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In boundary representation, a geometric object is 
represented by the union of a 'topological' model, which 
describes the topology ot the modelled object, and an 
'embedding'model,  which describes the embedding of 
the object, for instance in three-dimensional Euclidean 
space. In recent years, numerous topological models 
have been developed k)r boundary representation, and 
there have been important developments with respect 
to dimension and orientability. In the main, two types 
of topological models (:an be distinguished. "Incidence 
graphs' are graphs or hypergraphs, where the nodes 
generally represent the cells of the modelled subdivision 
(vertex, edge, face, etc.), and the edges represent the 
adjacency and incidence relations between these (:ells. 
"Ordered" models use a single type of basic element 
(more or less explicitly defined), on which "element 
functions' act; the cells of the modelled subdivision are 
implicitly defined in this type of model. In this paper 
some of the most representative ordered topological 
models are compared using the concepts of the 
n-dimensional generalized map and the n-dimensional 
map. The main result is that ordered topological models 
are (roughly speaking) equivalent with respect to the 
class of objects which can be modelled (i.e. with respect 
to dimension and orientability). 

computational p~eometo,, computatk~nal topology, geometric modelling, 
b~)undary representation 

Classically, ]n boundary representation, a 'solid' is 
defined by a subdivision of a surface (informally, a 
partition of this surface into vertices, edges and faces, 
that is into cells of dimension 0, 1 and 2), embedded 
in 3D Euclidean space t. This surface divides the space 
into two distinct areas: 'inside' and 'outside' the 
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modelled solid. More precisely, Baer et al 2 define the 
boundary of a solid as a subdivision of an orientable 
surface without boundaries, bounded, connected and 
with no self-intersection. Boundary representation thus 
implies the representation of topologic information - 
for instance, adjacency and incidence relations 
between the different cells of the modelled subdivision. 
Moreover, this topological information is explicitly 
defined in a boundary representation model (cf. the 
distinction made by Weiler ~ and Hillyard 4 between 
'evaluated' and 'unevaluated' representations of 
geometric objects). 

More precisely, a geometric object is defined in 
boundary representation by: 

a 'topological' model, which describes the topology 
of the modelled object. Examples of topological 
models are the winged-edge data structure S , 
vertex-edge and face-edge data structures 6, the 
quad-edge data structure ~, pavings 8 and pavementsg; 
the facet-edge data structure1°; n-dimensional 
maps 1], the cell-tuple structure12; and n-dimensional 
generalized maps 1'. 
an 'embedding' model, which defines the embedding 
of the object. For instance, for modelling solids, a 
subdivision of a 2D space is embedded in 3D space. 
Generally, a 2D manifold homeomorphic to a disc 
is associated with each topological face; two 
topological faces which are incident to the same 
edge are embedded in such a way that they intersect 
along a curve homeomorphic to a segment. Each 
topological face, for example, is embedded as a 
planar face ~, a cylindrical face, or a face defined by 
a parametric surface 1~14. 

Among the operators used for handling these models, 
we distinguish: 

• topological operators, which exclusively act on the 
topological model-  for instance, Euler operators ~5 17; 
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• 'embedding' operators, which exclusively act on the 
embedding model - for instance, some cases of 
tweaking, bending, and tw is t ing4~;  

• 'mixed' operators, which act on the topological 
model and on the embedding model - for instance, 
chamfering, Boolean operations ~~~'~ -'~ 

The boundary representation approach has been 
used for modelling subdivisions of the Euclidean plane; 
subdivisions of orientable or non-orientable surfaces, 
with or without boundaries; subdivisions of 3D space; 
and, more generally, subdivisions of orientable or 
non-orientable n-dimensional topological spaces, with 
or without boundaries, thus extending the domain of 
boundary representation. As a consequence of the fact 
that boundary representation is not only used for 
modelling solids, topological models and embedding 
models will be considered to be as independent as 
possible, i.e. with no embedding constraints. 

For instance, for modelling subdivisions of surfaces, 
two faces which are not adjacent may be embedded 
in such a way that they intersect (for instance, a Klein 
bottle embedded in Euclidean three-space). Similarly, 
two adjacent faces - for instance, incident to the same 
edge - may be embedded discontinuously, i.e. in such 
a way that they do not intersect (see, for example, the 
two faces of Figure 3, embedded in the plane in a 
discontinuous manner, each edge incident to two 
distinct faces is embedded as two segments). 

