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ANNALS OF MATHEMATICS
Vol. 45, No. 2, April, 1944

THE SINGULARITIES OF A SMOOTH »n-MANIFOLD IN (2n — 1)-SPACE*

By HassLErR WHITNEY
(Received August 19, 1943)

1. Introduction

We showed in the preceding paper that any smooth n-manifold M" may be
imbedded in 2n-space E*". Our primary purpose here is to show that it may be
immersed in E**™!, provided that n = 2. Then near any point of M, the map-
ping f into E** is one-one, but there may be self-intersections (which may be
required to lie along curves). Equally important perhaps is the combinatorial
study of singularities (points where the mapping is not regular). Along with
true manifolds we study also manifolds with boundary. By a partial manifold,
we mean a manifold with or without boundary. In simple cases, the boundary
M of the partial manifold M will be a manifold. (] means the point set
boundary; it need not coincide with the boundary of the chain M if M is non-
orientable.) Since the question of how general M may be allowed to be (we
insist at any rate that it be a complex) is a rather difficult one, which we expect
to study further in another paper, we will use the term somewhat loosely here.
Any special assumptions on dM which may be needed will be made at the
time.

It is a highly difficult problem to see if the imbedding and immersion theorems
of the preceding paper and the present one can be improved upon. Practically
the only knowledge we have of this is found in the author’s Michigan lecture,
[3]. The most important result there for the present problem is the existence
of a closed M* which cannot be imbedded in E’. (We have not studied the
possibility of immersing it in E®) This M* is non-orientable; it seems possible
that any arientable, or any open or partial, M* may be imbedded in E’, and
immersed in E®. Possibly also any M® may be imbedded in E®!

We touch briefly on the case n = 1. Here M is a circle, or a closed, open, or
half-open arc. Locally, the mapping f into the line E' is expressible as a dif-
ferentiable real-valued function 2’ = f(z); the singularities of f are the points
where df/dx = 0. If the mapping is ‘“semi-regular,”’ the only singularities are
maxima and minima of f. It is obvious that a slight alteration of any f will
give a mapping ¢ in which this holds. The combinatorial conditions as stated
in this paper apply only to the case n = 2, but analogues could easily be given
for the case n = 1.

Suppose now that n = 2. If we take a general smooth mapping f of M*
into E°, the singularities may be quite wild. But again, a slight alteration of f
will reduce them to a single type; see §3 and Fig. 1. The new mapping is semi-
regular; these are the mappings which concern us here.

The combinatorial part of the paper consists essentially in counting the

* Presented to the American Mathematical Society, Sept. 9, 1942.
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248 HASSLER WHITNEY

algebraic number £,(M) of singular points (mod 2 if n is even) by means of the
mapping f in the boundary of M. (As an immediate corollary, €,(M) = 0
or = 0 mod 2 for all closed manifolds, orientable or non-orientable.) The manner
of counting may be seen from Fig. 1. If we follow around the boundary aM,
it cuts through M at one point, p*; hence €,(M) = 1 (mod 2). Or, again, let
us cut off a strip around the edge of f(M), and spread it out in the form of a
circle; we will find that it has a single twist. If we cut this strip into two strips,
the twist will show up in the linking of the two new strips; combinatorially, in
the fact that (each being considered as a curve) their looping coefficient is +1.
These two facts are expressible in the form:

1.1) (M) = KI(GM*, faM) = LC(foM*, faM),

M?* being M with a narrow neighborhood of aM removed. (1.1) holds in fact
for any chain A, using A*, which is A with a neighborhood of all (n — 1)-cells
removed. The fundamental theorem states that this is the algebraic number of
singular points of M, taken mod 2 if n is even. The proof in the case that M
is non-orientable and n is odd is difficylt to handle; the intersection theory in
Part III is needed to unravel the situation.

The reader may wonder why we are willing to lose preciseness in the results
by reducing mod 2 whenever n is even. The answer is, the formulas are only
correct after reducing mod 2 (and in fact, this is all we need in the proof of the
immersion theorem). This is well illustrated in Fig. 2. There are no singulari-
ties; yet f(dM) cuts through f(M) twice, each time in the same sense, so that
KI(fM*, faM) = +2. 1In the proof of the immersion theorem, we cut out
pieces of f(M) and alter them; it may be necessary to insert twisted pieces such
as in Fig. 2 to gain the desired end in case n is even.

Fundamental definitions are as in the preceding paper (including its §4).
We note also the following (see also §15 and elsewhere). A vector is tangent
to M at p € M if it points into M or along dM (if p e M) at p. It is independent
of M if it is not in the tangent plane to M at p. A vector field f(p) is tndependent
of M if each v(p) is independent of M at p. We may use a complex K in place
of M; then v is indépendent of K at p if it is independent of each cell ¢ of K with
P €4, ete.

2. Outline of the paper

A typical singularity is presented in (3.3), and a mapping of a sphere or plane
with just two of them is given in §4. Though there is only one kind of singular
point under a semi-regular mapping, we may differentiate between positive and
negative ones in case n is odd; see the definition in §5. If a single cell is mapped
by f so that it has just one singularity, as illustrated in Fig. 1, the relation to
intersections is fairly simple, as noted above. For a partial manifold, or more
generally, a complex, the relation is worked out in §7. When we express M and
M as chains, and sum, both pairs d¢7 , ¢} and ds] , ¢ will appear if ¢ > j.
By the commutation rule for Kronecker indices, such terms will cancel out for
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n odd, giving the exact value of (M) in (8.2); for n even, we get this result
only mod 2. If fis deformed, f(6M) may cut through itself; yet if n is odd, this
does not affect £,(M), as noted in Theorem 4.

To prove the immersion theorem, we need some detailed results on the type
of looping coefficients which we mentioned above in cutting a strip into two
strips. Lemmas are given which state that certain alterations of f are possible
which map 8M into a given position and let M have given directions at points
of 3M. Next we give a mapping f of an n-cube M, (n even) without singulari-
ties and with €,(M,) = +2; compare Fig. 2. To prove the immersion theorem
in case M is closed and = is odd, we use £,(M) = 0 to show that the singular
points may be paired, p; and p; , the two in a pair being of opposite type. If A
is an arc from p; to p;, a neighborhood M, of A then has the property that
2(M,) = 0. We may therefore alter f in M, to remove these two singularities.
The other cases do not require much further treatment. Two theorems are then
given which discuss the position of M under an immersion of a partial manifold.

Suppose M is non-orientable. Let M, be a chain formed by adding together
the n-cells of M. Then oM, = A + 2B, where A is the sum of the (n — 1)-
cells of M, and B is a sum of cells interior to M. Thus, if M* is a M&bius strip,
dMj} is the boundary curve plus twice an arc cutting across the strip. Suppose
nis odd. It was proved in Part I that (1.1) counts the singularities, provided
that M,, M} and aM, are used. But we do not wish to use any interior cells
of M; it is necessary to show that these always cancel out. It is clear that in
this case we cannot use KI(fM*, f @ M), since by an alteration of f we might
move fd M across itself, which would alter the Kronecker index. Moreover,
LC(fa M*, f 3 M) is not defined, since dM* and dM cannot be made into cycles.
But if we choose that n-chain p*f 8 M formed by deforming f 3 M in the yzn_s-
direction to infinity, we may study KI(fd M* p*fo M). This leads finally
to the required result. The definition of ¥,(M) required, in (20.5), is more
complicated than before; its necessity is shown by an example in §21.

In an appendix we take up some topics which are less fundamental in the paper.

1. SINGULARITIES AND INTERSECTIONS

3. The general type of singularity

DeriniTiON. The mapping f of the n-manifold M" (without boundary) into
E™ " is semi-regular if it is of class C* (so that we may apply Lemma 2) and is
proper, and for each p e M, either f is regular at p or the following holds: With
a suitable coordinate system about p,

af 1 _
(3'1) E'p = 0)
and the 2n — 1 vectors
s o
327% » ? 9z,

f

p’ ’ 9z, 0%, P

of

e,
» oz,

i
p ’ 9z, 0>

3.2)
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are independent. This condition holds then in any coordinate system for which
(3.1) holds; see [4]. The z;-direction is uniquely determined except as to sense.
If M is a partial manifold, we assume also that f is one-one in a neighborhood
of the boundary. (See the appendix, Lemma 25.)

DerFiniTiON. The semi-regular mapping f is completely semi-regular if: (a)
For any double point f(p) = f(g) (p or ¢ may be in dM) the two tangent planes
to f(M) there have only a line in common. (b) f(M) does not contain the
image of any singular point. (c) If » 2 3, there are no triple points f(p) =
f(g) = f(r); if n = 2, there is no such triple point with p ¢ 3M, and there are
no quadruple points. The self-intersections are then along smooth curves; see
§22.

LemMa 1. Arbstrarily close to any f there is a completely semi-regular f'; we
may make f’ be one-one in a neighborhood of aM, and may make f’ of class C*.

This is proved without the “completely,” for manifolds, in [4]. For partial
manifolds, we first imbed a neighborhood of the boundary (using the methods
in [1]), then extend the mapping over the interior of M, and apply the proof
mentioned to the interior. It is now easy to make the mapping completely
semi-regular (see [1], especially §9, (D)).

LemMmA 2. Let f be semi-regular. Then for any singular point p there exist
(curvilinear) coordinate systems (x,, -+ - , ) about p and (1, * - - , Yon—) about
f(p) such that f is given near p by

Yi = X,
(3.3) h=nz, =2 ---,n).
Ynti-1 = 01 %,
This also is proved in [4]. If fis of class C*"**, of class C®, or analytic, the new
coordinate systems will be of class C", of class C*, or analytic respectively.
In case n = 2, the mapping is

3.4) z =4, y=uv, z = uy;

eliminating u and v gives z = #=y+/z. For each y, the cross-section is a parab-
ola; as y passes through O, the parabola degenerates to a half-ray, and opens
out again (with sense reversed); see Figure 1. The only self-intersection is at
v = 0, mapping into the positive z-axis; in the general case,atz; = -+ =z, = 0,
mapping into the positive y-axis.

4. A mapping of a sphere or plane with just two singularities

The examples we give here not only are interesting as illustrating mappings
of whole manifolds with definite sipgularities, but are useful in the proof of the
fundamental Theorem 6, in the case of an open manifold.

Let S be the n-sphere z; + - -+ + Zat1 = 1in E™™. We define a smooth
mapping f of E"", and hence of Sy, into E>* by the equations

Y = %y
(4.1) Y1 = Tapr, (i = 2» ) n)'
Yntt—1 = 01 %5,
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For n = 2, transposing terms gives

f(z, y, z) = (x’ Iy’ z)‘
The effect of fis to turn the part z < 0 of the sphere inside out. More explicitly,
J squeezes the cross-sections S} for each z so that for z = 0, the circle S turns
into a line segment, and for z < 0, into an ellipse with sense reversed. There
are obviously two singularities, at (0, 0, =+1).

singular point

00 0 =z Zn

01 0 I 0

00 1 0 EA

10 -«- 00 0
To find the singularities, take any p = (z;, - -+ , Z.41) € S¢ , and any vector
v = (n, -, vaq) tangent to S¢ at p; then v is orthogonal to p — 0 (0 =

origin), so that Y_ viz; = 0. The vector v is mapped by finto a vector we shall
call Vf(v, p) (which may be considered as the derivative of f along v; see the
preceding paper §4); it is

Vo, p) = Sl

32.'
(Ont1, 02, 2 00, 01Ze + 021, <o+, 0124 + V.2)).



252 HASSLER WHITNEY

Suppose this vanishes, with » ¢ 0. Then v = -+ = v, = v,u = 0, hence
v, # 0, and since vix; + vty = vix; = 0 (3 > 1), wehavez, = -+ = 1, = 0.
Also X vz = nx = 0, and hence z; = 0, and z,41 = =+1. Thus the only
singular points are

pl=(0)""0)1)) P2=(0,"°,0, _1)-
Near each p;, we may determine z,4, in terms of z;, -, z., and thus write
f(xly"')xﬂ’zn+l)=F(zly°"yzn) in S:;

we find 8F/dz,|,, = 0. Computing 8F/dr; and 8’F/ax19z; at p and at p.
shows at once that these singularities are of the required type.

From the mapping f in (4.1) we obtain a mapping ¢ of E” into E** ™" as follows.
First, interchange z;, and z, 4 :

fili, 0, Tn, Tag1) = (@1, *** 3 Tn y Tnpaz, *** , Tn41Tn).

Near the point ps = (0, 1, 0, - - - , 0), this is very close to the identity mapping
of 8¢ into 8§ € E™™ < E*'; a slight deformation of f; into f; will bring it to
the identity in a neighborhood U of po in Sg . By stretching U — p, into the
part of E" outside some (n — 1)-sphere, f, transforms into the required mapping.

A mapping f of E" into E>*™' with two singularities may also be defined as
follows:

u=(L+z) - 1+ 2,

2z .

4.2) Y= o1 — _u_l’ Ysi = T =2, - .n),
1 nz; .

yn+l=1;, .'/n+.'=l7 =2 --,n—1).

Note that far from the origin, f is very near the identity. Hence a slight altera-
tion of f will make it the identity outside some sphere. (Compare the proof
of Lemma 11.) Comparing with the preceding paper, §2, we see easily that f

is regular except at the points p. = (0, - - - , 0, £1); at these points, 8f/dx, = 0.
At p, for example, the vectors (3.2) form a diagonal determinant, whose elements
diared, =2,di=100=2,---,n),dppn= —1,dnpi =30 =2,---,n — 1);

hence f is semi-regular.

6. The orientation of singular points

We shall discuss the following problem. Given a singular point p and a neigh-
borhood U of p, are there any orientation properties of E or of U determined
by the set of points f(U)? Let A be the arc of self-intersection through p (i.e.
part of the z-axis, in the coordinate system of Lemma 2). It turns out that
for n odd, an orientation of E is determined, while for n even, an orientation of E is
determined by one of A near p. We shall show in fact that the following defini-
tions are permissible.



