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A Shadow
Algorithm for
Hyperspace

Calculating Shadows in Hyperdimensional Scenes

By Mei-chi Liu, Robert P. Burton and Douglas M. Campbell

This paper describes an algorithm
for calculating shadows in hyper-
dimensional scenes. The scenes
consist of multiple convex objects
with dimensions that may be as
great as those of the scene itself,
together with multiple light
sources. Shadows are calculated and
added to the scene, which is subse-
quently projected to lower dimen-
sions and presented. The develop-
ment of a shadow algorithm for hy-
perspace is part of an ongoing ef-
fort to develop computer graphics
techniques for meaningfully pre-
senting hyperdimensional models
which occur whenever four or more
variables exist simultaneously. The
utility of such models is often en-
hanced by visual rather than nu-
merical representation.

Related efforts include: the de-
velopment of a hidden-line algo-
rithm and of stereo motion picture
capabilities with hidden lines re-
moved from hyperobjects; a careful
study of depth cues and their appli-
cation to the presentation of hy-
perobjects; holograms of objects in
hyperspace; research to develop a
hidden-volume algorithm for hy-
perspace, to categorize and present
hypothesized four-dimensional
phenomena, and to develop a con-
structive solid geometry scheme for
presenting multi-dimensional
graphic information.

Shadows cast and received by
hyperdimensional objects consti-
tute a cue that remains unex-
ploited. When shadows are included
in a three-dimensional scene, they
reveal information about the rela-
tive positions of objects. By includ-
ing shadows in a hyperdimensional
scene, information about the rela-

tive positions of hyperobjects can
be revealed.

As different points in hyper-
space may project onto the same
point in two-dimensional space,
existing shadow algorithms that
use scanning hidden-surface tech-
niques to determine shadows in
three-dimensional space do not lend
themselves to extension to hyper-
spaces. Therefore, the shadow al-
gorithm described here carries out
all calculations in the original n-
dimensional space before the scene
is projected for presentation. Once
shadows are determined, any pro-
jection can be selected to present
the scene.

From Lower- to Higher-
Dimensional Objects
Higher-dimensional objects can be
built from lower-dimensional ob-
jects. For example, a line segment
is defined by two bounding points,
a polygon by its bounding line seg-
ments, and a polyhedron by its
bounding polygons. The surface of
an n-dimensional object is defined
by its bounding (n—1)-dimen-
sional objects.

Given a surface portion of an n-
dimensional object X and a light
source L for n-space, a test is needed
to determine whether the surface
portion is illuminated. The surface
portion is illuminated only if the
normal to the surface portion forms
an angle of less than 90 degrees
with a vector to the light source.
The advantage of defining the sur-
face of an n-dimensional cbject with
(n — 1)-dimensional objects is that
the illumination of an n-dimen-
sional object can be determined
simply from the direction of each
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normal of its (n — 1)-dimensional
surfaces. Only the illuminated
(n—1)-dimensional surfaces need
to be processed by the algorithm,
thereby decreasing the computa-
tion time.

Description of the Algorithm
The intersecting shadow volume
algorithm is an object-space algo-
rithm. It accepts geometrical and
topological descriptions of multi-
ple convex objects and the positions
of multiple light sources. The viewer
is restricted to the near side of all
objects which in turn are re-
stricted to the near side of a back-
ground plane whose dimension is
one less than the dimension of the
scene. Shadows are calculated and
added to the scene which is then
projected for presentation.

In the accompanying figures,
parts of the scene are presented in
various colors: black for objects; red
for the shadow volume of an object
formed by a single light source; blue
for the shadow volume of a second
light source; and green for the in-
tersection of the illuminated por-
tion of the surface of an object and
the shadow volume of another ob-
ject (i.e., the shadow cast upon the
illuminated portion of the first
object).

Two Three-Dimensional Objects X
and Y and One Light Source L: The
algorithm is applied in three steps
to determine shadows.  °

[1 Step 1: Use normals to separate
the surface polygons of a polyhe-
dron into those illuminated by L
and those that are not. The illumi-
nated surface of a polyhedron is de-
fined as consisting of all its

illuminated surface polygons. The -
shadow volume of the polyhedron-

~ from the light source is generated
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Figure 1: The shadow areas of a
polyhedron.

Figure 2: Intersecting polygons
attached to the extended surface
polygons.

Figure 3: Three-dimensional
shadows.

\

Figure 4: The shadow areas of
hyperpolyhedra.

Figure 5: Intersecting polyhedra
attached to the extended surface
polyhedra.



by projecting the illuminated sur-
face from the polyhedron toward the
background plane. The shadow
volume is itself a three-dimen-
sional polyhedron bounded on the
ends by the illuminated surface and
the projection of the illuminated
surface onto the background plane
(Figure 1). This is computationally
equivalent to projecting each illu-
minated surface polygon onto the
background plane.

