
Visualizing Hyperbolic Space: 
Unusual Uses of 4x4 Matrices 

Mark Phillips Charlie Gunn 

The National Science and Technology Research Center for 
Computation and Visualization of Geometric Structures 

(The Geometry Center) 

December 15, 1991 

Abstract 

We briefly discuss hyperbolic geometry, one of the most 
useful and important kinds of non-Euclidean geometry. 
Rigid motions of hyperbolic space may be represented 
by 4 x 4 homogeneous transformations in exactly the 
same way as rigid motions of Euclidean space. This is a 
happy situation for those of us interested in visualizing 
what life in hyperbolic space might be like, because it 
means we can use existing graphics hardware and soft- 
ware libraries to animate scenes in hyperbolic space. 
We present formulas for computing reflections, trans- 
lations, and rotations in hyperbolic space. These are 
a bit more complicated than the corresponding formu- 
las for Euclidean geometry, which emphasizes our need 
for graphics libraries which allow completely arbitrary 
4 X 4 transformations. 

The use of 4 x 4 transformations to represent isome- 
tries of hyperbolic space is not new; it has been used 
since the discovery of non-Euclidean geometry in the 
19-century. The new part of our work is the application 
of this theory to real-time 3D computer graphics tech- 
nology, which for the first time ever is allowing mathe- 
maticians to interactively explore hyperbolic geometry. 
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Introduction 

The use of 4 x 4 matrices to represent affine transfor- 
mations of Euclidean 3-space is well-known in computer 
graphics. Most graphics languages include provisions 
for specifying 4 x 4 transformations, and most interac- 
tive graphics workstations have the ability to multiply 
4 x 4 matrices in hardware. These capabilities were de- 
signed with Euclidean geometry in mind, because we 
think of the space in which we live as Euclidean 3-space. 

There are, however, alternate systems of geometry 
which are of interest in mathematics and physics re- 
search and education. One of the most important of 
these is hyperbolic geometry. Hyperbolic space arises 
naturally, even more so than Euclidean geometry, in 
the study and classification of 3-manifolds. It is also 
frequently taught in introductory geometry courses be- 
cause it is in some sense the simplest and most ele- 
gant type of non-Euclidean geometry. Learning hyper- 
bolic geometry forces one to challenge many assump- 
tions which are usually taken for granted, in the process 
strengthening one’s geometric reasoning skills. 

The “space” of hyperbolic geometry consists of the 
interior of the unit ball in R3; the boundary of the ball, 
the unit sphere, is “at infinity”. Distance is redefined 
to approach infinity as we move closer to this sphere. 
From a hyperbolic point of view, therefore, we can never 
actually reach the boundary sphere. We can think of 
hyperbolic space as consisting of points, lines, planes, 
surfaces, etc, just as in Euclidean space. In hyperbolic 
space, however, some of the rules of geometry are dif- 
ferent. Specifically, Euclid’s fifth postulate is not valid: 
in the hyperbolic plane there are many lines through a 
given point which do not intersect a given line. Another 
non-Euclidean property is that the sum of the angles in 
a planar polygon is always less than 180 degrees. It 
is possible, for example, to have a “regular right pen- 
tagon” (all five sides are equal and all five angles are 90 
degrees). Figure 1 shows a tesselation (tiling) of hyper- 
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In computer graphics points in Euclidean 3-space 
are commonly represented by homogeneous coordi- 
nates - i.e. vectors in R4, where any two vectors 
which are scalar multiples of each other are consid- 
ered to represent the same point. The 3-dimensional 
coordinates (al, UZ, as) of a point in R3 are called 
its affine coordinates. We can convert affine co- 
ordinates to homogeneous coordinates by appending 
a 1 as the 4-th coordinate to obtain (Q~,u;z, az, l), 
and we can convert arbitrary homogeneous coordinates 
(czi,u2, as, a4) to affine coordinates by normalizing to 
obtain (ct1/~4,a2/~4, aJa4) (assuming 04 .# 0). The 
advantage of homogeneous coordinates is that rigid 
Euclidean motion (isometries), as well as perspective 
projections, can be represented by multiplication by 
4 x 4 matrices. The isometries of R3 correspond to 
the semidirect product of the S-dimensional orthogonal 
group O(3) with the S-dimensional translation group. 
Recall that an orthogonal matrix M is one which pre- 
serves the inner product of vectors: Ma. Mb = a . b. 
The inner product in this case is Figure 1: Tiling of the hyperbolic plane by regular right 

pentagons. All angles in this picture are right angles in 
the hyperbolic metric, and all pentagons are congruent. 

bolic 2-space by such pentagons. 
These differences between Euclidean and hyperbolic 

space mean that the intuition which we have from liv- 
ing in what we perceive as essentially Euclidean 3-space 
is of little value, and may actually hinder us, in an ef- 
fort to understand hyperbolic geometry. It would be 
extremely useful, therefore, for researchers and geome- 
try students alike, to be able to experience some of what 
life in hyperbolic space might be like. 