SINGULARITIES OF A MANIFOLD 253

DErFintTIONS.  We use the above notations. If n is odd, the singular point is
positive or negative according as the vectors (3.2) determine the negative or
positive orientation of E. If n is even, the positive side of M at p is the direction
along A such that, if the z;-axis points in that direction, then the vectors (3.2)
determine the negative orientation of E. Note that A need not be oriented or
even ortentable. The reason for the choice will appear in Lemma 6.

Lemma 3. The above definitions are independent of the coordinate systems
employed.

Take two systems {z;} and {z:}, with af/ox, |, = 8f/dz1|, = 0. We may
rotate the zi-axes (i > 1), obtaining {z:}, so that

o 9

i = ag
9z; |p i ox; p’

The definitions with the {z;} are the same as with the {z}.

If n 2 2 and a2 < 0, let us replace Ty by —z; . This does not affect the
orientation of A, and since both af/az; |, and 8%f/az; oz, |, are reversed in
direction, the vectors (3.2) with the new {x} determine the same orientation
of E as with the old {z}.

Now if &y < 0, replace zy by —z; . Suppose first that n is odd. Then the
n — 1 vectors 8°f/dxydxs |,, --- , 8°f/dxs 0z |, are reversed, but no others
of (3.2) are changed. Thus the same orientation of E is determined. Suppose
next that n is even. Then the orientation of E is reversed; but the new z;-
axis now points in the other direction along A.

With all the ; > 0, we may deform the {z;} system into the {z;} system. The
vectors (3.2) remain always independent, so the same orientation of E and of A
are determined, completing the proof.

Lemma 4. If f is given by (3.3), and the coordinate systems determine the positive
orientations of M and of E, then for n odd, the singular point is negative, while for
n even, the positive direction in M at p is along the negative z,-axis.

It is sufficient to show that the matrix formed from the vectors (3.2) has a
positive determinant. Differentiating (3.3), we see that the determinant is
diagonal, with one 2 and the rest 1’s on the diagonal; hence the determinant
is2 > 0.

a; > 0for7> 2.

6. The intersection ¥,(M) of M with M under f

We shall count the number of times that f(dM) cuts through f(M) in E**7",
The definition given here suffices in the orientable case;.an interpretation in
terms of the manner in which M attaches to 8M will be studied in §9. The
latter discussion will apply also to non-orientable partial manifolds such that
dM can be made into a cycle; see §14.

If A" and B’ are singular chains in an oriented E™**, such that 4 N 9B =
dA N B = 0, then their Kronecker index KI(A, B) is defined. In particular,
let " and ¢’ be oriented cells with just one common interior point p, their tangent
planes at p having only p in common. Let u;, ---, u, be independent vectors
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tangent to ¢ at p, determining the positive orientation of ¢"; choose v1, - -, v,
similarly for ¢’. Then the intersection is positive os negative (KI = 1 or —1)
according as u,, --- , u,, v, - -+ , v, determine the positive or negative orienta-

tion of E™*.

DerintTiON. Let f be a semi-regular mapping of the orientable partial
manifold M" into E>™*. Choose an orientation of M. With an infinite sub-
division of M — aM, we obtain an infinite singular chain M©. The boundary
of M is oriented, and becomes a chain M. We define

(6.1) (M) = KI(foM, fM®) = KI(fM°, faM),

if this is finite. If 8M is compact, it will be finite, since f is proper.

We now give the definition without the help of the infinite chain M©.

LemMa 5. Let U be a neighborhood of dM in which f is one-one. Let M* be
a singular chain such that

(6.2) M — M* C U.
Then (LC = looping coefficient)
(6.3) (M) = KI(fM*, fa M) = LC(fo M*,fa M).

For we can write M® = M* + M’ where M’ C U; since f is one-one in U,
KIfM',fo M) = 0.

LemMA 6. Let the situation be as in Lemma 2. Let o be an oriented n-cell,
lying in the coordinate system, and obtained from the sphere 2 z3 = @ plus interior
by cutting off the part with z, > o, where 0 < a < B. Then for n odd, (s) = 1
or —1 according as the singular point is positive or negative, while for n even,
2(0) = 1 or —1 according as the x,-axis extends in the positive or negative direction
in M.

ReMARKs. It is easily seen that for n odd, (s is the same as (o) if o1
is obtained from the sphere by cutting off the part z; < —a; this follows also
directly from Theorem 4. In the proof of Theorem 6 for n even, we need only
the obvious fact that 2(¢) = £1.

Let p = (—a, 0,---,0), ¢ = (a, 0,---,0). The only intersection of
f(dM) with f(M®) is f(p) = f(g). Itis clear from Lemma 3 that we may suppose
that the coordinate systems determine the positive orientations of M (or o)
and of E. Now the result of Lemma 4 holds, so that it is sufficient to show that
L) = —1.

Letey, - -+ , ex be the unit vectors in E”; these determine the positive orienta-
tion of o, while at g, the vectors e, - - - , €. determine the positive orientation
of 8c. We must show that the vectors

o

» )’ 2 az.

o

p,axz

o

” ' 3z,

6.4) g;il
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determine the negative orientation of E**™'. The two sets of vectors give the
matrices

—2x 0 0 0 0

0 1 0 -« 0 01 0 «a 0

.............................. ,

0O 0 -1 0 -+ —a 00 - 10 - a
Putting the second below the first forms a determinant D which we must prove
negative. Subtracting the i** row from the (n + ¢ — )®row (i = 2, ---, n)

gives a determinant with zeros below the diagonal, whose value is
D = (—2a)(20)"" = ~(2a)" <0,
as required.

7. The self-intersection of an n-complex mapped into £

We shall consider mappings of a finite n-complex K into E**' which are one-one
in U for some neighborhood U of K™™*. Of course K might be a subcomplex of
a complex of higher dimension. We note that any mapping may be approxi-
mated to by one of the required type, even if the cells of K are replaced by more
general bounded smooth manifolds; see §16. The considerations will be con-
siderably generalized in Part III.

Let K’ be a subdivision of K such that any cell of K’ with a vertex in K™
liesin U. For each oriented ¢} of K, let o7 be the sum of the similarly oriented
n-cells of K’ in ¢} which do not touch 3¢? . For any chain A” = Y ao} set
A* = 3 awor. The coefficients a; are integers.

DEeFINITION. Generalizing the definition in §6, we set

(7.1) L(A™) = KI(fA*, foA™) = LC(foA*, faA™).

Note that, if M = Y_ ¢}, then M* = ¥ ¢!, which is not the M* previously
used; but the two definitions of ,(M) agree, as is apparent from (8.1) below.
LemMA 7. Under the above conditions, we have the point set relations

(7.2) f(ae?) N f(3e?) = 0,
(7.3) fe? = o8) Nf(30]) =0 for 4 j.

For 3¢} and 3o} , also o7 — of and 3o} , are disjoint point sets in U.
THEOREM 1. Let the mapping f of K into E*** be one-one in K* N U, U @
neighborhood of K™ in K. Then for any n-chain 3 aic?,

(7.4) (X ao?) = 3 al®(o]) for n odd,
(7.5) (2 aol) = 2 a%(el) (mod 2) for n even.
Remark. We could allow double points f(p) = f(g) with both p and ¢ in
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K", for this would not destroy the relations (7.2) and (7.3). But £, would
not then be invariant under slight deformations.

We may suppose K = K" in the proof. Set v} = f(¢}), 71 = f(o7). First,
by (7.2) and (7.3), KI(r: , d7;) has meaning for all i and j. Hence

(20 @ol) = KIQ  airi ,0 20 a;77) = 2 aia; KI(+T , 07])
1 i F 47
= 2 aiKI(r}, 071) + 2 awalKI(s} , 97]) + KI(z7, arD)].
i i<i

Now by (7.3),*87? does not intersect 7} — 77 if ¢ # j, and a7} — 97 bounds a
chain 7} — 7; which does not intersect the boundary of 77 . Hence, by ele-
mentary properties of the Kronecker index,

KI(s} ,87}) = (=1)"KI(37} , r}) = (=1)"KI(s}, a7])
= (=1)"KI(s7, 877) = (=1)"KI(+T, 87}).
Consequently
(76) (X aio?) = L ai¥e)) + 1 + (=11 2 aia;KI(+F, 97),
% i i<i
from which the theorem follows.

8. Relation between singularities and self-intersections in M

We are now ready to prove the fundamental combinatorial theorem in the
orientable case. It will be the primary object of Part III to prove the theorem
in the non-orientable case; if n is odd, we need a new definition, (20.5), of (1),
and a slight further restriction on f.

THEOREM 2. Let f be a semi-regular mapping of the compact partial manifold
M" into E™™'. Then for n odd, {,(M) is the algebraic number of singular points,
while for n even, it is congruent to this number mod 2.

Remark. We could find an exact expression for €,(1f) when n is even with
the help of the classification of self-intersections in §22.

First replace f by a completely semi-regular mapping (Lemma 1), which we
again call f. Let p;, -, p,. be the singular points. About each p; choose a
cell ¢ as in Lemma 6. We may let these be cells of a subdivision of M (which
need not be simplicial) into smooth cells.! Moreover, by first deforming the
cells of the subdivision slightly so that (n — 1)-cells touch the curves of self-
intersection in interior isolated points only, and then deforming slightly again,
we may obtain a subdivision K such that f is one-one over K. By Lemma 25,
it is one-one in a neighborhood of K"™'. Also, since M — >_%., ¢7 contains no
singular points, we may suppose that f is one-one in each ¢ , 7 > p.

Define K’ and the o asin §7, and M* asin §6. Now

f6M) NI (e7 — 7)) N M*] =0,

! Rather than prove this fact, we could easily construct a subdivision containing cells
o,;" approximately like the cells ¢} , and note that 2(s;") = (7).
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and hence
(8.1) KI(GM*, foM) = KI(Q ot, foM).
Applying theorem 1 gives
0D = 3 (D) for n odd,
8.2) -
L(M) = ; L(es) (mod 2) for n even,

since ®(s;') = 0 for ¢ > u, as fis one-one there. The theorem now follows from
Lemma 6.

THEOREM 3. Let f be a semi-reqular mapping of the closed manifold M" into
E*™ ' Then for n odd, the algebraic number of singular points vanishes, while for
n even, it vanishes mod 2.

This is a corollary of the last theorem.

ExampLE. For n = 1, the theorem says that a (semi-regular) real-valued
function defined on a circle has the same number of maxima as minima.

We give finally an invariance theorem whose proof requires Lemma 9 below.

THEOREM 4. Let f, be a deformation of the compact partial manifold M such
that fo and f, are semi-regular, and for some neighborhood U of M, each f, is regular
in U. Then if nis odd, fy and f, have the same algebraic number of singular points,
while for n even, they have the same number mod 2.

The hypothesis on f, shows that each &;,(M) may be defined as in §9. By
Lemma 9, it is constant for n odd, and is constant (mod 2) for n even. The
theorem now follows from Theorem 2.

9. Looping coefficients of vector fields in manifolds in space

DEriNiTIONS. Let K be a finite smooth complex in E*, and let v(p) be a
continuous vector field in K, independent of K. Then there is an & > 0 with
the following property. For every ¢, 0 < ¢ < &, if

(9.1) ¢ne(K) = allp + e@(p), pekK,

then K N ¢, (K) = 0. Now for any chain A" in K, ¢, A is a chain, in ¢,..(K).
For cycles A", we define

(9.2) 2(4,v) = LC(¢s..4, 4).

Because of (9.1) it is clear that the result is independent of the choice of e. The
definition will be extended in §14.

The following lemma gives the relation to the previous L.

LemMMmA 8. Let M™ be a partial orientable manifold, and let f be a semi-regular
mapping of M™ into E*"~'.  Let v(p) be defined in f(9M), and independent of f(aM),
and point into f(M) at each p. Then

(9.3) Y(M) = L(faM, v).
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To prove the lemma, we note that for e sufficiently small, the set of all ¢,
(0M) for 0 < ¢ =< e projects in a ope-one manner into a subset M’ of M, and
M’ contains all of M within some neighborhood of aM. Setting M* = M — M’
defines a chain M* to which Lemma 5 applies. Clearly

(M) = LC(faM*, faM) = LC(¢,..dM, faM) = (faM, v).

Let f be an imbedding of the r-manifold M" in E**, and let v(p) be defined so
that v(p) is independent of f(M) at f(p). If deformations f, and v, are given so
that each f, is an imbedding and each v, is independent of f.(M), clearly (fM, v)
is constant. The next lemma (used in the proof of Theorem 4) generalizes this.

LeEmMA 9. Let f, be a regular deformation of M” in E*™* such that fo and f
are imbeddings. Let v, be a continuous vector field independent of f.(M) for each t.
Then

(M, v) = (M, v) for T even,
(LM, 1) = (fuM, vo)(mod 2) for  odd.

ReMARK. The lemma clearly holds if M" is a cycle in a complex K", f, being
a regular deformation in each closed ;. The crossings (see below) may be
taken interior to n-cells 0 = U, of K.

It is easily seen by the methods in [1] that a slight alteration of f; for0 < ¢ < 1
will give a new f, with the following property. If, for a certain t , f,, i8 not
one-one, say go = fi,(p1) = fi,(p2), then this is the only double point, and the
portions U; and U of M near p; and p; are crossing each other as ¢ moves through

t. That is, if ua, -+, u are independent vectors tangent to f,,(U;) at ¢
G = 1, 2), and
o = @) _ oflp)
ot =ty ot ety

then these 2r + 1 vectors are independent.

Take ¢’ and t” very close to t;,, with ' < t; < t’. Since f is constant over
intervals containing no such ¢, , it is sufficient to prove that the relations hold
with f,. and f,.. replacing fo and fy. We may clearly accomplish the deforma-~
tion f, in two steps:‘first, push f,(U;) in the direction of u’ so that it crosses
fe:(Us) (pushing f. (p1) a distance (/7 — t')u’); second, deform the result into
fe(M). We may replace v, by v+ = v in all this if ¢ and ¢”’ are close enough
together. We now need merely prove the relations for the mappings before and
after the first deformation, which we call g,, using 0 < ¢t < 1.