Thus, one of the main principles on which boundary 
representation is based is the distinction between 
topology and embedding. This distinction allows the 
differentiation of problems which appear in geometric: 
modelling, and more generally in computational 
geometry, and sometimes enables a hierarchization of 
these problems. For instance, topology may be invariant 
under geometric transformations ~, in particular in 
animation of articulated objects 2~. Computing Voronoi 
diagrams is simplified when topological and embedding 
aspects are clearly distinguished 7~°. 

It will be observed that embedding does not mean 
geometry in this instance. If topology can be deduced 
from geometry ~'22, topology and embedding are more 
independent, i.e., as observed above, topological 
models and embedding models may be as independent 
as possible. For instance, in dimension 2, assume that 
an embedding model consists in associating a polygon 
with each face of the topological model. If a 
discontinuous embedding is allowed, it is impossible to 
deduce the topological information from the embedding 
model (for examp]e, it is clear that the relations of 
adjacency between faces cannot be restored). In 
addition, it may be quite difficult to deduce topological 
information from geometric information 3. For instance, 
how can topological invariants (number of boundaries, 
Euler characteristic, orientability factor and genus) be 
computed, given a parametric surface, or a surface 
defined by implicit equations? 

Topological information such as adjacency and 
incidence relations between cells, and topological 
invariants (for instance, the genus of a surface), are 
important for a complete description of a geometric 
object. Such information provides considerable control 

over the modelled object ,' "~,,~, the definition, 
manipulation and control of the topology of geometrk 
objects have been extensiw4~ qudied in boundar~ 
representation. Numerous topological models and 
many topological operators (in particti ar Euler operators 
]nave been defined in recent y~',~r 

Conversely, the control ot embedding has !~ot vet 
been solved satisfactority~ F~)r -~stance, the autilor 
cons ders that no embedding ~¢,~istraints exisI:, t)ut it 
is clear that, in solid modelling I,:~r n~tance embedding 
constraints must be satisfied (for example, self 
intersections are not allowed), ii: th~se constraints are 
not satisfied, the embedding ,'~f the modelled object is 
incoherenl with regard to its top~:~logical characteristics. 
Algorithms have been stuctied, for detecting self- 
intersections, or for computing U~e results oi Boolean 
operations applied to polyhedr,l, defined t)y planar 
faces, or free-form surfaces :~' :'~' S, mqe of ttnem are used 
to detect or modify in({)he~e~t embeddings. New 
approaches concerning the contr-d of embedding have 
been researched":. 

Finally, mention must be made ~)f two aspects of the 
distinction between topology and embedding which 
are important for geometric modelling. First, this 
distinction raises certain problems when creating 
and manipulating geometric objects. For instance, not 
only the topology of an object must be defined but 
also its embedding ~22. Second, this distinction makes it 
possible to associate different embedding models with 
some topological model, in the same geometric 
modelleP ~8. For a more general study, see Mil ler "~. 

Many topological models have recently' been 
defined, extending the field of boundary representation, 
sometimes considered to be 1oo restricted::~ for 
instance: 

• concerning subdivisions of surfaces (2D spaces~: 
Baumgart ~ and Weiler ~ have studied the winged- 
edge data structure, and extensions of this data 
structure, while Ansaldi e~ a/~7 define the 
face-adiacencv graph representation so as to 
model the topology of subdivision of closed 
onented surfaces land thus J:or modelling solids 1): 
to model the topology of subdivisions of 
orientable surfaces. Guibas and Stolfi 7 define an 
edge algebra, and deduce from t the quad-edge 
data structure while ]ut te "~ and Bryant and 
Singerrnan'LJ study the concept of the combinatorial 
map (see also Chiyokura and the data structure 
presented in Mfintylfi ~) 

• concerning subdivisions of 3D spaces: 
to model the topology of subdivisions of closed 
oriented 3D spaces. Weiler ~ defines the radial- 
edge data structure, whi]e Spehner 8, Arques and 
Koch q and Lienhardt ~4 define V-maps and pavings, 
approaches which are extensions of the concept 
of the combinatorial map; 

:.~ to model the topology of subdivisions of 
orientable or non-orientabte 3D spaces, Dobkin 
and Laszto ~° define the facet-edge data structure 
~which is an extension of the edge algebra of 
Guibas and Sto]fiT). 
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In particular, for CAD, these representations make it 
possible to model inhomogeneous volumes: 

• concerning subdivisions of nD spaces: 
0 to model the topology of subdivisions of oriented 

nD spaces without boundaries, Lienhardff ~ defines 
nD maps, or n-maps (an extension of the concept 
of the combinatorial map); 

0 to model the topology of subdivisions of nD 
topological spaces, orientable or non-orientable, 
with or without boundaries Brisson 12 defines the 
cell-tuple structure, while Lienhardt ~ defines nD 
generalized maps, or n-G-maps (again, an 
extension of the concept of the map); Brisson -~5, 
Edelsbrunner ~ and Rossignac and O'Connor ~7 
define, respectively, incidence posets, incidence 
graphs and selective geometric complexes, while 
Sobhanpanah ~" defines a polytopal mesh repre- 
sentation in order to represent nD polytopes. 

