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1. Introduction

Euclidean spaces are boundedly compact and have the metric property that
any two spheres are similar. In particular, if a closed sphere of radius 7 can be
covered by n open spheres of radius z, then, for any positive a, every closed
sphere of radius ar can be covered by n open spheres of radius ax. We shall
show that this combinatorial similarity property is sufficient in any boundedly
compact metric space for the development of ordinary Lebesgue measure theory.
One result is the validity of the usual formula for the volume of a sphere. That
is, apart from a multiplicative constant there is one and only one measure which
is a volume in the sense that spheres of equal radii have equal measures, and
there is an a such that the volume of a sphere of radius r is 7*. The existence
proof will be presented in a general enough form to include the development of
the intrinsic measure theories of Riemannian metric spaces and of metric spaces
like the Cantor sets for which the dimension « is non-integral.

2. The existence theorem

Let M be a boundedly compact metric space for which the following com-
binatorial congruence axiom is satisfied:

PostuLaTE 1. There is a constant K (K = 1) such that if some closed sphere
of radius r can be covered by n open spheres of radius x, then, for any positive a,
every closed sphere of radius ar can be covered by n open spheres of radius Kax.

Let h(r, ) be the smallest number such that every closed sphere of radius r
can be covered by h(r, z) open spheres of radius z.' By Postulate 1, h(r, ) is
finite and satisfies the inequality:

1) h(ar, Kaz) < h(r, z).

It is also evident from the definition that

@) h(r, ) < h(r, y)h(y, z).

Then h(ar, ax) < h(ar, Kar)h(Kaz, ax) < h(r, z)h(K’, 1), so that
3) h(ar, ax) = Ah(r, 1),

where A = h(K’, 1).

1This function is thus similar to the Haar covering function. See Saks, Theory of the
Integral (1937), p. 315.
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368 LYNN H. LOOMIS

LemMa 1. There is a positive constant B such that
4) h(r, Y)h(y, z) < Bh(r, z)

whenever ¢ < y < 1.

If we define f(r, ) to be the largest number such that every open sphere of
radius r contains f(r, z) disjoint closed spheres of radius r, then we clearly have
f@r, x) = f(r, y)f(y, ). Some open sphere U with radius r contains f(r, z) dis-
joint closed spheres S; with radius x and contains no larger such set. But then
(if £ < r/2) the open spheres concentric with the S; and with radius 3z cover
the closed sphere concentric with U and with radius /2. For if p were an un-
covered point the closed sphere about p with radius  would lie in U and touch
no S;, contradicting the choice of the S; as a maximal set. We thus infer that
f(r, £) = h(r/2, 3Kz) whenever z < r, the inequality being obvious if r/2 < z
< r. Finally, f(r, z) < h(r, z). For if a set of open spheres of radius = covers
a set of disjoint closed spheres of radius z then no open sphere can contain the
center of more than one closed sphere.

These three inequalities on f(r, ) imply that

h(r, 2) Z f(r, x) 2 f(r, y)f(y, ) = h(r/2, 3Ky)h(y/2, 3Kx).
But by (1) and (2)
h(r, y) < R(r, r/2)h(r/2, 3Ky)h(3Ky, y) < [RBK’, )I’h(r/2, 3Ky)

and similarly for h(y, z) so that the lemma follows with B = [h(3K*, 1)]".
THEOREM 1. There is a positive constant M and a unique positive’ exponent
a such that

() M (2) < h(r,z) < M(;)

whenever x = 1.

The inequalities (2), (3) and (4) show that there is a positive constant C
(C > 1) such that

C'h(1, a)h(1, b) < h(1, ab) < Ch(1, a)h(1, )

where a, b < 1. If we abbreviate h(1, a) as h(a) and apply this inequality
repeatedly to h(a™), we obtain the inequality:

(6) C[_C_lh(a"')]" < h(a™) < [CR(@™]"C!

Let (6') be the result of interchanging m and » in (6). Suppose that m = n
so that CY™ < CY". We then obtain from (6) and (6'), by dividing and extract-
ing mn-th roots, that

h(an)lln

i <

c <

2 We shall assume that the space M contains more than 1 point. Then by Postulate 1
the function h(r, z) is unbounded and « must be positive.
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whenever m = n. Thus if a is fixed (a < 1), h(a")'" converges to a limit [
asn — « and C 1" < h(a") < Czl" The monotonicity of (1, z) implies that
for any positive y :

€7 < h(Q, ") = (CP.

We obtain Theorem 1 from this inequality (with M = AC"l) by replacing o”
by z/r, taking a as — log I / log a so that I' = (r/x)®, and applying (3).