Set

Mt = gl(M), N, = %.C(Mt) (0 SEts 1)’

with a small ¢ > 0. Except in U,, these are independent of t. They define
singular chains A and B such that (with M oriented)

Ml = Mo +’3A, Nx = ]\?o + 6B.
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We find
A= QM,,v) — {M,,v) = LC(N,, My) — LC(No, Mo)
= LC(8B, M) + LC(No, M, — My)
= LC(aB, My) + (—1)""'LC(aA, Ny)
= KI(B, M,) + (—1)""KI(A, No).

Since un , - -+ , %, , ' are independent, we may suppose A N B = 0. Also go
is one-one in M — U,. Hence we may clearly suppose

KI(B, (M — Us)) = KI(A, ¢u.c9o(M — U)) = 0.
Therefore
A = KIB, gUs) + (—1)"KI(A, ¢u,e00Us) = [1 + (—1)™KI(A4, ¢oU>),
which proves the lemma.
II. THE IMMERSION THEOREM

10. Some deformations related to certain vector fields

We first show when one vector field in M C E** may be deformed into
another one. In Lemma 11 we show how the boundary of a partial manifold
may be moved over to a desired position, and in Lemma 12, we show how the
boundary may be twisted to point in given directions.

Lemma 10. Let M" C E¥™ (r 2 1) be a connected closed orientable manifold,
and let v, and v, be continuous vector fields in M, each independent of M. Then
there is a deformation v,(0 < t < 1) of v tnto vy so that each v, is independent of M,
if and only if *(M, v) = (M, vy).

REMARK. If the normal bundle of M" in E**' is simple,’ the proof is easy to
give.

The necessity of the condition in the theorem is clear; we shall prove the
sufficiency. We first deform v and », into fields of unit normal vectors. Next,
let K be a simplicial complex forming a fine enough subdivision of M so that
each cell of K is nearly flat, and so that v, is nearly constant in each cell. Now
as considerations of dimensionality show at once, we may deform v; so that v, =
voin K~'. We now suppose v and v, are of this nature.

Let {07} denote the similarly oriented r-cells of K. For each p ¢ M, let S(p)
denote the unit r-sphere about p whose plane is normal to M at p, and let S'(p) C
S(p) denote the subsphere orthogonal to v(p). Let S; denote a fixed r-sphere,
and ¢, a fixed point of it. For each ¢} we introduce a “coordinate system”

1 See [3]. The present lemma belongs properly in the subject considered there. Some
of the details omitted in the present proof may be found there. In the present paper we
need only the case that M is a sphere. By cutting it into two cells and using the theorem
that any sphere-bundle over a cell is simple, the proof could be materially simplified in this
case.
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into the S(p) as follows. For each p € &; and each g € Sy, £:(p, ¢) is a point of
S(p); for each p, it is an orthogonal (distance preserving) mapping, and this
mapping is continuous in p; furthermore, £:(p, o) = vo(p). (Since the ¢} are
nearly flat, it is easy to construct £; first over the part Ss™" of S§ orthogonal
to o, So as to map into the S'(p); it is then uniquely extendable over S;.) Let

£ q) =q if ¢ =& 9.
If we orient M and S;, orient the S(p) so that the orientations of M and S(p)
at p determine the positive orientation of E, and choose the £; so that they are
rotations (i.e. sense-preserving), then each £ (p, Ei(p, q)) for each p will be a
rotation.

Set

(10.1) vi(p) = £ (p, n(p)).

Since 11(p) = vo(p) in do7 , Yi(p) = go there. Hence ¥; maps ¢ into S; so that
da; goes into o , and thus ¢, has a degree d; over o . Set

(10.2) X() = 2 dio%.

Since dim(K) = r, this is a cocycle.

Suppose v; is deformed as follows. Take any o} ; $«(p) = go here. As¢runs
from 0 to 1, let ¥:,(c7 ") sweep over S; with the degree a;, keeping /(307 ") = g0
and ¥a(o7™") = . (Thus if I is the unit interval 0 < ¢ < 1, and ¥;(¢, p) =
vi(p), ¥s maps I X o} " into S§ with the degree a;.) We may extend® y;, over
the rest of M, requiring that it be independent of ¢ except in the cells of St(s}™").
Set

vi(p) = Ei(p, ¥ii(p)), P edi,eachi;

then vo(p) = n:(p), and each v, is a field of unit normal vectors. Let d: denote
the degree defined with the help of v1. Then clearly for any ¢},

d; = di + [0] "107lay,
and hence
X@) = X(v) + apei.

Since we may carry out this process for each ¢} in turn, we may alter X by

any coboundary.
For a small ¢ > 0, if wi(o?) denotes the cell o} displaced in the direction of v;

a distance e (this mapping need not be one one), then

(10.3) M, v) = LC( wwa’, M) (k =1,2).
We shall show that
(10.4) LC(wo; — woos , M) = d:.

3 See ALEXaNDROFF-HoPF, Topologie I, Berlin, 1936, p. 501 Hilfsatz Ia.
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This quantity is defined, since v, = v;in 307 . Let us flatten ¢; into ¢’,lying in a
space E". A slight alteration of v, will make it constant in 7. Let E™* be a
plane through a point p, € o}, orthogonal to E’, and consider Sj as the unit
sphere in E™*' about p,. If we project the chain wie; — woo; parallel to E” into
E™"', and then in E™*' away from po into Sj , wee; will go into a point, say go , and
wio; will go into a chain w’e;. Now

LC(w07 — weo, E") = LC(w's%, E").

This also equals LC(w's% , po), considering this as defined in E™*' (which is oriented
like S(p)). We may suppose the ¢; chosen so that after the above alterations
and projection, »(p) + p becomes the point y:(p). Hence

LC(w'e;, E) = d;.

Interpreting the looping coefficients as Kronecker indices shows that the looping
coefficients with E” are the same as with M. Thus (10.4) is proved.
Adding the equations (10.4) gives

2 di = LC(X wid} — 2 weo’, M)
= M, vn) — M, vp) = 0.

Since M is closed, connected and oriented, there is a one-one correspondence h
between the cohomology classes of dimension r of M and the integers, given by

RO aiel) = MY aw’ = 2 a;.
It follows that
X)) =2 di=0, X0

Consequently we may deform »; into v; so that X (1) = 0, i.e. d; = 0 for each
i. Now by a theorem of Hopf,* we may deform y; into ¢ in each &; , keeping it
at goin 6. This defines a corresponding deformation of v1 into vy in &7 , keep-
ing it fixed in 87 . Thus v, is deformed into v, in M, and the lemma is proved.

LemMma 11. Let fy and fi be imbeddings of the manifold M™ in E*. Let L(p)
be the segment fo(p)fi(p). Let no two of these have common points. For each
p € M let there be a plane T(p) = T"7"(p) in E” such that

(a) fo(p) and fi(p) are in T(p),

(b) T(p) has only fi(p) in common with the tangent plane to f:(M) at f:(p) (¢ =
0, 1),

(¢) The function T(p) is smooth (Compare (1], §24).

Then there is a smooth deformation ¢, of E* (0 = t < 1) sucn that

(d) each ¢, is an imbedding, and ¢o is the identity,

(e) ¢1(fo(p)) = filp) (p e M),

(f) for a given neighborhood U of the set of all segments L(p), ¢.(p) = p for
peE” — Uand0 = ¢ = 1.

4 See ALEXANDROFF-HopF, loc. cit., p. 504, Satz {II,, or H. WaiTNEY, Duke Math. J..
vol. 3 (1937), pp. 46-50, Appendix.
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REMARKS. Any segment L(p) may reduce to a single point fo(p) = fi(p).
If M is a partial manifold, and f, = fi, together with first partial derivatives, in
M, the proof below holds, and each ¢, is the identity, together with first partial
derivatives, at all points of 9M. The most important application of the lemma
is to the case M = dM"; a given mapping fo of M" is then altered to f , so that
fiis a given mapping in M. If the mappings are of class C”, we may make each
¢: of class C".

Take any poin M. By (a), (b) and (c), it is easy to see that for some neigh-
borhood U, of po and some ay > 0, the set of points ¢ in planes T'(p) with p ¢ Uo
which are within a distance ay of L(p) fills out a neighborhood of L(p,) in E” in
a smooth one-one way (compare the proof of [1], Lemma 21). Hence, since the
L(p) are distinct, there is a positive continuous function a(p) (or a constant
a > 0 if M is compact) such that if R(p) is the set of points of T'(p) within a
distance a(p) of L(p), then the R(p) fill out a neighborhood of > L(p) in a smooth
one-one-way, and 2 R(p) € U. We may choase a smooth function n(p) > 0
such that if L’(p) is the segment L(p) extended in each direction by the amount
n(p), and C(p) is the cylinder (of dimension » — r) in T(p) with axis L'(p) and
of radius 7(p), then C(p) C R(p) for p e M (see [1], Lemma 25). It is easy to
set up an expression depending smoothly on 7(p) and the (locally oriented)
length of L(p), which defines a smooth deformation of R(p) into itself with the
properties that it is constant in R(p) — C(p), carries fo(p) into fi(p), and is an
imbedding for each ¢{. Letting this define ¢, in >~ R(p) and setting ¢.(p) =
pin E’ — Y R(p) proves the lemma.

LeEmMA 12. Let M™(n = 2) be a partial manifold, let M be a closed manifold,
and let f be a mapping of class C* of M into E>" such that in some neighborhood
U of M, f is an imbedding. Let u(p) be a smooth vector field in dM, pointing into
M at p in OM,; set

"(p) = Vf(uy p)) De oM.
Let v'(p) be a smooth vector field in f(dM), independent of f(dM), such that
LfaM, v') = &(foM, v).

Then there is a smooth mapping f' of M into E such that f' = fin M — U, f' is an
imbedding in U, f' = fin M, f' is arbitrarily close to f (but not together with first
derivatives) in M, and

Vf'(u, p) = v'(p), pedM.

Remarks. The assumption that M is closed could be easily removed. A
more accurate statement about the class of f and of f’ could be given, but we
shall not need it.

Since we need define f’ in U only, we may consider U as lying in E*™ ', and let
f be the identity; then v(p) = u(p). Set

pe=p+wp), O0sStsL
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This is a smooth mapping of I X aM into E**™'. (Since f is of class C* vand p;
are of class C" in terms of the original coordinate systemsin M.) For some # >
0, this is an imbedding for the values 0=st=s to since u is smooth. For ¢
small enough, we may project p; into U. Say p: projects into p,. Now the
points of U near M are uniquely expressible in the form p, (pedM,0 =t =
t), and

6});
B o v(p)
By Lemma 10, there is a deformatlon (@) 0=t =< 1ofv(p) = vo(p) 1nto

v(p) v1(p), such that each v; is independent of aM We may replace v;(p)
by a smooth function v, (p) as follows. First set

v; (p) = vo(p) t=1%, ve (p) = vi(p) tz3),
v/ (p) = v (p) ¢=3t-1%),3=st=3.

Then v; (p) is smooth except for 3 < ¢t < 3. Now approximate to ve (p) by a
smooth vector function v; (p) for 3 < t < §, the approximation being closer and
closer, together with first partial derivatives,ast —§ ort —§. (See [1], Theorem
2, (a) and (d). We could either make use of Theorem III of the author’s paper
in Trans. Am. Math. Soc., vol. 36 (1934), pp. 63-89, using first derivatives for
t < }andt > %, or note simply that in the approximation in Lemma 6, loc. cit.,
with m = 0, the first partial denvatlves have automatically the desired approx1-
mation property.) Setting v, T(p) = vi(p) fort < % and ¢t = § makes v: smooth
for0 <.t < 1 (see [1], Lemma 10). Moreover, with a close enough approxima-
tion, v; (p) is independent of dM for 0 < ¢ < 1.

Set
p:
at’

For certain numbers « and 8 to be determined later, with 0 < a« < 8 < %, set

v(p) =

t
(10.5) pe=p+ ‘L V2 (p) ds 0 =t=a),

(10.6) ol=p+ L e @) ds + [ T @ds  (@=ts8)

Cover oM with a finite set of coordinate systems {z;}. Let V be the maximum
of I vt‘(p) I ) | vt(p) I ) | avr(l’)/az-' l ) I 391(1’)/33-' I . Now
Gp‘

et S, o) Gz

since v (p) = v1(p) = v(p) = vo(p), the mapping thus defined is smooth. Also,
since

e _ ap l /e (D)
oz; + ax‘ ds (t = a)r
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and similarly for ¢ = «, we find

op: _ 9p

oz =78 0 =<t=8).

Since the 3p/dz; are independent for each p, and dp;/dt is independent of them,
by choosing 8 small enough we may insure that the ap:/ox; and ap;/ot are inde-
pendent for each p and ¢; hence the mapping is regular. Moreover, since

t
P=1p +£ v.(p) ds,

we have
a 8
p; - ps = L vn‘/a (p) ds —./;-a v.(p) ds,
and
aps 0
| pb — ps| < 2Va, ]£ - Pl < a7,
ap: _0pe| _ _
] T | v8—a(@) — vs(p) | -

Hence, keeping 8 fixed, we may choose a so small that the mapping pratt =
is arbitrarily close to that of p. at 8, together with first derivatives.
Set

é(t, p) = p: — P: t < 8), o(t.p) =0 t = t).