Much attention has been given to problems concerning 
nD objects (see for instance, Bieri and Nef 2~ and Putman 
and Subrahmanyan2% Some problems involve dealing 
with subdivisions of nD topological spaces - for 
instance, computing Voronoi diagrams in nD Euclidean 
space. 

This paper is mainly concerned with the evolution 
of topological models used in boundary representation. 
Two main types of model are distinguished: 

• 'Incidence graphs', are graphs or hypergraphs, where 
generally the nodes correspond to the cells of the 
modelled subdivision, and the edges correspond to 
the adjacency and incidence relations between 
these cells. 

• 'Ordered' topological models (the concept of 
ordering is presented and discussed by Weileff and 
Brisson~2). These models use a single type of basic 
elements (more or less explicitly defined), on which 
'element functions' act. The different cells, boundaries, 
and connected components of the modelled 
subdivision are implicitly defined in this type of 
model. 

Some of the most representative topological models 
used in boundary representation are studied in a later 
section, and ordered topological models are (albeit 
incompletely) compared. For simplicity, a single 
formalism is used as a reference, i.e. the notions of the 
nD generalized map and the nD map ~'~. In the next 
section, these ideas are recalled in detail. The main 
result of this comparison is that ordered topological 
models are based on the same ideas, and that they are 
(roughly speaking) equivalent to each other, with 
respect to the class of objects that can be modelled. 
Notice that data structures deduced from ordered 
topological models are not compared. Different 
possibilities are merely related for the implementation 
of such models. It is hoped that this comparison will 
simplify the comprehension of topological models. 
Another aim of this paper is to point out some of the 
basic problems of ordered topological models (and, 

more generally, some basic problems which appear in 
geometric modelling). 

In the fourth section, some significant developments 
are described concerning embedding models and 
operators used in boundary representation (topological, 
embedding and mixed operators). For instance, for 
modelling subdivisions of surfaces, embedding models 
use planar faces s, cylindrical faces and parametric 
surfaces ~,14, quadrics 4°, and free-form surfaces TM- 
Concerning topological operators, Euler operators are 
introduced by Baumgart ~, and studied by others ~4'16'~7'~. 
New operators have been defined for handling the most 
recent ordered topological models, among them the 
splice 7, splice-edge and splice-facet ~, merging 8 and 
sewing ]1. These new operators can be distinguished 
from earlier ones, in particular by the fact that a small 
number of operators (two or three, inverse operators 
included) is enough to handle the related topological 
model (this answers criticisms of some workers 
concerning the variety of basic operators which are 
necessary in boundary representation~'22'4~). Moreover, 
these new operators can often be easily extended to 
higher dimensions. Concerning operators, Dufourd 42 
examines the formal specification of geometric objects, 
and programming geometric constructions, using 
n-G-maps and n-maps. 

A final section presents some conclusions. 

n-DIMENSIONAL MAPS 

In this section, the combinatorial definitions of the 
concepts of n-dimensional generalized map (or n-G- 
map) and n-dimensional (or n-map) are recalled. The 
formalism of n-G-maps and n-maps is used in the next 
section to compare some of the most representative 
ordered topological models. Some of the important 
properties of these concepts (in particular, the relationship 
between n-G-maps and n-maps) which are useful for 
this comparison, are also recalled (Lienhardt ~1'39 
presents a more complete study of n-G-maps and 
n-maps). 

In the next section, the concept of the n-G-map is 
used to study models which represent the topology of 
subdivisions of orientable or non-orientable topological 
spaces (quad-edge 7, facet-edge ~° and cell-tuple 12 
structures, for instance). The n-map concept is used to 
study models which represent the topology of 
subdivisions of oriented topological spaces (winged- 
edge ~, vertex-edge and face-edge ~ structures, pavings ~ 
and pavements ~, for instance). The relationship between 
n-G-map and n-map concepts illuminates the relations 
between models used for the representation of the 
topology of subdivisions of orientable or non-orientable 
topological spaces and models used for the repre- 
sentation of the topology of subdivisions of oriented 
topological spaces. 