THEOREM 2. If N disjoint closed spheres S; with radii r; lie in a sphere S with
radius r, then

N
>t s K
tm=]

If S is covered by h(r, z) open spheres of radius z, where z is less than one-
half the distance between any two S;, then no covering sphere can touch more
than one S;. By the definition of h(r, z) and Postulate 1, the number touching
8. is at least h(r;, Kz) so that 2" h(r;, Kz) < h(r, z), or by (1),

) El h(r, rK’z/7) = E h(rs, Kx) < h(r, ).

By Theorem 1, h(r, z) can be written as M (r, x)(r/z)* where M < M(r, z) <
M. Then (7) implies at once that

M(r, erz/r.) -
Z; M(r, z)

If z, (z. — 0) is chosen so that M (r, z,) — lim,__M(r, z) as n — =, the theorem
follows.

THEOREM 3. If the closed sphere S with radius r is covered by N open spheres
S: with radit r;, then

K2a a

N
” < K* El 5.

The proof is similar to that of Theorem 2.

We now introduce Hausdorfl a-dimensional volume. The outer measure
u(A) of an arbitrary set A is defined to be the limit as ¢ — 0 of the greatest
lower bound of sums Y_°r% such that 1) 4 is covered by a countable family S,
of open spheres with radii r, , and 2) 7, < efor all n. It follows® that u(4) is a
Caratheodory outer measure and the usual development of measure theory is
valid. Moreover, u(A4) is a non-trivial measure, for by Theorems 1 and 3 the
measure of any closed sphere S with radius r is finite and positive, satisfying in
fact the inequality:

® K" < u(8) = Mr°.

*8ee, for example, Saks, loc. cit., pp. 53, 54.
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THEOREM 4. Postulate 1 is a necessary and sufficient condition that a boundedly

compact metric space have a measure u(A) such that for suitable positive constants
a, Cyand C»,

9) Crr* < u(8S) < Car,

where S is any sphere with radius r.

The sufficiency was remarked above. Now suppose that u(A) satisfies (9)
and that a closed sphere of radius r is covered by n open spheres of radius z.
Then Cyir® < nCx®. Now let S be any closed sphere with radius ar. If m is
the smallest number of open spheres with radius Kax required to cover S, then,
as was observed in the proof of Lemma 1, the open sphere concentric with S
and with twice the radius contains a set of m disjoint closed spheres with radius
Kaz/3. Hence mCi(Kax/3)* < C2(2ar)®. 1t follows from these two inequali-
ties that if K is taken as 6(C2/C,)”* then m < n and Postulate 1 holds.

It is obvious from these remarks that if Postulate 1 is satisfied and if a measure
m(A) has the property that there are positive constants A; and A, such that for
any two closed spheres S; and S, of the same radius

then again (9) is satisfied.

To get more exact information concerning the measures of spheres we need a
simple form of the Vitali covering theorem. A proof will be included for com-
pleteness though it can be read almost word for word from any standard ac-
count.! We suppose given a bounded set A, every point of which lies in arbi-
trarily small spheres of a family F of closed spheres.

TueorEM 5. There is a sequence S, of disjoint spheres of F such that, if T, is
the open sphere concentric with S, and with five times the radius, then for every N

A— Z)l 8. < Z:N T, .

We restrict ourselves to the spheres of F lying in some bounded open set O
which contains A. A finite number of the S, can be chosen arbitrarily (but dis-
joint!) and beyond that S,, can be taken as any sphere not touching > S
whose radius is at least one-half the least upper bound é,. of the radii of the
spheres of F (in 0) not touching Y. ""'S;.

Any point of A notin >_* 8;is at a positive distance from > " S;, and so lies
in some sphere S of F not touching > S;. Since §; — 0, S must touch a first
Sm (m > N), so that 7(S) < 6, < 2r(Sn), and 8 lies in 7, , concluding the
proof of the theorem.

Let m(A) be any measure satisfying (9). Then there is a constant B such that
m(T,) = Bm(S,), and

m (A - 23) < 2: m(T,) < B ‘Z; m(S.).

¢See 8aks, loc. cit., p. 109.
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Since >_"m(S,) < m(0) < =, the last member approaches O as N — o,
Thus the sequence S, covers A except for a set of measure O. If, in particular,
A is open and the spheres of F lie in 4, then m(4) = Y_° m(S,).

THEOREM 6. If S is an open sphere with radius r, then

K" < u(S) = K**r".

Let S, with radii r, be a Vitali sequence for S chosen from the closed spheres
in 8. Theorem 2 applied to the partial sums implies that Y_*r% < K**r®. But
the sequence S, can be enlarged to an open covering of S (by replacing S, by
T, for n > N and enlarging slightly the first N spheres) in such a way that the
increase in »_ 7% is less than an arbitrary 6. Since the spheres of S. can be
taken with all radii less than any given ¢, it follows that u(S) < K**r* + 3,
which proves the right hand inequality of Theorem 6.