This is a mapping of the part of U outside 8 < ¢ < &, which we have just seen
may be taken arbitrarily small, with first derivatives. Hence, by [5], there is
a smooth extension of ¢ through 8 < ¢t < &, which may be taken arbitrarily
small, together with first derivatives. Setting

pi=p+olt,p) (B<t<)

completes the definition of f in U. By making ¢ and its first derivatives small
enough, we insure that we have a close approximation to f, and that the new
mapping is regular. Since

ap: _ o o
B = 3@ = %) = Vo),

we have Vf’(u(p), p) = v'(p), completing the proof.
11. A twisted cube

We wish to show how, for n even, an n-cube in E*™? can be slightly altered in
position so that, on one face, there will be a ‘‘double twist”.
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THEOREM 5. Let M, be an n-cube in E® C E>™', n even and = 2, and let No
be one of its faces. Then there is an immersion f of Mo tn E* ! with the following
properties:

(1) f s arbitrarily near the identity ©.

2)f = 6 in aM,.

() f = O, together with first derivatives, in dMo, — N, .

4) (Mo) = 2 0or —2 at will.

It would be easy to make f of class C*.

That it is possible to have 2,(Mo) > 0 can be seen at once as follows. Take
the mapping of an (n — 1)-cube into E**? with just one self-intersection as
defined in the preceding paper; translating E>** in E*"™ gives a mapping f of
M, into E* ! with a line of self-intersections, and with aM, intersecting itself
in two points. Make slight deformations so as to remove the self-intersections
of aM,. Since n is even, it is easily seen that pulling aM, away from itself at
one of these points in opposite diréctions has the opposite effect on 2,(Mo); hence
we may obtain &,(M,) # 0.

We must show how a mapping may be obtained to have also the remaining
properties. We shall first describe geometrically the case n = 2. Take a long
rectangle of paper, carry the right hand end up, towards the left, down (cutting
through itself), and to the right again; it will then be approximately in its original
position, except for the presence of a somewhat cylinder shaped portion near
the middle. This mapping may be defined by

2271 1
14z y’=1—+_;§’ Ys = Iz,

(111) Y1 = 0

the y;-axis pointing East (to the right), the y.-axis up, and the y;-axis South.
By pulling the right half fairly taut, and a little to one side, the cylindrical
piece is made very narrow, and is pulled to a sharp angle, say to about 12° from
the direction from left to right. This renders the two long edges nearly straight
again. (If a thin strip is cut off one of the long edges, it is found to have no self-
intersections, and may be formed from a straight strip by simply twisting one end.)

The two long edges are now made into straight lines by a slight distortion of
3-space. A contraction in one direction turns the edge (now a rectangle) into
a square. The resulting mapping has all the required properties except that
there is a twist along two edges instead of along only one. Let us round off the
corners. We could now either curl over all the right hand edge (see the proof
below), or greatly contract the lower and right hand portions, pulling one twisted
part of the edge all the way around the right hand end to a position near the other
twisted part (see the figure). The figure shows all these operations except for
the straightening of the wavy edge.

We turn now to the general case. By analogy with the above, we shall take
the self-intersection defined in the preceding paper, for E*~* mapped into E** %,
and translate E*** in E** but moving it at an angle § = tan™" (1/10) instead
of =/2.
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Set
W= (1423 (1 + zh),
2 .
y1=11—72,1, Y = Z; (’=2)"')n-1)’
(11.2)
1 T Ti .
yn=u—,, yn+€—l=_1‘;7’ (’=2""1n-1))

Y = Tn + 10z, .

For z, fixed, we obtain the mapping referred to. Since that mapping is regular,
and z, appears in y;._ only, the present mapping is regular. Let us call it f;.
The self-intersections are:

(11.3) fo(1,0, -++,0, & — 10) = fo(—1,0, -+, 0, « + 10).

7 A\

Fi1a. 2

Let M, be the part of E” defined by | z, | < 100. Consider the affine mapping
f’ of M, into E**" defined by omitting the terms in (11.2) containing u’:

(11.4) Yi = X5, Ynti-1 = 0 ('i = 1, cec,n — 1),
Yon1 = ZTn + 10 1.

Then f, is close to f’, together with first partial derivatives, except near the z,-
axis. (Taking n = 2, the reader is advised to plot the parallelogram y, = z,,
Yys =22+ 3y, for |z, | < 3and 22| £ 9.)

Our next object is to replace the mapping fo by a mapping f, with the same
kind of self-intersections, and such that for any p = (z;, - -+ , ), and some a,

n—1

(11.5) f2(p) = f'(p) if |za| =100 or gzﬁéa’.
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We shall do this by defining a deformation ¢, of E*"~, and setting

(11.6) @) = ¢(fo(p)) 0=t=<2).

Let NT and N7 be the parts of M, with z, = 100 and z, = — 100 respectively.
For each g e E*** let T(q) be the n-plane containing ¢ which is parallel to the
axes Of Y1, Un, Ynt1, - ** » Y2a—z. We shall define ¢, in two parts. First, ¢,
(0 < ¢ £ 1) will carry each point q + fo(p) near f/(dM)) in the plane T(g) into
f'(p), and will be the identity in E>*™" outside a neighborhood of f’(8M,). Then
#1(q) is near g if ¢ is far from the ys,_;-axis. Consequently it is easy to define
¢, (1 £t £ 2) so as to make (11.5) hold.
First, note that

)‘(u)=)\(u;a,b)=1—-3(u—a>2+2(u—a>: (@susb)

b—a b—a

has the properties
Aa) =1, Na) = Ab) = N(b) = 0;

hence, if A = 1for z < aand A = 0 for z > b, A is smooth. The maximum de-
rivative of —\is at z = }(a + b), and has the value 3/[2(b — a)].
Foreach ¢ = (1, - -+ , Y2a1) in E*! there is a unique point

7+(Q) = (231 y Y2, 00y Yn, 0: ) 0: y2n—1) (2?1 = 1!_’_%5_&0)
= f,(zlyyza *tt 9y Y, 100)

in f/(NT) N T(q). Also,

(11-8) 0’+(Q) = fo(xl s Y2y 0y Yn-1, lw)

isin T(q), and is clearly the only point of fo(NT) in T(g). Set
Pt = ot — al,

(11.7)

and

(11.9) ¢:(g) = g+ A@*(@); 1, 9x*(g) — ¥ (@), pt(g) = 9.

Thus for any g = fo(po) € fo(NT) and any g in T(go) within a distance 1 of g,
¢, moves ¢ by that vector which carries fo(po) into f'(po); if ¢ is at a distance 9
from go, then ¢.(g) = ¢.

Set w = Y2a—1 — 10y, and define the half-spaces

E*:w >0, EF:w<0.

Since w = 100 at points of f/(N7), and max [2z;/u'] = 1, w = 99 at points of
fo(NT). Hence if p*(g) < 9, w(g) = 9, and ge E*. We may therefore, using
N7 in place of N1, define = (g) etc., and define ¢.(g) for p (¢) < 9 so as to have
corresponding properties. Setting ¢:(¢) = ¢ in the rest of E*™ completes the
definition of ¢, for t = 1.
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By direct substitution, we find that for any p = (z;, - - - , z.), taking z, > 0,
filp) — fo(p) = Mo (p); 1, 9e(p),

/
o) = (22,0, ---,0, - L _mm o i g
u’l ’ ’ b ) u”’ u” ) ) u” ’ ’

— 100

=mn + —0
Hence, for any p e M, with sufficiently large z; + --- + zi_1, fi(p) is close to
fo(p) and hence to f'(p), together with first partial derivatives. Consequently,
for some a, if ¢ = fi(p) is at least a distance a from the y:._;-axis, and hence
vi + -+ + yi_iislarge, then z; + - - - + z%_ is large, and the above statement
holds. For such values of g, set

(11.10) w(g) = f'(@) — fi(9);

Then w and its first derivatives are small if g is at least a distance a from the
Y2n_1-axis; it vanishes in f'(8M,) = fi(dM,). It follows that w may be extended
over E** ! so that it is small everywhere, together with first partial derivatives,
and vanishes in f'(dM,). (This fact may be proved as follows. By a contrac-
tion in each (2n — 1)-plane yz,_1 — 10y1 = «, we may bring the set A, of points
distant at least a from the yz,_;-axis into A, ; then w is carried into w, say, de-
fined in [f'(M:) N Ai) U f/(6M,). By taking a large enough, we may make w,
and its first partial derivatives arbitrarily small. We now apply the theorem
of [5]—the fact that A, is not bounded is clearly inconsequential,—and reverse
the above contraction.) We now set

(11.11) ¢:g) = g+ (¢ — Dwl(g) 1=t=s2).

Then each ¢, is an imbedding, and (11.5) holds.
Consider E™ as a subspace of E>*'. If we define the affine mapping of B

1If=y(-=y.-(i=l,---,2n—2), yzn-1=yz.._1—10y1,

this carries f; into a mapping f; , where

=Q+a)A+ ) 1+ 250

fi(p) = v((p)) (p e My)
such that, by (11.5),
(11.12) fs(p) =p if |z.| =10 or sz = d.

Next we shall change f; to fi so that f; = identity, together with first deriva-
tives, at all points of N7 . Let M 2 be a partial manifold contained in M, and
containing all points of M; with 2} + -+ + 2%, < . For mstance, let M, be
the set, of all points of E" whose distance from the (n — 1)-cellz, = 0,23 + --- +
z:_, £ a’,is at most 100. Then fs(p) = p in 0M,;. Let u(p) be the 1nward
normal at p e 3M,. It is carried into a vector field v(p) in E™ by fi. Let
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v'(p) be defined in M, and lie in E**7", let it equal v(p) in 8M, — NT U N7,
and let it be the inward normal in aM, N N7 ; define it in aM, N NT so that

(11.13) {OM,,v') = @M., ).

Let f, be the mapping given by Lemma 12. Then fi(p) = pin aM, , and setting
fip) = pin M, — M, gives the required mapping f;. We may let fi(p) = p

n—1
if > 22 = o

te=]

Now contract E*** with a factor 100 in the y»,_;-direction, and with a factor
b = ain the other directions. This carries f; into a mapping

f) = 867" (@)))-

A certain rectangular parallelopiped M} lying in M, and containing M, is carried
into the cube

M,: |z;| =1 E=1,---;n).

Since fo(p) = p in My — M, and f, leaves yz._1 unchanged, choosing b large
enough makes f arbitrarily near the identity © in M,. Clearly f(p) = pin
M, , and 3f(p)/9z; = 080(p)/dz; in dM, — N,, where Ny = aM, N o(NY).
There remains to prove (4) of the theorem.

Since a reflection in E**' will cause a ehange in sign in &, it is sufficient to
show that €,(M,) = + 2. Clearly

8,(M0) = £, (M) = %,(M).
Since u(p) points into M, , and f, carries u(p) into v'(p) while f; carries u(p) into
v(p), Lemma 8 and (11.13) give
L (Ma) = (M., v') = (M, v) = L;,(M,).

Since the changes from f; to fy and to fy in M, , and hence in M, , are obtainable
by deformations of E>*, which leave Kronecker indices unchanged,

L,(My) = 2,(Ms).

Hence there remains to prove

(11.14) (M) = KI(uM? , fodMs) = = 2.
The intersections of fo(dM2) with f(M,) are:
pl=(_1)0"°'70’1m)) P:=(1,0,“';0,80),

= ( 1,0,---,0, —100), ‘P = (—1,0,---,0, —80),
pi € M, , pi eMs,  flds) = folp?).
Let 4 and B be the parts of M, satisfying:
A: =2 =z — 4, By:} sz 52
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respectively; we let these be chains, oriented like M;. Then A and B contain
neighborhoods of p; and p; in M respectively, and a4 and 8B contain neighbor-
hoods of p; and p; in M respectively. Since fy(dA) and fo(dB) do not intersect
B and A respectively at other points, and n is even, we have

KI(foM3, fodM2) = KI(foB, fodA) + KI1(fo4, f3B)
= KI(foB, fod4) + (—1)"KI(f0d4, foB)
= [1 + (—=D"IKI(fB, fdd) = £ 2,
completing the proof.

12. Proof of the immersion theorem

We can now prove the following theorem, with the help of Theorem 2; recall
that that theorem is proved with the exception of the case M non-orientable,
n odd.

THEOREM 6. Given any n-manifold or partial manifold M (n = 2) of class C”
(v = 1 finite or infinite), and a continuous mapping f of M into E**™*, there is an
immersion g of M arbitrarily close to f, of class C”.

ReEMARK. By Lemma 1, we may make the mapping completely semi-regular.

We suppose M is connected; otherwise, we would apply the theorem to each

component of M separately. It is sufficient to find an immersion g of class C';
for a sufficiently close approximation to g by a mapping ¢’ of class C” is auto-
matically an immersion also. We may suppose that M is of class C'°; if it were
not, we could take a manifold or partial manifold M* of class C*, and an im-
bedding ¢ of M onto M*, set f*(q) = f(¢'(g)) (g e M*), find an immersion g* of
M*, and set g(p) = g*(¢(p)) (p ¢ M). Finally, by Lemma 1, we may suppose
that f is of class C'® and semi-regular. We must now divide the proof into four
cases.
Casel. Misclosed,and nis odd. By Theorem 3, we may name the singular
points p1, P1, - -+ , Pe , P. in such a manner that p; and p: are of opposite types.
If we show how to approximate to f by a function ¢’ in which p, and p; are no
longer singular points, and with no new singular points, a repetition of this
process gives a function g approximating to f and without singular points; g is
then an immersion.

The method of proof is as follows. Join p; to p1 by an arc A in M. (This
may be taken as an arc along which f has a self-intersection.) A neighborhood
of A in M may be expressed as the image of a sphere plus interior gq ; f then
gives a smooth mapping f* of Qg into E***, with two singular points ¢: and g,
of opposite types. If we approximate to f* by an immersion g*, which agrees
with f*, together with first partial derivatives, in 8Qq , this gives the required
g in M.