(] Step 2: Intersect the shadow vol-
ume of polyhedron Y with each il-
luminated surface polygon of
polyhedron X. If the intersection is
nonempty, the intersection is a
shadow polygon, line, or point and
is added to the list of shadows in
the scene. Repeat, interchanging
the roles of polyhedra X and Y
(Figures 2 and 3).

[ Step 3: Project and present the
illuminated surfaces and shadows
(polygons, lines, and points).

Two Four-Dimensional Objects X
and Y and One Light Source L: The
algorithm is extended to determine
shadows in four-dimensional space
in three steps.

(] Step 1: Use normals to separate
the surface polyhedra of the hyper-
polyhedron into those illuminated
by L and those that are not. The
illuminated surface of a hyper-
polyhedron is defined as consisting
of all its illuminated surface poly-
hedra. The shadow hypervolume of
the hyperpolyhedron from the light
source is generated by projecting
the illuminated surface from the
hyperpolyhedron toward the back-
ground hyperplane. The shadow
hypervolume is itself a four-dimen-
sional hyperpolyhedron bounded on
the ends by the illuminated sur-
face and the projection of the illu-
minated surface onto the back-
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Figure 6: Four-dimensional
shadows.

Figure 7a: Three-dimensional
shadows with multipie objects.

Figure 7b: Three-dimensional
shadows with multiple light
sources.
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Figure 8a: Four-dimensional
shadows with muitiple objects.

L

Figure 8b: Four-dimensional
shadows with multiple light
sources.




ground hyperplane (Figure 4). This
is computationally equivalent to
projecting each illuminated sur-
face polyhedron onto the back-
ground hyperplane.

[J Step 2: Intersect the shadow hy-
pervolume of a hyperpolyhedron Y
with each illuminated surface po-
lyhedron of hyperpolyhedron X. If
the intersection is nonempty, the
intersection is a shadow entity of
dimension less than four and is
added to the list of shadows in the
scene. Repeat, interchanging the
roles of hyperpolyhedra X and Y
(Figures 5 and 6).

(0 Step 3: Project and present the
illuminated surfaces and shadows
(polyhedra, polygons, lines, and
points).

Two n-Dimensional Objects X and
Y and One Light Source L: The al-
gorithm is applied to determine
shadows in n-dimensional space in
three steps.

L] Step 1: Use normals to separate
the (n —1)-dimensional surface
elements of the n-dimensional con-
vex object into those illuminated
by L and those that are not. The
illuminated (n— 1)- dimensional
surface of the object is the union of
its illuminated (n—1)-dimen-
sional surface elements. The
shadow hypervolume of the object
from the light source is generated
by projecting the illuminated sur-
face of the object toward the back-
ground hyperplane. The shadow
hypervolume is itself an n-dimen-
sional hyperpolyhedron bounded on
the ends by the illuminated sur-
face and the projection of the illu-
minated surface onto the
background hyperplane.

(] Step 2: Intersect the n-dimen-
sional shadow hypervolume of the
object Y with each illuminated
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surface element of the object X. If
the intersection is nonempty, the
intersection is a shadow entity and
is added to the list of shadows in
the scene. Since the shadow hyper-
volume is of dimension n and the
illuminated surface element is of
dimension n—1, the dimension of
a shadow entity is at most n—1.
Repeat, interchanging the roles of

Determining Object Surface
Illumination .
An n-dimensional convex object Y is
defined by a finite set of linear
equations E,,...,E,, as follows. A point
X + (xy,...X,) of n-space is strictly in Y
only if Ex)*0 fori=1,...,m, (i.e., if
the point x is strictly “inside” every
hyperplane which defines Y). A point
is inside, or on, Y only if E,(x)+0 for
i=1,.,m.

The convex object Y defined by
E,,...,E, has m (n - 1)-dimensional
boundary surfaces, each of which lies
in one of the m hyperplanes E;(x) =0.
If E; is the linear equation that defines
the i-th (n - 1)-dimensional surface
element, then the element is
illuminated by a light source at the
point X only if E(x)>0 (i.e.,, if X is
“outside” the boundary hyperplane
used to define object Y).

A hyperplane E is defined by first
choosing n points p,,...,p, which do not
lie in (n — 2)-dimensional space. Each
point p; can be written in terms of its
n coordinates as p; = (py,...,p;n), where
p. j denotes the projection of p, on the
Jj-th axis. The n X n matrix M = (m,)
is found next where

X, - P, ifi=1,1<j<n

m; = P;-P,if2<i<n, 1sj<sn

The linear equation E is the
determinant of the matrix M. It can be
given in the ordinary linear form

Ex) = Cx,-CP,,
where C, is the cofactor of the element
in the first row and i-th column of the
matrix M.

the n-dimensional objects X and Y
[ Step 3: Project and present the
illuminated surfaces and shadows
(which are at most (n—1)-di
mensional).