Since any covering of S covers every closed sphere in S, Theorem 3 implies
that u(S) = K 2t* for every t less than r, and this completes the proof of the
theorem.

3. Euclidean metric spaces

By a Euclidean metric space we shall mean any boundedly compact metric
space in which Postulate 1 holds with K = 1, that is, in which the smallest num-
ber of open spheres of radius x required to cover a closed sphere of radius r
depends only on the ratio z/r. Ordinary Euclidean spaces are special cases.
We restate Theorem 6.

TaEOREM 7. In a Euclidean metric space of dimension o the Hausdorff a-dimen-
stonal volume of a sphere of radius r is r®.

We have thus established the ordinary formula for the volume of a sphere.
We now show that, to within a multiplicative constant, this is the only possible
volume.

TueoreM 8. If m(A) is a measure tin M which s a volume in the sense that
closed spheres of equal radius have equal measures, then for some positive k, m(A) =
ku(A).

Let O be any bounded open set. We norm the measure m(4) so that m(0) =
1(0). The closed spheres in O for which m(S) > u(S) cannot form a Vitali set
for O, for otherwise we could choose a Vitali sequence S, from them and obtain
the contradiction:

mO) = 40 = 3 4(8) < 3 m(S)) = m(O),

Hence there is a point p in O and a positive e such that m(S) < u(S) for every
closed sphere touching p with radius less than e. But then m(S) = u(S) for
every closed sphere with radius less than e. Similarly m(S) = u(S) for every
closed sphere in O with radius less than a suitable ¢, so that m(S) = u(S) for
all sufficiently small closed spheres. Hence, by the Vitali theorem, m = u for
all bounded open sets and so for all measurable sets.
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4. Riemannian metric spaces

The spaces of Riemannian geometry have the property that given any point
p and any number d greater than 1 there is an open sphere S about p such that
any two open (or closed) spheres in S are similar to within a multiplicative
error of d. That is, if S, and S, with radiicr, and r, are two such spheres, then
there is a one-to-one mapping f such that S, = f(S,) and

1(n (P, 9) (11)
() = sy =4 C:
for every pair of points p and ¢ in 8;. Thus ordinary Riemannian spaces are
included in the following definition. A Riemannian metric space is a connected
locally compact metric space in which Postulate 1 holds with any value of K
greater than 1 for the closed spheres contained in a sufficiently small fixed sphere
about any given point.” A Riemannian metric space is locally Euclidean if
Postulate 1 holds locally with K = 1.

The existence theory of section 2 can now be applied only locally. Let U
be a sphere (radius 7,) in which Postulate 1 holds and let V be the concentric
closed sphere with radius ro/3. We define h(r, x) with £ < r < r,/3 in terms of
coverings of S ~ V where S is the general closed sphere with radius r, and we
define f(r, z) in terms of packings of spheres contained in V. Then (1) and (2)
hold and the rest of section 2 applies automatically if only spheres lying interior
to V are considered. We assume the space to be connected in order to insure
that the resulting dimension « is the same over the whole space. This effect
can also be obtained, without postulating connectedness, by assuming that
Postulate 1 holds for any K greater than 1 in any compact set, provided that
only spheres are considered having radii less than a suitable e. With this com-
mon value for « the Hausdorff a-dimensional volume is defined for all separable
Borel sets and is finite and non-zero for every open set with compact closure.
The following theorem is evident from the definition of Riemannian metric
spaces and Theorem 6.

TaeorREM 9. If F is a compact set in a Riemannian metric space of dimension
a, then the Hausdorff a-dimensional volumes of spheres in F with radius r are uni-
formly asymptotic to r* as r — 0.

Similarly, the formula for the volume of a sphere holds in the small in a locally
Euclidean space.

THEOREM 10. If m(A) 8 a measure for which closed spheres of equal radius in
a compact set have asymplotically equal measures as r — 0, then there is a positive
constant k such that m(A) = ku(A).

The proof of Theorem 8 is general and shows that there is some point p in O
such that m(S) < u(S) for all sufficiently small closed spheres touching p and
a second point ¢ for which the inequality is reversed. It follows that m(S) is

¢ Compare this definition with the properties considered by Busemann, Metric Methods
in Finsler Spaces and in the Foundations of Geometry, p. 40, (1), (1a) and (1b).
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asymptotically equal to u(S) as 7(S) — 0, and by the Vitali theorem that m =
u in O. )

Thus section 2 contains a development of the intrinsic measure theory of
Riemannian metric spaces, an application being a coordinate-free development
of measure theory in ordinary Riemannian spaces.

b. Cantor spaces

In this section we shall assume Postulate 1 in the Euclidean form for a re-
stricted set of spheres. Let M be a boundedly compact metric space and let O
be a family of open spheres in M with radii of the form ba” for fixed a and b
(0 < a <1). We suppose that i) there is a positive constant C such that any
sphere in M with radius Ca” (n = 1) lies in a sphere of O with radius ba”, and
that ii) the smallest number of spheres of O with radius x required to cover the
closure of a sphere of O with radius r depends only on the ratio z/r. The theory
of section 2 can be applied to the spheres of 0. In the proof of Lemma 1 the
concentric spheres of radius 3z may not be in O, but by property i) above, each
such sphere lies in a sphere of O with radius at most (b/Ca)3z. The outer meas-
ure u is now defined using coverings by spheres from O. Thus if S is the closure
of a sphere in O with radius ba", then (inequality (8))

(ba™)® = u(8) = M(ba™)".