The n-G-map and n-map concepts are extensions of 
the map concept, defined in 1960 by Edmonds 4~, and 
studied by many authors (cf. Tutte 29, Bryant and 
Singerman ~0, jacques44, Cori4~ and Vince4~'47; some uses 
of the map concept in geometric modelling are 
described by Lienhardt 2~, Michelucci and Gangnet 48, 
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Braquelaire and Guitton ~, Baudelaire and Gangnet ~ and 
Michelucci and Peroche~). 

n-G-MAPS 

n-G-maps are defined by using a single type of elements 
called darts. Intuitively, a dart may be defined as a 
zero-dimensional cell or vertex. This definition of a dart 
is discussed in the next section (in particular, a dart 
has also been defined as an oriented edge ~', as 
understood in graph theory - see BergeS~). A dart will 
be graphically represented either by an oriented edge 
or by a half-edge (see Figure l(a)). This dart concept 
can be found in most of the models used in boundary 
representation; but, in most cases, it is not explicitly 
defined ~ ~z~,~0.~z~.~ (cf. the next section). 

Definition 1. 
Let n i> 0; an n-G-map is defined by an (n + 2)-tuple 
G = (B, ~0, c~ . . . . .  o~,~), such that (see Figures 1-4) :  

• B is a finite, non-empty set of darts; 
• ~o, ~1 . . . . .  c~, are involutions on B (i.e. V i, 0 ~< i <~ n, 

V b~B, ~ ( b ) =  b), such that: 
o V i ~ { 0  . . . . .  n - l } ,  0~, is an involution without 

fixed points (i.e. V i, 0 ~< i ~< n - 1, V b~B, ~i(b) d = b); 
o V i ~ { 0  . . . . .  n - 2 1 . , V / ~ { i + 2  . . . . .  n }, o~,o~i is an 

involution. 

If ~ is an involution without fixed points, G is without 
boundaries, or closed, else C is with boundaries, or 
open (cf. below). 

Notation 
For each set (l) of permutations of B, let <@> be the 
group of permutations of B generated by (I) (notice that 
an involution is a permutation); for each dart b of B, 
<(D>(b) = {~(b) ,  ~E  <(l)>} is the orbit of b relative to 
group <(I)>, and z((D)is the number of orbits of < ¢ >  
in B. Let b be a dart of B, and let ~, ~' be two permutations 
on B; b'~ ='c(b),  and b ~ : ~ ' = ( { o T ) ( b ) .  A connected 
component of an n-G-map C =(B, c~ 0, ~ . . . . .  ~,,), 
incident to a dart b of B, is defined by < 0% ~,  . . . ,  ~,~ > (b) 
(i.e. all darts which can be 'reached', starting from b, 
by successive applications of c( o, ~ . . . . .  ~,~). A connected 
n-G-map has only one connected component (i.e. 
z(< 0~0, ~ ,  . . . ,  ~,,>) = 1 ). In order to simplify, we assume 
that n-G-maps are connected. 

A 1 ~ 2 
v ~ZJ 

A d a r t ,  c~ 0 
rep resen ted  by : 

@ ~ c~ 0 = { 1 , 2 !  

A non o r i en ted  edge 

a b 

Figure 1. Dart and non-oriented edge 

t-o explain the definition ~>i ,~-,. <{~ap',, -;.(, t~ap:: m~: 
presented constructively bv re~. c..~i~n ~r~ dim~,ns)~)~ ~ 
{this i~ similar t(~ [ienhal{h. ~::::" f~r{sentai,~.,, ~ 
n-(;-maps ). 

• n = u .  Let (~-- (B ~, re a ()-(,-map. hlluiti\,et~ z -: 
a ' t ie .  which puts together at most two distinct clans 
Figure 1 b .. Let C be corlr~e(:ted. If z is withoul 

fixed points. G models the boundary of a ID  cell (or 
a non-oriented edge: see Figure lib)). This corresponds 
intuitively to the fact that the buundar~ oi an edge 
i.~ defined by two vertices i.e. bv (wo darts. 