Multiple Objects and Light Sources;
If there are m n-dimensional ob-:
jects X, X,, ..., X, in the scene,
with V,, V,, ..., V.. illuminated
surface elements respectively, then
Step 2 of the algorithm is repeated
for each illuminated surface hy-
perpolyhedron for each of the m -1
n-dimensional shadow volumes.
Assuming the average number o
visible surface polyhedra to be V§
the computational time of the al-§
gorithm is increased by a factor of ‘
(m—DV. , §

If there are k light sources L,, ..,§
L,, then Step 2 of the algorithm§
must be repeated k times. This in- ‘
creases the computation time of the §
algorithm by a factor of k.

Assuming k light sources and n
objects with the same average
number of illuminated surfaces, the
total computation time—includ-
ing transformations, hidden-sur-
face elimination, calculation of
shadow volumes, intersections and
shadows cast upon objects—Is
kn(n—-1)t,v, where t v is the aver-
age computation time to calculate
shadows cast upon one object from|
another. :

Running on a VAX 11/750, the|
computation time to calculate typ-]
ical three- and four-dimensional
shadows is listed in Table 1.

Conclusion
The shadow algorithm presented
here has been successfully imple-
mented to determine shadows inj
three- and four-dimensional spaces
Multiple objects (Figures 7a and 8a)
and multiple light sources (Figf
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Calculation of the Point(s) of Intersection of a Line and an m-dimensional
Subspace in n-space, m<n

To determine what parts of an illuminated (n — 1)-dimensional surface lie in an n-
dimensional shadow volume, it is necessary to break down the illuminated surface
into its line elements and then determine the intersection of the line elements of the
illuminated surface and the (n — 1)-dimensional boundaries of the shadow volume.
Thus, the problem of the intersection of a line and an m-dimensional space where
m<n needs to be solved.

A line L (a one-dimensional space) is defined by two points 1, and 1, where (1;,,
1,,...,1,) are the n-space coordinates of the point 1;. A point x = (x,,...,X.) isonL
only if x; = t(1;; - 15) + 1, for some real number t and for all i, 1<i<n.

An m-dimensional space S is defined by m + 1 points s,,...,, +,. By an
appropriate change of coordinates, it is assumed, without loss of generality, that the
1-dimensional space L and the m-dimensional space S lie in a space spanned by the
first (m + 1)-coordinate axis of n-space. Since S is confined to the (m +1)-
dimensional subspace in the first (m + 1) space coordinates, the space S may be
given as the solution of S(x) =0 where
(1) S(x) = Bj(xj - Slj);
where B, is the determinant of the m X m matrix

by .. byj—1byj+1 .. bym+1
B/=by .. bj-1bj+l .. bm+l
by . buj—1bmj+1 .. bym+1

and b = s;+1i — sy

Since L is confined to an (m + 1)-dimensional space in the first (m + 1) space
coordinates, the previous remark can be refined to state that x belongs to L only if
x;=t(1;;— 15) + 1 for some real number t for all j, 1<j<sm+1 and x;= 1= 1;; for all
j, m+2<j<n.

Let Aj=1,—1;, 1<j<m+1.Since 1,#1,, there is an index, say i, such that A; #0.
The equation x;=tA;+ 1, is multiplied by A,, and the equation x;=tA; + 1, is
multiplied by A; and then subtracted. Then

Ax, — Ax; = Aly — Alyf,
which can be rewritten as

X; = (Ain - f;)/A,

Thus, a point X = (X,,...,%,) belongs to L only if

x = (Ax, — f)/A; 1sjsi-l

x =tA + 1y j=i

(2)

x = (Ax, — B)/A; i+l<sjsm+1

x=1;=1; mtlsjsn

Assume that L and S intersect. Let x be a point both on L and in S. Since x is on
L, x satisfies (2). Since x is in 8, S(x)=0. Using (1),

(3)B;(x; — s;5) = 0.

Then (3) is rewritten as

(4) Bx; = Bjsy;

and (2) is substituted in (4):

(5) Bix; + B(Ax, — f)/A; = Bjsy;

Multiplying by A,, equation (5) becomes

(6)( BA)x, = A; Bgsy + Bf.

If B;A;= 0, then there is no restriction on x; and the entire line L in in the subspace.
If B,A,#0, then the point x; is uniquely defined by

(T)x; = [A; Bjsy + Bfl/(  BA).

Since x, is uniquely defined by (7), then all the other coordinates of x are uniquely
defined by (2). In this case, the point of intersection has been computed. W
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