We shall describe the construction of g* in the case n = 2, in spite of the fact
that 2 is not odd. By Lemma 2, we may suppose that f* near ¢, and g is as
shown in Fig. 1. We may choose the mapping of Qc into M so that near f*(g
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(and similarly, near f*(g:))f*(Q5) goes up to the top line z; = 0 in the figure,
and down again a short distance, to z; = —8. If we cut off small pieces R and
R’ of Qg containing ¢, and qi respectively, so that the new figure ends at z; = 8
near these points, then it is pretty clear that by pushing part of 2, = 8 into part
of z; = —p, we can change f* to an immersion %/, so that »'(8(Q; — R U R’)) =
f*(8Qq). Since Qg is easily mapped into Q¢ — R U R’, we obtain h with h(q) =
*(g), g€dQy .

Noting that the part 8’R of dR inside ; must, under f*, curl over the top
edge in Fig. 1, we see that watching the image of the vector normal to aQ; ,
under f* and under /', as we go along dR — &’R and along 8’R, along the latter
we obtain one complete twist more than along the former. The same is true
near ¢; . As a result, since the singular points are of opposite types, &(Qs) =
2/+(Q¢). Therefore we may apply Lemma 12, and obtain from h a mapping
g* which, like h, is an immersion, but agrees with f*, together with first deriva-
tives, in 8Qy .

We turn now to the proof for Case I. Turning to §22, (c), we see that given
P1, 1 may be chosen so that these two points are the ends of ares A and A’ ,
forming a smooth curve in M, and both mapping into a single arc in E**
(We could take, for A4, any smooth arc in M which ends like the above arc at
p and at p;.) Choose coordinate systems about p, and p; as in Lemma 2;
they are of class C*. With the proper choice of the z,-direction in each case,
the ends of A are given by

(12.1) 0=z =g Ty= -+ =z,=0.

It is easy to define independent smooth vector functions vi(p) (i = 2, --- , n)
along A so that v:(p;) and =v.(p;) are in the z-directions at p1 and p; respec-
tively. By considering M as lying in E**', and projecting the points
P + 2 awi(p) into M, we may define a coordinate system throughout a neigh-
borhood of A. We may extend the system beyond p, and p;. We have now
a neighborhood of A expressed as the imbedding of a cylinder in M, and the
ends of the cylinder are mapped approximately into the sets defined by

(12.2) n=-8 2+ +2z<ad.

(Note that x; may be replaced by —z; in Lemma 2.) If we alter the two ends
of the cylinder slightly so that they coincide with zy = —8, and then round
off the two edges (which are near z; = B, z3+ -+ 2% = o), we obtain a
partial manifold Qg , expressible as a sphere plus interior.

Let y be the imbedding of Qg into M; set

@ =f@@)  (geQ),
a=v"), a=v'@).

We may clearly suppose that f* is an imbedding in some neighborhood of 8Q¢ .
We now consider (z,, - - -, z,) a8 coordinates in Q7 near ¢, and near g; ; then the
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sets defined by (12.2) with a replaced by o/ = a/2 are parts N, and N, of aQ_ .
Let \ be a real-valued function of class C* such that

A =1 if [t] £ a/2, ANt) =0 if |t] = <.
Let R and R’ be the parts of Q7 about ¢; and g; respectively, defined by
(12.3) -8 =z = -8+ 28M@: + -+ + 2)"L

Then if Ry = Q¢ — R U R/, 8R, is a manifold of class ', and f* immerses R,
in E>*'. For each ¢ ¢ E>, let Ti(q) be the n-plane through ¢ parallel to the
axes Of Y1, Ynti, Yns2, **° , You . If T(p) = T1(f*(p)), p € No, these planes
cut f*(No) in the manner prescribed in Lemma 11. Moreover, if

N1=aR—No, N;=6R’_’N{);

then each T(p) (p € No) cuts f*(N,) in exactly one point f; (p). Pushing N, and
N, onto Ny and N7 clearly defines an imbedding 6 of Q¢ onto R, such that ff (p) =
f*(6(p)) agrees with the above fT in N, and No. Now fi and f* defined in
Ny — 8N, , satisfy the conditions for fo and f; in Lemma 11; define ¢, by that lemma,
and set

h() = 6i(fi®), PeQr.

Carry out a similar deformation of E**™* about f7 (R’), forming the mapping h
of Q¢ in E**'. Then (see the remarks following the lemma) h is of class C’,
and h(p) = f*(p) (p €8Qy). Since f* is an immersion of R, , fT and h are immer-
sions of @ . By taking 8 small enough, we may make & an arbitrarily good
approximation to f* (not of course with first derivatives).

Let u(p) be the inward normal vector at p in Qg . If we replace h by g*,
using Lemma 12, so that

g* () = f*(@), Vg*@u®), p) = Vf*u@), p) (P 3),
then g* = f* together with first partial derivatives, in 6Qs ; hence, if

g®) = g*@ @) (@ e¥(@), ¢® =f(p) otherwise,

¢’ will be smooth in M. Since h and hence ¢g* (see Lemma 12) is an immersion
in Q7 , ¢’ has no singular points in ¢(Qy'), and the proof for Case I will be com-
plete.

To apply Lemma 12, we need merely prove

(12.4) 2(haQs , Vh(u)) = 2(hoQs , Vf*(w)).

By Theorem 2 and Lemma 8, these numbers are the algebraic number of singular
points of h and f* in @ . It is O for h, since h is regular. It is also O for f*,
since f* has just two singular points, ¢; and g1, and these are of opposite types.

CaseII. M is closed and n is even. By Theorem 3, the number of singular
points is even; call them p, , p; , -+, Ps, Ds. If we proceed as under Case I,
the only difficulty is at the last step; the two numbers in (12.4) may differ from
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each other by any even integer 2k. Set M* = ¢(Q;). Choose k points 7y, - - ,
e in 9M*. For each ¢, we may express a small piece M of f(M — M*) about r;
as the 1mbedd1ng ¢: of an n-cube MM, one face N; going into part of f(aM*).
If the M are small, and we take M; C E**', we may in an obvious fashion extend
¢: to be an 1mbedd1ng of a neighborhood U; of M, in E** ' into E**™*. Let 6;
be the mapping of M; into E>*™" given by Theorem 5, with 6; = identity in
M, , together with first partial derivatives in 8M; — N;. Then

F(p) = ¢:04:'f(p) (pef (M), F(p) = f(p) otherwise,

defines a smooth mapping of M — M*, agreeing with f except in the f™(M}).
Choosing the correct sign in (4) of Theorem 5 in each case, we obtain

(12.5) 2(hoQy , Vh(w)) = 2(hoQs , VF*(w)),

where F* and its first partial derivatives are defined at points of 3Q¢ in Q¢ in
terms of F with the help of the imbedding . We may now apply Lemma 12
as before.

CaseIIl. M isopen. Choose compact partial manifolds M;in M by Lemma
20, Appendix. We shall define mappings fo = f, fi, f2, - -~ with f; arbitrarily
close to fi_1, such that f; is regular in M;, and f; = fi,in M; ;. Theng =
lim f; exists and is an immersion.

Suppose fi_1 is properly defined. The number of singular points of f;_, in
M; is finite; none are in M;_; . It is sufficient to show how an arbitrarily slight
alteration of f;_; will get rid of one of these, say p1. By (c) of Lemma 20, we
may join p; to a point p.in M — M;by anarc A C M — M,_, ; we may clearly
keep A away from M. Take a small neighborhood U of p; , and express a neigh-
borhood of f;1(U) in E** as the image ¢ of part of E*"*, so that for E® C
E™, ¢(E™) contains f;_(U). Using the last mapping of §4, we may then alter
fiz1in U so that it has two singular points, say p; and p; . If n is odd, then by
Theorem 2, these are of opposite types; hence one of these, say p; , is of opposite
type to that of p, . Applying the proof in Case I, we alter f;_, in a neighborhood
of A, together with U, getting rid of the singularities at p; and p; . If n is even,
we apply the proof in Case II, using p; and either of p; , p1 .

Case IV. M is compact but not closed; then M > 0. Add a small piece
onto M along part of aM, and remove a closed n-cell from the new portion,
obtaining a new open manifold M’, with M C M’, and extend f through M’.
By Case II1, we may alter f to give an immersion g of M’; this defines an immer-
sion g of M, and completes the proof of the Theorem.

13. Further immersion theorems

We consider here what may be done with M in an immersion of M.

THEOREM 7. Let f be a smooth mapping of the connected partial manifold M™
into E™ ' (n = 2) which is an imbedding in a neighborhood of dM. If M is not
compact, there exists an immersion g of M in E*"' which is arbitrarily close to f
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and equals f in a neighborhood of M. If M is compact and n is odd [is even),
g exists if and only if €,(M) is = 0 [is = 0 mod 2].

Using Lemma 1, we first replace f by a semi-regular mapping, which we
again call f. If M is not compact, we may clearly apply the proof in Case III
of the last theorem. If M is compact, the proof in Case I or in Case II applies.
That the condition is necessary is a consequence of Theorem 2.

THEOREM 8. Any compact partial manifold M may be immersed in E*"*
so that the mapping f s an imbedding in a neighborhood of M, and

feM) N (M — aM) = 0.

We shall not discuss the case of open manifolds. The theorem being clear
if n = 2 (all M* being known), we assume n = 3; also we may suppose M is
connected. Let fo be the immersion given by Theorem 6; by Lemma 1, we may
suppose fo is completely semi-regular. By §22, Appendix, the intersections of
fo(aM) with fo(M — dM) are on ends of arcs as described in (e;) and (es). Since
the number of such arcs is finite, it will be sufficient to show how to get rid of
an intersection of either kind.

Consider first an intersection as in (e;). Let A and B be the arcs of M with
fo(A) = fo(B), and let U be a neighborhood of A in M. It is easy to define a
smooth imbedding g of M in itself which is the identity outside U, and squeezes
the whole arc A up into a part of U beyond the end point of A which
isin M — aM, so that

gM)NA =o0.

(Use a coordinate system about A4, as in the proof for Case I of Theorem 6.)
If we choose U so small that

fo(U — ) N fo(M — U) =0,

and set f(p) = fo(g(p)), we will clearly have removed the arc of self-intersection
without introducing any further intersections.

Now take the case (e;). Say fo(A) = fo(B), all of A beingin M — aM. Since
n 2 3, we may extend 4 in one direction, forming a smooth arc A’ with one end
in aM, so that

fAd" — AN foM — A) = 0.
We now define g and f as above, with A’ in place of A.

III. FPURTHER INTERSECTION THEORY

14. Looping coefficients of vector fields in complexes in space

Using the definition of §9, we shall discuss “looping coefficients” of vector
fields and pairs of vector fields with pairs of cycles in a smooth (not necessarily
finite) complex K* € E”*'. We derive two formulas which are useful, in
particular, in studying €,(M) for a partial manifold M", f(M) CE* ", n =r + 1.
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In the rest of Part III, we study the situation when the above cycles are replaced
by chains.

For any r-chain A of K, define the r-chain ¢, .4 as in §9. Assuming v inde-
pendent of K, we shall take ¢ (or a positive continuous function ¢ = e(p) if K
is infinite) so small that

(14.1) ¢0.a(K) N s(K) =0 if —e<a<B<e
Generalizing (9.2), set (for finite r-cycles A, B)
(14.2) (4, B,v) = LC(¢,,.A, B).

If we cut a closed manifold M" into two parts M, and M,, and v(p) points
into f(M1) at f(p) in f(aM,) (where f(M) C E**"), then the following lemma,
withr =n — 1, A = B = faM; , relates ,(M,) to ,(M;). The lemma will be
generalized in (19.10).

Lemma 13. Take K and v as above. Then for finite r-cycles A and B,

(14.3) 4, B, v) = (—1)"B, A, —v).

By (14.1), B = ¢,0B may be deformed into ¢, _.B without touching ¢,,.A4,
¢»,.A may be deformed into A without touching ¢, _.B. Hence

LC(¢y,.A, B) = (—1)""'LC(B, ¢,..A)
=(=1)""LC($s—B, ¢v,.A) = (—=1)"LC(¢_,..B, A),

which proves the lemma.
REmMARK. Let a, 8, v be oriented arcs in E* joining the points p and q. Set
A =a—8,B=p8—1v. Thenitis easy to define » so that

4, B,v) =1, (B, A,v) =0.

Suppose there is a small “fin”’ stretching out from K, in the direction of a
vector field u(p) (independent of K). Then ¥(4, B, v), or &,(M) etc., may be
determined by studying the intersection of ¢, A etc. with this fin. To show this,
note first that by deforming ¢.,.4 into ¢,,54, we define a chain ¥u,a.84 such that

(14.4) a',/v.a,ﬂA = ¢v,ﬁA - ¢1).¢1A - ‘pV.G.ﬁaA'

Now let u(p) be a continuous vector function in K, independent of K, such that
K, u, v are independent in K'™'. That is, for each ¢, face ", and ped
the 2-plane through u(p) and v(p) has only p in common with the tangent plane
to & at p. We may suppose u, v are unit vector functions. Then we may

take any 7, 0 < n < ¢ and define
(14.5) (A, B, u, v) = KI($u.,,A, ¥s.0..B).

Note that if 34 = 8B = 0, then this is defined without the restriction that
K, u and v be independent in K™
This quantity is reducible to the former:
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LemMA 14. If 0A = 0B = 0, then
(14.6) A, B, u, v) = B, 4, v) + (—1)R(4, B, u).
In particular,
4, 4,v,v) = 28(4, A, v) (r even),
=0 (r odd).
By the method of proof of the last lemma, we find
(4, B, u, v) = KI(¥s,0,B, du.sd)
= LC(¢o,eB — B, ¢us4) = LC(¢y,.B, A) — LC(B, ¢u.sA)
= LC(¢o,B, A) + (—1)'LC(¢u..4, B),
which gives (14.6).

(14.7)

16. The type of complex we shall use®

In the rest of Part III we shall use only complexes that are simplicial, or at
least have certain properties of simplicial complexes. In particular:

(a1) Each closed cell " may be represented as the (smooth) one-one image
6(53) of a convex closed cell in E".

(az) Each closed r-face @ of ¢" is the intersection of n — r (n — 1)-faces
ar !, -, oy of &".