Fortunately, since the transformations of hyperbolic 
3-space can be represented as 4 x 4 matrices in much 
the same way as with Euclidean transformations, we can 
use the matrix capabilities of many graphics languages 
and hardware systems to create images and to animate 
motions in hyperbolic space. We must, however, be 
able to use completely arbitrary 4 x 4 transformations, 
because the matrices which arise in hyperbolic geometry 
are different from those of Euclidean geometry. 

Hyperbolic Space 

In the following discussion we think of vectors as column 
Ql 

vectors; so a E R4 represents the 4 x 1 matrix a2 

0 
a3 

a4 

and its transpose aT the 1 x 4 matrix (al az 03 a4 . 
Thus aTb is the usual dot product of a and b, and ab h 

is a 4 x 4 matrix, sometimes called the outer product of 
a with b. 

where we assume that a and b are normalized. 
Using other inner products yields non-Euclidean ge- 

ometries. The inner product 

(a, b)$ = albl + a&2 + a& + a464. 

yields spherical geometry, and 

(a, b)h = albl + a2b2 + asbs - aqbd# 

yields hyperbolic geometry. Our treatment of hyper- 
bolic geometry is in terms of (., -)h; analogous deriva- 
tions using (., +)$ instead would yield the correspond- 
ing formulas for spherical geometry. Note that the Eu- 
clidean inner product, by ignoring the 4-th coordinate, 
can be seen as a bridge between these two inner prod- 
ucts. 

(-, .)h is called the Minkowski inner product. The 
Minkowski inner product can also be described as fol- 
lows. Let 

Then (a, b)h = aT13Jb. The group of 4 x 4 matrices 
which preserve the Minkowski inner product is denoted 

0(3,1>. 
Now consider the vectors V- = {a E R4 11 (a,a)h < 

0). The set V- forms a solid cone along the 4-th axis 
with vertex at the origin. Hyperbolic 3-space, denoted 
H3, is the projectivization of V-, with the metric in- 
duced by the Minkowski inner product; vectors in V- 



correspond to the homogeneous coordinates of points in 
H3. Each point in H3 is represented by a unique vector 
with 4-th coordinate 1, which can be obtained from any 
vector in V- by normalization, just as in the Euclidean 
case. (The fact that the vector lies in V- guarantees that 
the 4-th coordinate is nonzero.) This gives a model of 
H3 consisting of those points of VT with 4-th coordi- 
nate 1; this is the same as the interior of the unit ball 
in 3-space. Hyperbolic space thus consists only of the 
points inside this ball. 

Two-dimensional hyperbolic space, also called the hy- 
perbolic plane, consists consists of the interior of the 
unit disk. Although the discussion below is in terms of 
hyperbolic 3-space, it extends straightforwardly to any 
dimension. In particular, the illustrations and examples 
we give are all in two-dimensions (the 3-rd coordinate 
is 0) to simplify the computations and the figures. 

The geodesics (straight lines) in this model of hyper- 
bolic space are the same as the Euclidean straight lines 
passing through the unit ball, except that we only con- 
sider the part of the line inside the ball. Similarly, the 
hyperbolic planes in H3 are the same as the Euclidean 
planes. 

The hyperbolic distance between two points a and b 
with homogeneous coordinates a and b is given by 

Figure 2: Hyperbolic Reflections. Triangle abc is the 
reflection of triangle a’b’c’ in point p. The two triangles 
are congruent in hyperbolic space, and hence would ap- 
pear to be of equal size to an observer inside the space. 

dhyp(a, b) = 2cosh-’ 
J 

(a, v; (a a)h(b b) - (1) 
, , h 

A simple calculation shows that this formula is invariant 
under multiplication of a and b by scalars, and hence 
depends only on a and b. It is also easy to verify that 
if a remains fixed and we let b approach the boundary 

of the unit ball, then d hyp(a, b) am roaches infinity. 

The model of hyperbolic space that we are using here 
is called the projective model, or the Klein model, af- 
ter the 19-th century mathematician who popularized 
it. A more familiar model is the conformal model, also 
known as the Poincare model. In the conformal model, 
geodesics are arcs of circles perpendicular to the bound- 
ary sphere (or circle, in two dimensions). Each model of 
hyperbolic space has its advantages and disadvantages. 
The projective model seems better suited for visualiza- 
tion and computer graphics, because geodesics appear 
“straight” and the isometries can be represented by pro- 
jective linear transformations. 