Now let S be any sphere in M whose radius z is at most Ca. For some n, 2ba" <
z < 2ba""' so that if S; is the closure of any sphere of O which contains the center
of S and has radius ba”, then S, lies in 8. Also there is a sphere S, of O which
contains S and has radius at most bz/Ca. Hence

(3) = = 00 5 w5 5 0 s i s 1 (L) o
Thus (9) holds, and u is a measure for which the Vitali theorem is valid.

The ordinary Cantor sets are spaces of this type. Let M, be the closed unit
interval [0, 1]. We suppose inductively that M, consists of 2" closed intervals
of length ((1 — 1)/2)" and we form M, from M, by removing the open interval
of length I((1 — 1)/2)" from the center of each closed interval of M,. Then M =
II” M. is the ordinary Cantor set. The 2"* endpoints of the 2" open intervals
removed from M, make up those endpoints of M, ; which are not endpoints of
M, . Let O, be the set of 2" open spheres in M with these points as centers
and with radius ((1 — 1)/2)"*" + kI((1 — 1)/2)" (= D((1 — 1)/2)") where 1 < k
< (1 = 1)/2)™. Each interval of M, is covered by either of the two spheres
of On41 having endpoints in it, and M (and M,) can be covered by 2" of these
spheres but by no fewer. Any sphere of radius less than kI((1 — 1)/2)" lies in
a sphere of O,;;. Finally any two spheres of O = Y_° 0, are similar. Thus
properties i) and ii) are satisfied, and it remains only to compute the dimension
a of the space.
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By Theorem 1, M 'z~ * £ h(l, z) £ Mz ® and we have seen that h(1, z) =
2"ifz = D((1 — 1)/2)". Hence

a1 — I\ n a1 — I\
M™D (—2—> <2< MD (T) .
Taking nth roots and letting n — « we find that ((1 — 1)/2)™% = 2, i.e., that
a = log 2 /log (2/(1 — 1)). If M is formed by removing middle thirds (I = })
then a = log 2 /log 3.

There seems to be no way in which the general measure of this section can be
considered a unique volume. Let us now replace ii) by the following stronger
property: iii) if the closure of some sphere of O with radius r; can be covered by
N spheres of O with radii z;,7 = 1, --- , N, then the closure of any sphere of
O with radius r; can be covered by N spheres of O with radii (r;/r)z;. It follows
from iii) that if S; and S, are the closures of spheres in O with radii ba” and
ba™ then u(S,) = a™ ™°u(S;). Therefore if u is multiplied by a suitable posi-
tive constant, u(S) = r* where S is the closure of any sphere in O and 7 is its
radius. Thus p can be considered a volume with respect to these spheres.
Finally, since the closures of spheres in O form a Vitali set for the space, Theorem
8 can be applied and shows that u is essentially (to within a multiplicative con-
stant) the only such volume.

The replacement of ii) by iii) can certainly be made whenever, as in the case
of the Cantor sets or Euclidean spaces, the spheres of O are all similar.

6. Cartesian products

Let M, and M, with dimensions a and 8 be boundedly compact metric spaces
satisfying Postulate 1 and let M be their Cartesian product with distance de-
fined by the usual Euclidean formula. Then M satisfies Postulate 1 and its
dimension is @ + B. This follows readily from the fact that any sphere in M
with radius r contains the “square” whose sides are spheres in M; and M, with
radius r/2}, and is contained in the square whose sides have radius . Hence

h(r’ \/éx) é hl(r, x).h2(r) I)
1, 2) 2 filr/V/2, Dfr/V/2, 2),

where f is the packing function of Lemma 1, and the result is immediate.

If M, and M, are spaces in which closed spheres are similar then M has the
same property. Thus K, = K, = K = 1 and all three spaces are Euclidean
metric spaces.

But in general it does not follow, at least from the above argument, that K =1
whenever K; = K, = 1. Nevertheless it is easily verified by integration that
the volume of a sphere in M with radius r is proportional to r**. Thus is
raised the problem of determining combinatorial conditions in a boundedly
compact metric space which are necessary and sufficient for the existence of a
measure which has the value 7* on a sphere of radius r.
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