(as) For p ed’, the tangent planes to the 47" there have only the tangent
plane to " in common.

It will be convenient to call the tangent cone T'(5", p) of " at p e & the set of
all vectors v tangent to & at p; i.e. the set of all possible limits lim [¢(t) — p]/¢,
#(0) = p, ¢(t) e 5. The tangent space T'(3', p) is the set of all linear combina-
tions of vectors of I'(¢", p). We say a vector of T is parallel to " at p. In terms
of this, (as) is equivalent to

(15.1) T@,p) =T, p)N--- NT@ERr, p) (ped).

A cell may be in the form of a cube for example. Note that we may not
subdivide a proper face of a cell without subdividing the cell itself, for then (as)
would be contradicted.

Given p e K, let T'(K, p) denote the set of all tangent cones of closed cells
containing p, at p. These form parts of linear spaces which are unrelated except
for those corresponding to incident cells. It is not so easy to give meaning to
I(K, p).

Suppose f is a smooth mapping of K into E”. If f is regular in the part of a
closed cell & near p € 7, then

T'(f(5), f(p)) = VfT(5, p).
This is true with K in place of &; now I'(f(K), q) is formed of cones lying in E’.

5 The author expects to give a more general theory of this subject in a paper on ‘“‘Com-
plexes of manifolds.”
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We shall say f is an immersion of K if it is regular (in each closed cell) and
proper, and is an ¢mbedding if, in addition, it is one-one, and further, Vf is one-
one in each I'(K, p). In the latter case, we say K is a complex in the second
space.

ExampLE. No complex may be imbedded onto a pair of tangent circles.

LemMa 15.  Any complex K" may be imbedded in E**** so that it has no limit set.

It is not difficult to define an imbedding cell by cell, by the methods in [1];
of course it is easy and standard if K is simplicial. For the last statement
(trivial if K is finite), compare [1], p. 665, footnote 32.

We shall let o7 denote the cells of K, and set 7; = f(¢7). If K lies in E”, we
may let 7} denote its cells, thinking of f as the identity mapping.

Lemma 16. Let K lie in E*. Then each 7#; may be enclosed in a larger cell
7', of the same class C” as K, such that if 5 is a face of 7}, then 7° lies in 7.'.

RemMARK. The lemma extends in an obvious way to the case, if K = K",
that f is an imbedding in a neighborhood of each 3¢ .

Of course we take " = 7. Suppose the 7:', ---, 7. have been con-
structed. Take any 7;, the image 6(7;) of a convex cell 7; in E’. It is easy to
define extensions of the boundary cells of 75, and define # over these, mapping
into the extended faces ;' of 7i. Because of (as), we may now extend 8 over a
neighborhood of #;. In a sufficiently small neighborhood, which may be taken
as a convex cell, 8 is an imbedding.

16. On general position of a complex and vector field in space

Let f be a smooth mapping of a complex K (see §15) into E*. We say fis in
general position if it is proper, and:

(b1) For each s, f is regular in K* at all points of K"°.

(b2) For each s, each p ¢ K° and each qe K"*7", if p ¢ then f(p) #= f(q).

(bs) If wye T(K*, p), uz e T(K"™", p), w1 # uz, then Vf(ui, p) = Vf(us, p).

One could combine (b;) and (b;) in a more complicated statement. Note
that (bs) uses T, not . Any imbedding of K" into E*, » = 2n, is cledrly a
mapping in general position. From the above we deduce:

(by) fisregularin K*if » = 2s.

(bs) fis one-one in K*if » = 2s + 1.

(bs) Vf is one-one in (K", p) if » = 2s.

Let (41, - -+, y») be a coordinate system in E”, and let = be the projection:
(1, Yot ) = (W1, -, Yor) of B into BT

Say fis in general position with reference to the y,~direction if the above holds,
and in addition, =f is in general position in E”~*.  We could obviously generalize
this, using a set of independent directions.

Let v be a continuous vector field, defined in a closed subcomplex of K, and
with values in E°. Then Vv has values in E’~'. We say f and v are in general
posttion if f is, and also:

(bs) For each s, v(p) is independent of any f(&°) at f(p) for all points p ¢ K™™',

(bs) For each s, v(p) is independent of Vf[['(#}, p) 4+ T'(#/°7", p)], where
defined.
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Letting " *" be a face of ¢" shows that (by) is a consequence of (bs). We
shall often omit (bs).

Finally, f and v are in general position with reference to the y,-direction if the
above holds also for =f and V.

Lemma 17. Let K be of class C*, let f map K into E” with no limit set, and let
U1, V2, - - be smooth vector functions, each defined in a subcomplex of K and with
values in E”. Let f and each vi be in general position. Then by an arbitrarily
small rotation of the axes we may make this hold with reference to the y,-direction.
The lemma holds if we omit (bs) in the hypothesis and conclusion.

Remarks. If K is not of class C*, or the v, are not smooth, we may use a
C"-homeomorphic K’ which is of class C*, and smooth v, approximating to the
v . The application will be to the case that K, is a subdivision of a smooth
manifold M", K = K{7', and the v, are independent of the (n — 1)-cells of K
and tangent to the n-cells of K. We could use several independent directions
in place of the single y,-direction. If K = K’, we could allow the limit set L,
of f to exist, provided it is of zero (» — r — 1)-extent.

ExampLE. Let K be a subdivision of an open arc, and let f map K into E*
so that it winds like a ball of string, having a 2-sphere as limit set. Then f is
proper, but no projection into E® is proper.

To prove the lemma, let S"~* be the unit sphere in E’; its points may be thought
of as directions in E”. Let R, be the set of all those directions parallel to f(K*)
at a point of f(K"°"'). Let R, be all those through points f(p) and f(g) with
peK’, qge K° p # ¢, (which implies f(p) # f(¢g)). Let Ry be all directions
of vectors u’ = Vf(u, p), u = s — us, uy € (K", p), us e T(K" "7, p), w1 # s
(which implies v’ # 0). Let R, be all those defined by v,(p) plus a vector parallel
to some f(5*) at p e K"*°. If we are using (bs), let R.s be all those defined by
w(p) + ur + us, ui = Vf(w,), u eT (7%, p), us e (7%, p).

Since the directions parallel to f(K*) at a point p form a set of finite (s — 1)-
extent in 8", and this set varies smoothly with p, R, is a finite or denumerable
sum of sets of finite (v — 2)-extent.® In R,;, since p and ¢ range over sets of
finite s- and (v — s — 2)-extent respectively, R, is a (denumerable) sum of
sets of finite (v — 2)-extent. In R,;, take any p in any ¢, and suppose ¢’ is
a face of ¢° and of ¢’ *". If u; € I'(&°, p) and us € T'(3"°"', p), these range over
sets of finite s- and (» — s — 1)-extent respectively. But adding a vector of
I'(¢', p) to each leaves their difference unchanged; hence u; — wu, ranges over
sets of finite (v — 1 — t)-extent. Letting p vary shows that the directions
vary over a sum of sets of finite (v — 2)-extent. Since the directions defined
by v(p) + Vf(u, p), u eT'(a", p), form a sum of sets of finite s-extent, R, is as
required. In R, v(p) + ui + us, p fixed in o', defines directions of finite
(v — 2 — t)-extent; hence R,s is as required.

Consequently by [1], Lemmas 13 and 14, R = Y R,; has no inner points in

¢ See [1], in particular, Lemma 15. It would be possible to use dimension instead of
extent.
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S"!, so that arbitrarily near the y,-direction there is a direction not in . Ro-
tate axes so as to make this direction the new y,-direction. Then since any
vector not in this direction projects into a non-zero vector, it is easily seen
that f and each v are in general position with reference to the new y,-direction,
completing the proof.

LemMma 18. Any smooth complex K" may be mapped into any E” so that it is
in general position with reference to a given direction.

RemARk. This is a generalization of the imbedding and immersion theorems
of [1] for manifolds.

By the remark to the last lemma, we may suppose that K is of class C*. Im-
bed K" in E*, u = max [», 2n + 1], so that it has no limit set (Lemma 15). It
is then in general position. By Lemma 17, applying a small rotation makes it
in general position with reference to any chosen direction. If u = », we let
this be the given direction. If u.-> v, we choose any direction; projecting in
this direction into E*™' gives a mapping in general position in E*~'. Repeat
the process till we reach E’.

17. The fins and corresponding projections

Take a smooth complex K = K” C E**', and let K and v be in general posi-
tion with reference to the y..,1-direction (using the identity mapping), omitting
(bs). We shall suppose K and v are of class C*; if this is not so, and we do not
wish to change K or », we could replace the normal planes T'(q) below by a
smooth function T(q); the properties given will then hold.

Let {r}} denote the cells of K. Each r; may be enclosed in a larger cell r;
of class C* (Lemma 16). Suppose v is defined over 7; ; extend it to be of class
C? over 7i. With small enough 7i, we will still have general position. Set

(17.1) é0,:(p) = p + to(p) (p ey).

For any point set R C i, let ®,(R, t) denote all points ¢,,. (p) with p ¢ R
and with 0 < ¢ < t;let . (R, t) denote the same, with 0 < ¢’ < t. We call these
the fin and deleted fin respectively of r:,vand t. Since K and v are of class
C?, ¢ may be chosen so that the double fin ®,(r: , t;) Ud_,(r;, t;) is expressed by
¢ as an imbedding of the product of 7; and the interval —¢; < ¢ < t;. More-
over, for each ¢ in the double fin, if T¢(g) is the set of all points in the normal
plane T(g) to the fin at ¢ which are at a distance < t: from g, then these fill out
a closed neighborhood W,(7:, i) of the interior of the double fin in a one-one
way, being again the imbedding of a product. If we set

(17.2) P,(¢) = q if ¢ eTo(g),
this is a smooth projection of W,(: , ;) onto the double fin. Finally, let A,(R, ¢)

denote all points ¢’ € T(q), with q e®,(p, t), p R, such that |¢ — ¢| =<

tlg—pl.
Since K is in general position with reference to the ys ,i-direction, omitting

(bs), the (bs) give
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(b’f) 7 is regular in K.

(bz) IfpeK ™ qeK, p & g, then mp #= =q.

(b3) Distinct vectors in K at any point map under = 1nto distinct vectors.

(b4 ) ‘Vrv(p) is independent of any 75"(s < r) at pforp e K™

(bg) There is a neighborhood V* of K™ in K such that 1f peV* qeK,
p;éq,thenvrp;évrq

To prove (bs), we use (b, Y and (b3 ) to show that = is one-one in a neighborhood
of any point of K, use (b3) to show that = is one-one in K™~ ! and apply Lemma
25, §24.

Let vy, s, - - - be vector functions in K with the same properties as v, such
that at most a finite number are defined in any 7;, and for each v, some v,
equals —v;. For any R, let N,R denote all points whose distance from R is <t.
We shall choose numbers ¢; > 0 such that the following properties hold, for any
7% and v defined in 7.

(1) An(ri NN 77, b)) C Wo(rs, to).

(02) q:‘:;(T; ) tc) n q)—vk(T; ) tt) = 0’

() 78475, 1) N 7oy (977, 1) = O.

(co) .,,‘('r,nN,'r., t) N7 =0.

(cs) 1rA.,,‘('r. NN, 5 6) n waf. = 0.

(cs) 1rA,,,‘('r. NN, a7, t:) Nwri = 0.

It is sufficient to prove each property (c:) separately. We shall write A in
place of A,, . We may use a single k, since but a finite number of v are defined
in 7. (c1), (c2) and (cs) are clear. The proof of (cs) is essentially contained
in that of (c;), so we turn to (cs) and (cs).

Take p edr;. For a small enough t,if ¢ € Al N N.,p, t1), say ¢ e To(q),
qe®y @), p' eri N Nyp, thenq — p’ = an(p’), and lq —g¢l=ulg—-71,
so that the angle between p’q’ and vx(p) is small; also p’ — p is approximately
a vector u; € I'(77, p); furthermore, for any p' "e¢7; N N,p, p” — p is approxi-
mately a vector uz e (77, p); therefore, by (by), we may suppose that

val(¢ — p) + @ — ) #= Va(p” —p), 7w # "

This gives

A(r: N N,.p, ) N« (5 N N,p) = 0.
Since 7; — N,,p is compact, because of (bs) we may clearly take t, < t; so that

7A(ri N Neyp, t2) N w(r7 — Nyyp) = 0.
The last two relations give

7A(r; N Noyp, t) N =(s7) = 0,

and hence (with t3 < f)

WA(T:' n N;,B‘r’} y ts) n ‘l'(f:) = 0)
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proving (cs). Next, since (r: — N,,077) N K™™' = 0, (by) gives, for some t; <
7A(r; — N,a75, ) Nw(ar]) = 0.
Combining this with the last relation gives
7A(ri, ) N =(3r]) = 0,

proving (cs).
Remark. With the help of (bs) we could prove (recalling that K is proper)

ThAy (15, 8) N K™ = 0.

18. The numbers E.*,,, and ;i*,

We give here, and with the p% , of §19, the promised generalization of the
looping coefficient of §14. Let K™ and each v; be in general position in E**'
with reference to the y,,,i-direction, as in §17. For any (finite) singular chain
Ain E, let p*A and p”A be the (infinite) singular chains formed by deforming A
to infinity in the ys.ii-direction and the negative y., -direction respectively,
oriented so that

(18.1) p A = —A — p*oA.

We shall show that the following definitions are permissible.

DeriniTIONs. Choose the ¢; so that (c;) through (cs) hold. Let ¢.,:A denote
the singular chain -4, pushed a distance ¢ | v | in the direction of v, and oriented
like A; see (17.1). Set

(18.2) £, = KI(@u,.0;77, p™r0)  (f e is defined in 77),
(18.3) ¢ = KI(ri, p*1] (@ # j),

where 7} is any cell lying in 7} and slightly smaller than 77, oriented like 7} .
Note that £, does not depend on the orientation of 7} .
We shall prove commutation properties of these:

(18.4) Etvk = (—1)'“5:—'1‘ )
(18.5) = (=)

In the proofs of these and other relations, the following properties of Kronecker
indices are useful:

(d1) KI(A, p*B) is defined (for finite A and B) whenever dim A + dim B = 2r,
and

ANB =0, A N 73B = 0, 70A N =B = 0.
We must show that
a4 N p*B = 0, ANagp*BC(ANB)U MNP B) = 0;

these follow from the above relations.