Matrix Formulas 

The isometries of H3 correspond to the matrices in 
0(3, l), just as the isometries of Euclidean 3-space cor- 
respond to the matrices in O(4). We now present for- 
mulas for computing the matrices of rigid motions in 
hyperbolic space. 

Reflections 

One of the simplest types of isometries is a reflection. If 
p represents the homogeneous coordinates of a point p in 
H3, then the 4 x 4 matrix for the hyperbolic reflection 
in p is 

rhyp = I - 2ppT13J/(p, P)h. P (2) 

This same formula may be used to obtain the matrix 
for the reflection in a plane as well. In this case, p 
represents the homogeneous coordinates of the plane. 

Note: (2) can also be used to give the matrix for a 
Euclidean reflection, by replacing 131’ with I and the 
Minkowski inner product with the dot product. 

To use (2) in an example, let p = (0,5,0.0,0), and 
consider the triangle with vertices a = (0.2,0.0,0.0), 
b = (-0.5, -0.5,0.0), and c = (-0.5,0.5,0.0) - see 
Figure 2. Then we can use the homogeneous coordinates 

0.5 
0 

P= 0 

0 

to obtain 

1 

( 

1.666 0 0 -1.333 

rP 
hyp = 0 I 0 ; 

0 0 1 
1.333 0 0 -1.666 1 

To transform a point, say a, by this reflection, we multi- 
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0.2 

ply its homogeneous coordinates 
0 0 o by this matrix 

1 
-1 
0 

to obtain o 

( 1 

and then normalize to obtain the 

-1.4 
point a’ = (0,714,0,0). Transforming b and c similarly 
gives b’ = (0.929,0.214,0), and c’ = (0.929, -0.214,O). 

Although the two triangles in 2 look very different 
from a Euclidean point of view, they are congruent in 
hyperbolic space. One may verify this by using (1) to 
compute the hyperbolic lengths of the triangles’ edges. 

For example d hyp(a,b) = dhyp(ti, b’) = 2.074. (Be 
sure to use homogeneous coordinates in (l)!) 

Translations 

We can now define hyperbolic translations in terms of 
reflections. Just as in Euclidean space, the translation 
which takes a point a to a point b is the composition of 
the reflection in a with the reflection in the midpoint m 
of a and b: 

ThYP = &YF . ,hYP 
a,b m a . (3) 

The homogeneous coordinates m of the hyperbolic mid- 
point are given by the formula 

m = ad/(b,b)h(a,b)t, +%/(a,a)h(a,b)n, (4) 

where a and b are homogeneous coordinates for a and 
b, respectively. 

As an example, consider the triangle from Figure 2 
again. And let b’ = (0.3, -0.7,O). -We compute the 

hyp matrix of translation T,,,, . Using the homogeneous 

coordinates for b and b’ in (4) gives m = 

for the midpoint. Using (2) and (3) then gives 

/ 1.676 0.814 0 1.572 \ 

-1.369 0.636 0 -1.130 

0 0 1 0 

J 

(5) 

1.919 0.257 0 2.179 

The images of a, b, and c under this transformation 
are a’ = (0.744, -0.548,0), b’ = (0.3, -0.7,0), and c’ = 
(0.846, -0.095,O); see Figure 3. 

To continue this example, we can translate b’ again 
by (5) and obtain b” = (0.585, -0.771,0), which lies 
on the line containing b and b’. The points b, b’, and 
b” lie at equally spaced intervals along this line in the 
hyperbolic metric. 

An important fact about hyperbolic translations is 
that each has a unique axis. This is different from Eu- 
clidean translations, where it is only the direction of the 
axis that matters, not the particular choice of axis. 

Figure 3: Hyperbolic Translation. Triangle a’b’c’ is ob- 
tained by translating triangle abc along line I from b to 
b’; the two triangles are congruent in hyperbolic space. 

Rotations 

A rotation of H3 about an axis 1 through the origin is 
the same as the Euclidean rotation about the same axis, 
since this rotation preserves the unit ball. To compute 
the matrix of rotation about an axis not passing through 
the origin, we first translate 1 the origin, do the rotation 
there, and then translate I back to its original position. 
The concatenation of these three transformations gives 
a rotation about the original axis. In order for the angles 
to work out right, we must translate along the unique 
line through the origin perpendicular to 1. If lc is the 
point of 1 closest to the origin, this is the translation 

hyp 
To,0 . 

