertheless, for 
the Iris database it obtained a topology preservation of 0.34 and a Sammon Stress of 
0.043, clearly a local-minimum as it can be appreciated in the Figure 8. 

 

Fig. 2. Hilbert 3D visualization of the Iris database  
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Fig. 3. PCA 3D visualization of the Iris database 

 

Fig. 4. PCA 2D visualization of the Iris database  
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Fig. 5. Hilbert 2D visualization of the Iris database  

 

Fig. 6. Hilbert 2D visualization of 1000 points from the Cover-type database  
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Fig. 7. PCA 2D visualization of 1000 rows from the Cover-type database  

 

Fig. 8. SAMANN local-minimum visualization for the Iris database 



106 J. Castro and S. Burns 

6   Conclusions and Future Work 

The Hilbert Curve provides acceptable visualizations at a very small computational 
cost. The algorithm is linear with respect to both, the number of elements in the data 
set and the number of dimensions. 

Its quantitative performance seems to favor the topology preservation and not so 
much the distance preservation measure (Sammon Stress). Also, the first measure 
presented almost no variance for the different runs with different random order of 
dimensions whereas the Sammon stress presented higher differences. 

As an additional contribution, we propose a modification to the distance 
preservation measure in which the data is rescaled uniformly by a factor that 
minimizes the error function, allowing us to compare different mapping methods 
regardless of the output scaling. 

As the number of records used in the input data set grows, the Hilbert mapping 
seems to deal better with the bigger data sets than PCA, this seems to indicate it’s 
better suited to handle large databases than the traditional methods. Large databases 
also benefit in terms of speed since the mapping is done with integer shift and bitwise 
operations and the algorithm is linear to both the number of dimensions and the size 
of the data set. 

It’s also suited for online databases in which new cases or patterns appear and need 
to be visualized quickly because the method doesn’t involve any recalculation of any 
statistics and the visualization of each point is independent of the other points in the set. 

As a weakness, the mapping using the Hilbert curve treats all the dimensions in the 
input data set equally which could degrade the quality of the mapping and the 
visualization if the data set contains noisy or irrelevant dimensions. However, given 
the simplicity and speed of the algorithm, users could experiment including or 
excluding certain dimensions as the visualization process takes place. 

Visually, most of the projections made with the Hilbert curve show clusters of 
points of the same class grouped closely. PCA, on the other hand, attempts to preserve 
the variance of the projected data and this explains the better scores on the Sammon 
Stress. 

Future work might include the use of additional mapping quality measures which 
take into consideration the separation of the different classes in the projected 
mapping. Furthermore, this paper is part of a wider ongoing research regarding the 
applications of the space-filling curves not only to visualization but to classification 
problems and clustering. 
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Appendix: Sample Source Code 

The following C++ source code fragment includes the functions required to perform 
the dimensional mappings from N-dimensional to 1-dimensional values and back. 
Please read the remarks section at the end of the source code for additional 
information. 
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// N-dimensional value to 1-dimensional value: 

UINT n_to_one(const UINT a[], int dims, int order) 

{ 

    UINT Wi = 0; 

    UINT Ti = 0; 

    UINT r = 0; 

    int Jtot = 0; 

    for(int i = 0; i < order; i++) 

    { 

        UINT Ai = 0; 

        for(int j = 0; j < dims; j++) 

            if(is_bit_on(a[j],i)) 

                Ai = set_bit_on(Ai, j); 

        Wi = Wi ^ Ti; 

        UINT Oi = Ai ^ Wi; 

        Oi = left_shift_circular(Oi, Jtot, dims); 

        UINT Yi = Oi; 

        for(int j = 0; j < (dims-1); j++)Yi ^= (Oi >> (j+1)); 

        r |= clean_up(Yi,dims) >> (i * dims); 

        int J = get_principal(Yi,dims); 

        Ti = swap_bit(Oi,dims-1); 

        if(has_odd_parity(Ti,dims))Ti = swap_bit(Ti,J); 

        Ti = right_shift_circular(Ti, Jtot, dims); 

        Jtot += J; 

    } 

    return r; 

} 

// 1-dimensional value back to N-dimensional space: 

void one_to_n(UINT r, int dims, int order, UINT a[]) 

{ 

    for(int j = 0; j < dims; j++)a[j] = 0; 

    UINT Ti = 0; 

    UINT Wi = 0; 

    int Jtot = 0; 
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    for(int i = 0; i < order; i++) 

    { 

        Wi = Wi ^ Ti; 

        UINT Yi = r << (i * dims); 

        UINT Oi = Yi ^ (Yi >> 1); 

        int J = get_principal(Yi,dims); 

        Ti = swap_bit(Oi,dims-1); 

        if(has_odd_parity(Ti,dims))Ti = swap_bit(Ti,J); 

        Oi = right_shift_circular(Oi, Jtot, dims); 

        Ti = right_shift_circular(Ti, Jtot, dims); 

        UINT Ai = Wi ^ Oi; 

        for(int j = 0; j < dims; j++) 

            if(is_bit_on(Ai,j)) 

                a[j] = set_bit_on(a[j], i); 

        Jtot += J; 

    } 

} 

Remarks 

• The UINT type found in the code could be a typedef to the platform’s 64-bit 
unsigned integer or simply to unsigned int, but in any event the size of the 
type imposes a limitation to the number of dimensions (and bits per dimension). 
For the general case an arbitrary-precision C++ class is required, overloading the 
shift/bitwise operators and functions accordingly. All our experiments were 
executed this way. 

• This sample code requires the implementation of several bitwise functions such as:           
is_bit_on, set_bit_on, swap_bit, has_odd_parity, 
get_principal, clean_up, left_shift_circular and 
right_shift_circular.  

• The last five functions listed require the number of dimensions as a parameter 
because they need to know how many bits are being used within each UINT value.  

• The clean_up function is required to set the remaining (unused) bits to zero 
when they could interfere with the calculations.  
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