282 HASSLER WHITNEY

(de) If A\ and B are singular chains, A, being continuous in X (\e < A £ A1),
and each KI(A,, B) is defined, then KI(4\,, B) = KI(A,,, B).

This follows either from continuity, or by making use of chains formed by
deforming A,, and 8A4,,, with standard properties of the index.

(ds). If KI(A, B) is defined, and Cx (A0 £ A = \,) satisfies C\, = 94,
C\» N B = 0, then this defines a deformation A4, of A such that 84\ = C, and
KI(A, , B) is defined.

This is clear if we let A, equal A plus the “path” of Cy» , Ao £ N £ A,

To prove (18.4), and show incidentally that (18.2) is permissible, choose [
so that —v; = v;. By (d;), we see that each of

KI(¢U);.!.'T: ) pi¢—vk.l‘r:), KI(¢vk.LT:: ) pid)—vk.t;'r:’l)

is defined for 0 < t < t;; for the three relations in (d;) follow from (c;), (c3)

and (cs), using both v, and v;. Consequently, by ‘1),
E-t!:vk = KI(T: ) P+¢—vk.l.~7':) = KI(p+¢—v1,.t.~T: ) T:)'

In the above proof, if A = ¢_,,,.,7;, we used 7A N 737} = 79A N =r; = 0.
These give

KI(p%A,p 077) = KI(p"04,p77%) =0,
and therefore, since dim p*4 = r + 1,
o = —KI(p*A, —17 — p o7}) = —KI(p*A, 8p 1))
= (=1)KI(3p%A, p"75) = (=1)"KI(A + p*84, p 73
= (m ) PRIG o i7s, 077D = (=D Vi, .

Next we discuss (18.3) and (18.5). Because of (bs), ¢¥; is defined and inde-
pendent of the choice of any 7 , so long as 7; — 7 C V*. Since

xri N wdr; = wari N wrf = 0,
we find, as in the proof of (18.4),
ITJ = KI(P+T?’ ) = _KI(p+T:, —1f — p OTs)

= —KI(p+‘r;‘, ap—‘r?) = (—1)'KI(3P+T;, P—T?)
= (=1)VKI(r] + ptort, o ri) = (=15

We shall prove still a lemma regarding the ¢%,, . Since 7; = 6(57), & convex
in E’, the parts near do; of radii from an inner point of ¢; map under 6 into arcs
which we may suppose fill out 7; N N ;075 . With these arcs, we may define
a deformation g, such that

(e1) gr(p) carries p along the arcin 7; N N ¢;07; on which it lies into a7 .

Lemma 19. Let A be any singular chain such that (writing N for N,, and
Ao(R) for A(R, t))
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(18.6) A CA,(r:NN7Y), 84 CA,(r: N Nar).

Then there is a number a and a chain B such that

(18.7) KI(4, p*7}) = atiu,,

(188) 84 — adri = 8B, B C A, (r;: N Nari) U (r: N Nary).

The last relation determines a uniquely, even if we assume merely B C W, (r: N
N a‘r:' y ti).

First, by (cs), (cs), (cs) and (d), KI(A, p*}) is defined. We shall define a
deformation hy of A (0 < X < 3) such that

(18.9) heA = agu,. 1,75 .

Also KI(mA, p*7) is defined for each \; (18.7) follows from this, together with
(18.2) and (d2).
For any g e®y,(r; N N77) and ¢’ € To(g), set

h(g) = 1 —Ng + A\ O=x=1);

this is defined in A, (r; N N7}), by (c1), and ky(¢’) = P.,(q), by (17.2). From

the definition of A,, we see that hyA obeys (18.6) so far, simply because A does.

Moreover, hA is in the deleted fin ®},(rs N N77), and hdd C &;,(r; N Nar}).
Next, for each ¢ = ¢.,,:(p) (p € ;) in the deleted fin, set

hia(g) = (1 — Ng + )\¢vk,t.~(P) 0O =x=1);

this is a deformation of ®},(r;) in itself; applying it to kA defines hhA (0 £ A £ 2)
so that (18.6) continues to hold; now
MA C ¢opii(ri N N77),  hdA C ¢up.ii(ri N Noti).

Next, applying ¢,,,.; to the deformation g defines b, 2 = X = 3; by (e),
it keeps ¢,,,‘,,..(r§ N Na+}) in itself. This defines a deformation of 8h.A, and
hence of h,A, so that (18.6) continues to hold; see (ds). Now

hsA c ¢vk.t;(72); haaA = ahSA c ¢vk.t.~(a‘r:)'

Since ¢.,.:, is one-one in 7}, the only (r — 1)-cycles in ¢,,,.,(d7;) are multiples
of the cycle ¢y,,.,07; ; this proves (18.9) and hence (18.7).
The deformation hy\ of 34 (0 < A =< 3) defines a chain B, such that

aBl = BA -— a¢,,,,‘.6‘r§;

since &,,(d7;), properly oriented, is a chain B, bounded by ¢.,,:07; — 077,
B = B1 + aBz satisfies (188)

To prove the uniqueness of a in (18.8), suppose it held with a’ and B’ also;
then

(@ —a)ar;=08C, C=B—B CW,(riNNari,t).
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If we contract the fin &,,(r;) onto 7, we may carry C into ¢’ C r;, and the
above holds with €’ in place of C. Since N, d; does not cover all of 77, this
impliesa’ — a = 0.

19. Application to complexes K" mapped into E**™

In this section we suppose that f, of class C°, maps K" in regular position in
E* ' with reference to the y:,_;-direction. We may suppose K imbedded in
E™*'. Extend each cell #} to a cell ¢;' as in Lemma 16; we may extend f over
these in turn so that the properties in Lemma 16 and the remark following it
hold. Set r;’ = f(¢:"). Taking these cells small enough, we may suppose the
properties (b;), (bz), (bs) still hold.

We shall determine open sets U; and U’ in K (which now consists of the o)
such that:

(f) 6?'C U, , K" CU".

) UsNU;C U ifi #j.

(fs) fis an imbeddingin U = X, U;.

(f) If peU, p" e U’, p = p’, then =f(p) = =f(p’).

We shall restrict the U; and U’ further later. That f is locally an imbedding
at points of K™™' is an immediate consequence of (b;) and (bs), using s = n,
v — s =n — 1. The proof of (f3) and (f;) is now the same as the proof of (bs).
It is easy to choose sets U, satisfying (f;) and (f;) (and thus redefining U) if we
make use of the sets ¢" — U’.

Set r = n — 1. For each pair of incident cells ¢} and of , let o be the part
of o." on the side of o;" which includes o} , and let uw(p) (p € oi") be the unit
vector tangent to o.r and normal to o at p eo.. Set va(p) = Vf(ua(p), p).
The following property shows that we may use the results of §§17 and 18.

(fs) fand each vy , also f and each —wv; , are in general position with reference
to the y:.i-direction, (bs) being omitted. (Here, f is considered in K" only.)

We need merely prove (bs) for f and =f; this follows at once from the properties
of general position; compare (f;) and (fi).

Set Vi = f(Uy), V = f(U), V' = f(U").

Next, by further restricting U’ and then the U, , we may obtain:

(o) 7ok N Vi C Avyy (777 NN 75, 1),

) e NV C A,,,.,,(‘ri' N N, a7i, t).

These are obvious consequences of the definitions of i, vs and A, .

Now let K’ be a subdivision of K so fine that the following holds:

(fs) Any cell of K’ with a vertex in &; lies in U; ; any cell with a vertex in
K liesin U".

Each oriented cell ¢ of K becomes now a chain Sdo of K'. Let [¢i7": o]
denote incidence numbers. Define the following chains of K’, and use r = f(o)
as before:

ot* = sum of s-cells of K’ in ¢} with no vertex in 3o}, each oriented like o} .

ot = sum of n-cells of ¢ which have a vertex in ¢} but none in do" , each
oriented like [o3: or]ox .

o = that part of — ao?,, whose cells have no vertex in &7 .
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We prove the following relations:

(19.1) orir = 11" — 100 + Aa, Ag C V.
(19.2) " = Z lo%: oflrie + B, B.C V.

First, supposing o; a face of or , note that each cell of the chain
Sdry — {ri" + lo%: ollris)

has a vertex in 977 — 17 ; hence the chain lies in V;, where Ui = 3_;U;,
Vi = f(UY). Also, clearly

38dry = Sdory = lo%: oflri + Cae, CacC V.
It follows that
(" + lo%: oflrh) = loi: oflri” + Da, DacC Vi.

This last relation, with (19.1), gives
an" = [oi:oflrir + Da % Aa.

Now neither ;" nor 5 have any cells with vertices in #;. Hence neither
has D4 &+ A, and it follows that each cell of Ay is a cell of Dy . Therefore
Ax C V.. Since rh , i and i arein V; ,each point of A isinsome V; NV ;
= f(U; N U;) (see (f3)) with j > 4, and therefore in V’, by (f2). This proves
(19.1).

Next, since

2 loi:atlriy, Da, Au arein Vi,
ik
the last relation for a7y " gives

By = 0" — ; lo7: ollrie C Vi,

Since B, is independent of ¢, this holds for each i. Now if B; had a cell with a
point p in just one V;, (clearly By C D V), using %, in the last relation would
give a contradiction. Hence each p is in at least two, and hence in V’. This
proves *(19.2).

With the help of the new chains, we shall find new expressions for the numbers
in §18:

(19.3) fron = KI(, 1) (Io%: of] # 0),
(19.4) 05 = KIGw , p*r} ([o5: 0] # 0,7 # j).

First, since each cell of o7y is a face of a cell of oy , which has a vertex in oF ,
(fs) gives:

(19-5) T?k‘ c T:'/? n V.
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Taking the boundary of (19.1) and using (fs) gives
(19.6) arie = a1y + dAa C T NV

These relations, with (fs) and (f;), show that we may apply Lemma 19, which
gives

KI(T?E‘ ’ p*T:) = ael*m;g .
We must show that a = 1. By (19.6),
61-?: - a‘r; = a[A,'k - ( Ty — 'r. )]

By (fs) and (19.1), Au — (v — 7i") C V’. Since this chain is also in ;" U 73,
applying (f7) gives (18.8) with a = 1. The uniqueness of a in (18.8) completes
the proof of (19.3).

Next, taking ¢ = j, since

- T CV, A CV, (-0 =0,
(fs) gives x(r; — ;") N x(ri") = 0. Hence
KI(rh', p*rl — p*r7") = 0.
Similarly, using (19.1), we find the two relations
KI(Aa, p* r,') KI(T.k,p a'r N =0.

By (fs), KI(r% , -rf') = 0. This, with the last relations, gives

0 = KI(rh, 3 r]") = = KI(r!" — 15, p*r7").
Hence

KI(%', p*1)) = KI(5", p*r}") = KI(=I", p*r}"),

which gives (19.4).
We now give an extension of the results in §14, in particular, of Lemma 13.
DeriniTION. Let K™ and v be in general position in E**, with reference to
the ys.i-direction. With the notations of §18, and a sufficiently small positive
continuous 7(p) in K, set

(197) l‘:iki.v = KI(¢7.'I": ’ Pi";)-

Save possibly for sign, this is a direct generalization of (14.2). The commuta-
tion rule is:

(19.8) Wi = (=15
The proof is easily carried out, with the help particularly of (bs), as follows:
Wliw = KI(0™7} , boa7s) = KI(p ¢ y,7}, 75)
= —KI(a%_v,75, 807 7%) = (=1)KI(3p b_y 7] , o 75)
= (=) KI@G0ars, p 1) = (1) ufi .
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DeriniTiON. With the above notations, set

(19.9) (4, B, v) = KI(¢.44, p™B).
The commutation rule, generalizing (14.3), is
(19.10) (4, B,v) = (=1)"P¢° (B, 4, —v).

To prove this, suppose A = »_a;7i, B = Y b;r;. Then, writing ¢ for
¢'-'7 ’

' (4, B,v) = Z‘, a:b; KI(¢75, p¥7})
= ‘Z a:bitl, + § (a:binlio + aibinfio)
= (DM bt + 2 (biaiuii F bioiuiins)]
which, by the same proof, equals (—1)""'7(B, 4, — v).

20. Application to partial manifolds " mapped into E*"~*

The following theorem contains essentially Theorem 2 if n is odd. Let
/(M) denote the algebraic number of singular points if n is odd.

THEOREM 9. Let M" be a partial manifold, let K be a subdivision of M (with
the properties of §15), and let f be a semi-regular mapping of M into E>* so that
f maple in general position. For each ¢?~" in M, let v;(p) point into M at f(p),

p &', Then letting ' denote the sum taken over just those cells in dM, we have:
(a) If n is even,

(ml) ZI gtv.' = ZI E:vg = Z, Et—v.' .
(b) If n is odd,
(20.2) 20 (M) = 27 (he, + £iw) = 2 (ELo; — Ei2)).

We consider first the case that M " is a single cell oy . Using the previous nota-
tions, setting 64 = [¢7 ‘:of] and noting that 8% = 0 or 1, we find, with the
help of (19.2), (19.3) and (19.4),

(o) = KI(re", ar2) = —KI(r2", dp%070)
= (=D)"KI@m", p*orf) = (D" X 0udu KI(r5 , p=rh
(%)

= (=" Eiew + §<_“, I (e B )
1 1<g
Using first 4+ and then —, we find, with the help of (18.5),
(_l)n_lgf(a':) Z E: Vik + Z a'kalk(fn + f!l),

i<y

&(of) = (=" 20 Fov — 2 9x0x(T + 1),

i<y
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Adding these and using Theorem 2, gives
(20.3) 1+ (=D"®(0f) = 2 s + D" 870,

from which the theorem for this case follows, with the help of (18.4).
By (20.3) and (18.4), we have, in the general case,

1+ (=D X G = 2 2 (Eloa —Eisa),
where for each 7 we sum over all k such that o7 is a face of of. If o7 " isin-
terior to M, then ¢} ' is a face of two-cells o5 and o7 , and v;; = — va ; hence

Elon — Emon) + Elosy — o) = 0.