Specifically, suppose a and b are points in H3 and we 
wish to rotate through an angle of 0 about the line 1 
through a and b. The point lc of 1 closest to the origin 
is given by 

Q - (a - b) b 0 (b - a) 

lo= (a-b)+-b)b+(b-a),(b-a)a’ @) 

Note that in (6) a and b are the afllne (not homoge- 
neous) coordinates of points in H3, and . is the usual 
dot product. The desired hyperbolic rotation is then 

(7) 

where Rzy is the Euclidean rotation of R3 through an 
angle of 0 about an axis in the direction of u, where 
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Figure 4: Hyperbolic Rotations. Triangle a’b’c’ is 
obtained by rotating triangle abc about the point p 
through and angle of n/3 radians. The other four tri- 
angles are obtained by additions rotations through the 
same angle. All six triangles are congruent in hyperbolic 
space. 

u = (a - b)/lla - bll is a unit vector in the direction of 
1. Rzy is given by ([3], p. 73) 

uf + c(1 - ?JT) UlU2Cl - u3s ‘ulU3Cl + u2s 0 

uluzCl+ ‘u3s u; + c(1 - u;> U2U3C1 - 2115 0 
U1U3Cl - 212s u2’u3Cl + ‘111s u;+c(l-u;) 0 

0 0 0 1 

where c = cos(fJ), s = sin(e), and cl = 1 - cos(8). 
To give another example using the above triangle, we 

compute the rotation about the line I through the points 
p = (0.5,0,0) and q = (0.5,0,1). This line is perpen- 
dicular to the z-y plane (in both the Euclidean and hy- 
perbolic metrics) and hence this rotation preserves the 
z-y plane. 

The point I,-J from (6) is, of course, just p. Using 
u = (O,O, 1) in (7) we obtain 

1. 0.5 0 -0.5 
0. (8) 

-0.333 

The images of a, b, and c by this transformation are 
then a’ = (0.364, -0.273,‘0), b’ = (0.421, -0.789,0), and 
c’ = (-0.308, -0.692,O). Figure 4 shows the resulting 
triangle, as well as the next five images under the trans- 
formation (8). 

Figure 5: Scene from the video Not Knot. This scene 
shows a tesselation of hyperbolic space by regular right 
dodecahedra - analogous to a tesselation of Euclidean 
space by cubes. 

Applications 

Three recent projects at the Geometry Center have ap- 
plied these ideas. One is the video Not Knot [4]. This 
video, whose purpose is to illustrate some of the basic 
concepts of knot theory and the theory of 3-manifolds, 
includes a fly-through scene of hyperbolic 3-space; see 
Figure 5. During this fly-through one easily notices that 
apparent size changes more rapidly in hyperbolic space 
than in Euclidean space. Angles appear to change as 
we move closer to them. In fact, however, they are not 
changing - what changes is our perception of them. 

Another project which has used 4 x 4 matrix tech- 
nology in this way is a flight simulator for hyperbolic 
space written by Linus Upson, a Princeton University 
undergraduate working as a research assistant during 
the summer of 1991. Patterned after the popular SGI 
flight simulator, Upson’s program allows one to navigate 
through a scene in hyperbolic space; see Figure /ref- 
fig:hfly. The program is excellent for conveying a sense 
of how angles and distances seem to change with motion. 
The intuition which one gains from this experience is 
hard to pinpoint but extremely valuable in understand- 
ing hyperbolic geometry. 

The third Geometry Center project using hyper- 
bolic transformations is a general graphics library which 
we call the “Object Oriented Graphics Language” 
(OOGL), begun by Pat Hanrahan in the summer of 
1989. This library provides a general framework in 
which geometric objects and the actions which oper- 
ate on them may be specified arbitrarily. This makes 
it easy to define and manipulate objects in hyperbolic 
space. The interactive viewing program which accom- 
panies OOGL (MnneView) has a “hyperbolic mode” 
in which the translations and rotations controlled by 
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[4] Gunn, Charlie, et. al. “Not Knot” [videotape] Jones 
and Bartlett. Copies of this video may be ordered 
by contacting Jones and Bartlett Publishers, Inc, 
20 Park Plaza, Suite 1435, Boston, MA 02116- 
9792. 

[5] Thurston, William. The Geometry and Topology 
of Three-Manifolds, volume 1. Princeton University 
Press, to appear. Chapters 1 and 2 provide a good 
introduction to hyperbolic geometry. 

Figure 6: Hyperbolic space flight simulator. This scene 
shows the view from the cockpit of an airplane flying 
over a hyperbolic plane in hyperbolic 3-space. The,plane 
is tesselated with regular right pentagons - it is essen- 
tially a copy of Figure 1. 

mouse motions are hyperbolic rather than Euclidean. A 
version of this program for SGI IRIS workstations may 
be obtained on the Internet via anonymous ftp from 
host geom.umn. edu (IP address 128.101.25.31). 
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