Thus all these values of i drop out. For each ¢ with ¢f~' C aM, there is just
one k, and v; = vi . Hence the theorem follows.

Remark. Clearly both sides of (20.2) are independent of the subdivision K
of M employed. All the terms are independent of the chosen orientations of
cells.

DEeFINITION. Let M be a partial n-manifold, n odd, with the property that
there exists a continuous vector field u(p) defined in aM, u(p) being independent
of each closed cell of aM containing p, and pointing into M. Let K be a sub-
division of M and let f be a semi-regular mapping of M into E*7' such that f
maps K in general position with reference to the y., i-direction. Set v(p). =
Vf(u, p). Set

(20.4) A" = Y /627", summed over the cells in M,

these cells being oriented arbitrarily. Let e be the unit veétor in the yza—1-
direction. Then for a(p) > 0 sufficiently small in 8M, and n(p) > 0 sufficiently
much smaller than a(p), define (using the definition of ¥ in §14 and recalling that
n is odd)

(M) = HKI(@oafA, YeoiafA) + KI(@oafA, ¥—c0.afA)]
= HKI(@onfA, Ven.afA) — KI(G—safA, Veo..fA)l

REMARK. If the hypothesis of general position in Theorem 9 does not hold,
we may apply Lemma 17 to make it hold; that £,(M) is independent of the ro-
tation chosen follows from the proof below, in which general position is assumed.

COMPLETION OF THE PROOF OF THEOREM 2. We must prove (M) = L,(M).
Because of (20.2), it is only necessary to show that (for n odd)

(20.6) KI($onfA, Yeo,afA) = 2 £y .

For each o’ ' in aM, we may deform v;(p) into v(p), keeping it tangent to M
and independent of #¥'; hence ¢, may be replaced by £, . Since both sides
of (20.6) are independent of the subdivision employed, and =f is regular in
K™ ' and hence in M, we may suppose that K is so fine that for each pair o,

(20.5)
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o™ of cells of 8M with a common vertex, «f is an imbedding in et Uer

Since also «f is regular in M at points of K"*, it follows at once that for small
enough a(p) and n(p),

KI($en7i, Yen.ati) = 0 G*% 7)
Exactly as in corresponding proofs in §19, we see that
KI(@eni ) Venuat?) = KI(@oari, p770) = &0
We find therefore
KI(¢o1fA, YenafA) = Z’: KI(¢onti, Yetratl)

= Z, KI(¢v.ﬂ 7:‘ ) '/’G.O.a 7':) = zi:, Etv ’

taken over the cells of 3M, which completes the proof.

21. The necessity for the type of formula in (20.5) (n odd)

One might expect that a single term on the right in (20.5) would suffice’
without the factor 1. This is the case if the cells ¢} of M can be so oriented
that D _'s7 is a cycle, but not in the general case, as we shall show.

To compare the two terms, note that

Voetia = —VYra0 = —Ve—a0;
hence, subtracting one of the terms from the other,
A = KI($oofA, Yen.afA — Y—cn.ofA)
= KI($o.4fA, Ve,—aafA).

Let ¢’ be the unit vector in the y», o-direction. By deforming ¢,, C into
¢0r4C, we define 6C for all C C aM, with the property

30C = ¢y uC — GvaC — 80C;

(21.1)

we may take this in general position together with the chains ¥ considered, with
reference to the y.._1-direction. From the obvious relations (for small n(p))

¢a'.an n ‘pa.-—a,afA = 0’
ofA n (¢c.afA U ¢c.—¢fA) =0,
we obtain

A

KI($oafA — bp ufA, Yo—a,afA)
—KI(36fA + 05fA, ¥o—a.afA)
—KI(05fA, Ye—a.afA) — (—=1)"KI(6fA, ¥e—a..fA),
(212) A = —KI(6foA, Yo—a.afA) + (—=1)"KI(GfA, Ye,—a.afdA).
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As a corollary, A = 0 if the cells ¢} of 8M can be so oriented that their sum is a
cycle. .

ReMARK. The last fact follows also on applying Lemma 14 to 2(f4, fA,
v, &+ e).

ExampLe. We shall show that A may be > 0. Take a cylinder plus interior:

4y, -12z221;
identify the two ends, after reflecting one across a diameter: set

(3:, Yy, — l) = (IE, - Y, 1)'
A “Klein bottle B? plus interior” is formed; this is a partial manifold M?®, with
oM = B’. Let K be a subdivision of M°. We may imbed B® in E' in such a
fashion that for any continuous vector field v(p) in B?, independent of B* at points
of K' N B,

KI(¢.,B5, B}) = —4in E*,

B; being X_'s7 , o7 in B?, and 7 being small; see [3], p. 107, Fig. 4, and the top of
p. 108. Now take E* C E°. Then clearly, from the above,

A = KI($osBi , Vema,aB3) = —4in E°.
If, for instance, we take v = (e + ¢’)/2'”, then (20.5) reads
&M = 3[—4 +0] = —2.
Mapping M® into E° so that v points into f(M) gives the result stated.
APPENDIX
22. The self-intersections under a completely semi-regular mapping

Let A be the set of points p of M such that for some ¢ # p, f(p) = f(g). We
shall discuss A and f(A).

Let p1, P2, - - - be the singular points. By Lemma 2 and the definition of
completely semi-regularity, there is a neighborhood U ¥ of p; such that A N UY
is given by 2, = .-+ = z, = 0; thus this is an open arc, mapped by f doubly
intc a half-open arc. We may suppose Ui NTU; =0fori#j.

Choose Ut*, pie U™, Ut* C Uf,andset M’ = M — Y Ui*. Takep,qin
M, p = q, f(p) = f(g). U p,qeM — dM’, there are neighborhoods U and V
of p and ¢ in M’ such that f(U) N f(V) is a smooth open arc in E, the image of
smooth open arcs in M’; if one of p, ¢ is in dM’, these are half-open arcs. We
may cover M’ by neighborhoods U, such that each f(U;) N f(U; (U; N U; = 0)
is void or a smooth open or half-opén arc. These ares in M’ together with those
in > Ur* fit together to form simple closed curves or arcs; in each direction on
each arc, we end either at a singular point or at a point whose image is also the
image of a point of M, or we reach no limit point of M (this can occur only if M
is open). Moreover, it is not hard to see that there is a grouping of these curves
into pairs (the two in a pair need not be distinct), in one of the following ways:
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(a) There may be two distinct closed curves, with one closed curve as image.

(b) A single closed curve may be mapped doubly over a closed curve.

(c) If the closed curve contains any singular points, it contains two, and is
mapped into an are.

(d) An arc may have one singular point interior to it; then (d,) it is open at
both ends, or (dz) one end stops at aM and the other stops interior to M.

(e) A pair of arcs, each containing no singular points, may map into an arc.
Then (e;) both are open, or (e;) each is half open, one ends in M, and the other
ends interior to M, or (e;) one has both ends in M and the other has both ends
interior to M, or (es) each has one end in M and one end interior to M.

If n = 2, we have the same subdivision into cases, but the curves may cut
through each other. The case n = 1 is trivial. We could further subdivide
the cases by taking into account orientation properties.

ReMARk. If f is not proper, the set A need not be closed; for example, we
may map a strip M around and around in the interior of a torus so that A4 is
dense in M?. Still A is expressible as a union of curves.

23. On the covering of an open partial manifold by a sequence of compact
partial manifolds

Let M be a partial manifold (in particular, a manifold). Since it may be
~overed by a denumerable number of coordinate systems, and each is compact,
M may be covered by a sequence of compact partial manifolds. We wish to
show how partial manifolds with certain properties may be chosen. Let a
proper half-open arc A in a point set R mean the one-one continuous and proper
image ¢(Ao) of the half-line 0 < z. We shall say A runs from ¢(0) to infinity
if, for any compact subset B of R, there is an z, such that ¢(z) ¢ R — B for
T Zx.

The following lemma is used in the proof of the immersion theorem for open
manifolds.

LEMMA 20. Let M be an open connected partial manifold. Then there is a
sequence My, M, , - - - of compact partial manifolds in M such that

@ M;C My —M; iy 0=1,2,---),

b) M = 2 M,

(c) any point of M — M, may be joined to infinity by a half open arc which does
not touch M; .

ReEMARKs. It may be shown that each M; may be taken as connected, and
such that aM; is a closed manifold (not necessarily connected); but we do not
need these facts here. For the present purpose, by a “partial manifold” we shall
mean merely the closure of an open subset of some open manifold.

To start with, let My, M3, - - - be the sets in M covered by a fixed set of co-
ordinate systems, so that M = > M. Set M; = M;. Since M; is compact,
we may choose pp so that M; C D 42, (My — aMy). Set M, = D4, My.
In general, choose uiy; so that M: C D 44t (M, — oMy), and set M,y =
D4t M. Then M; C Miy, — aMiy,and M = D M.,
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Let M be the set of all points p of M for which the following is not true: For
each j there is an arc A joining-p to a point ¢ e M — M, such that A C M —
M. We show first that M; is compact. If not, then there is a sequence p; ,
P2, -+ of points of M; with no subsequence which converges in M. Since
each M : is compact, it contains at most a finite number of the p; ; hence we may
suppose the pi chosen so that p; e M — M %, allj. Since M is connected, there
is an arc A;in M joining p; to p;. Let g, be the last point of A;in My for
j > i, and let A(p;) be the arc ¢jp;. Since M, is compact and aM 41 is closed
in M, , there is a subsequence q,9s, - of g, q, - converging to a point
qof M7, . Forsome connected neighborhood U of g, U CM — M i. Choose
ssothat q.eUfork = s. Let pr. correspond to q,'c. For each j > s, p_'; eM —
M, and from A(p.), A(p}), and an arc in U, we find an arc in M — M joining
. to p;. Hence p, is not in M, a contradiction, proving that M, is compact.

Clearly all boundary points of M;arein M i;hence (a) holds. Since M M.,
(b) is true. To prove (c), take p e M — M;. By definition of the M ;, there is
an arc A ; joining p to a point p;4, in M — M., such that A;, C M — M,
there is an arc 4,4, joining p; 41 to a point py2in M — M 42, such that A, C
M1, ete. Since D, M; = M, these arcs give a proper half open arc A joining
p to infinity, such that A C M — M. Moreover, A CM — M, ;forifge AN
M, then part of A givesanarcin M — M i joining ¢ to a point in an arbitrary
M — M, contradicting the definition of M;. This completes the proof.

24. On proper mappings

We recall the definition from [1]: The limit set Ly of a mapping f of a spacz
R into a space R’ is the set of points q ¢ R’ such that for some sequencs {pi} in
R, f(p) — g, while {p:} has no limiting pointin R. f is proper if f(R) N L, = 0.
Note that if R is compact, the limit set under any mapping is void. If f is proper
in R, it is proper in any closed subset of B. If f maps R into a single point,
f is proper if and only if R is compact.

Remark. If f is one-one and continuous, then clearly f is proper if and only
if f7 is continuous.

We give first a characterization of proper mappings without use of sequences.

Lemma 21. A mapping f of a locally compact separable metric space R into a
similar space R’ is proper if and only if for each point p ¢ B (or equally well, each
self-compact subset A C R) there is a neighborhood U of f(p) (or of f(A)) in R’ and
a self-compact subset B of R such that

(24.1) fR—BNU=0.

We may suppose R is nof compact, the lemma being trivial otherwise. Let
Ri, R», - - - be self-compact subsets of R with B; C Ri1 and R = 2 R; (see
the proof of Lemma 20). Suppose first that the condition in its strong form
does not hold ; then a self-compact subset A is given;say A C Ry . Let (U} be
a sequence of neighborhoods of f(Rx) such that 1 U: = f(R). IneachR — Ri4i
choose a point p; so that f(p:) € U; ; we may suppose that the p; are distinct. A
subsequence may be chosen so that f(px,) — ¢ € f(Ry); thus f is not proper.
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If, conversely, f is not proper, say f(p;) — q = f(p), {p:} having no limit in R.
For some subsequence {p\;}, »», ¢ R — R:. Since each compact subset of R
is in some R;, the condition does not hold, using p.

We state without proof:

LemMA 22. A mapping f of R into R’ is proper if and only if antecedents of sets
compact in f(R) are sets compact in R.

LeMMaA 23. A continuous proper mapping of R into R’ maps sets closed in R
into sets closed in f(R).

Suppose 4 is closed, while f(A) is not closed in f(R); then ¢, gz, - - - exist in
f(A), ¢: — ¢, ¢ e f(R) — f(A). Choose p; so that f(p;) = ¢:;. If the sequence
{p:} had a limiting point p, then say p\, — p; since f is continuous, ¢, = f(p»,)
— f(p). But ¢, — ¢; hence f(p) = ¢, and q € f(A), a contradiction. This shows
that f is not proper.

We state without proof:

LeMmA 24.  Let f be continuous and map closed sets into closed sets, and let the
antecedents of single points be finite sets of points. Then f is proper.

The following lemma is needed in one or two places in the present paper.

Lemma 25. Let R and R’ be locally compact separable metric spaces. Let f,
mapping R into R', be continuous, proper, and locally one-one. Let A and B be
closed subsets of R such that

(24.2) fped, qeB, pgq, thenf(p) # f(g).
Then there are neighborhoods U of A and V of B such that
(24.3) ypelU, qeV, p=gq, then f(p) # f(g).

The proof is not very difficult; we expect to give it as an application of much
more general ideas in another paper.
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