• n = l  Let G = ( B .  ~ ~,; be a 1-G-map. and let b. 
be a dart of B. The 0-G-real) (B. ~,, defines the 
boundaries of edges t~,, is without fixed points: of. 
definition above and C max. he constructed by 
t y ing '  together these edges around the vertices. 
Formally, the orbit < ~,,} b)is arl eoge of G. The orbit 
fl~,'>(b) is a vertex of G. t! ~ is with fixed oomt.~. 
the 1-G map is graphically represented b~, ,~ ~tmple 
elementary path of edges ~,ligure 2{a!;. else Jt is 
graphically represented bv a sHnple elementary cycle 
of edges (Figure 2(b) tf h ~ mvariant bv ~.. h is 
incident to the boundary u f , ,  m Figure 2ta,. dart 
1 ~s incident to a vertex extrem~tv ot this path). If (] 
is connected and ~ is without fixed points. G defines 
the boundary of a 2D cell i.t a face 

• n = 2 .  Let G = ( B .  s(,, z,. ~ be a 2-G-map. Ihe 
1-G-map (B. ~,,. ~. defines the boundaries of faces 
z Is without fixed points. ~ above), an(] (] may 

be constructed by tying togethe~ [t~ese faces along 
their eoges. Intuitively, a tie" "z sews' the edges bv 
tving at most two distinct darts together of. P gure ~, 
i .e. @ m all involubon on /{ M~reover dS edges are 
tied b~ ~,, z<,~,is an involution ~(f Figure ;) 

• n _L Similarly a 3-G-map (; --- B. ~,.. ~ ~z, z~)may 
be constructed by tying together three-dimensional 
cells rthe 2-G-map (B. z z.. z.; defines the boundaries 
of these cells) along their faces b'. an involution ,~, 
which ties the darts incident to the faces (cf. Figure 
4~. As faces are 'sewn' together ~the 1-G-map (B. oc.. 
~. ~ defines the boundaries of ti~e~e faces;. ~,., :~, and 

are not independent L~ ~. ~.. and ~ ,  are 
involutions 

• In the general case of dm~ens~on n. an n-G-map 
C = tB..~ ~ . . . .  ~..~ may be ( onstructed bv putt ing 

~ O = l f 1 , 2 } ,  3,4 , { 5 , 6J ,  7,8 I; j .O-= l l l ,2  . 3,4,~ {5,6 , 7 ,8  

~1 = ( l l s .  2 , 3 ) , , 4 , 5  , 6 , 7 ) ,  8/ ,al =~ ] , 8  , t 2 , 3 } , i 4 , 5 ~ ,  6 ,7)  

a b 

Figure 2. la) Simple elementary path: (hi  simple 
elementary cycle 
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Figure 3. 2-C-map embedded discontinuously (0% is 
symbolised by a thick line) 
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Figure 4. 3-G-map 

together nD cells the ( n -  1)-G-map (B, ~0, ~q . . . .  , 
~, ~) defines the boundaries of these nD cells) along 
their (n - 1 )-dimensional cells (the (n - 2)-G-map (& 
:z0, cq . . . .  , ~n-2) defines the boundaries of these 
( n -  1)-dimensional cells), by an involution 0%. ~ 
ties the darts incident to these (n - 1)-dimensional 
cells 4~4. Thus ~n and all ~ (Vie{0, 1, ..., n -  2} are 
not independent (i.e. 0 ~  is an involution Vie {0, 1, 
..., n - 2 } ) .  

Theorem 1 (due to Bryant and Singerman3°). It is 
possible to associate the topology of a subdivision of 
a surface (orientable or non-orientable, with or without 
boundaries) with any connected 2-G-map; conversely, 
it is possible to associate a connected 2-G-map with 
the topology of any subdivision of any surface (cf. 
Tutte2% .Bryant and Singerman 3° and LienhardtS3; 
Griffiths Ss presents a constructive approach to topological 
surfaces). Moreover, the representation of the topology 
of a subdivision of a surface by a 2-G-map is unique, 
up to isomorphism. 

An outline of a constructive proof is the following. 
Griffiths 55 shows that any subdivision of any topological 
surface can be constructed by gathering topological 
faces (homeomorphic to a disc) along their edges, by 
the topological operation of identification of edges (and 

conversely). The proof of this theorem will consist in 
proving that it is possible to associate a topological 
face with any two-dimensional cell of a 2-G-map, and 
vice versa; and the topological operation of identification 
of edges with the combinatorial operation of 'sewing' 
edges. Such a theorem does not exist for higher 
dimensions. It is clear that it is possible to associate 
the topology of subdivisions of nD spaces with 
n-G-maps, and vice versa 9'1°'~2. But the set of all 
subdivisions of all nD spaces, such that their topologies 
can be defined by n-G-maps and n-maps, is still a 
subject of active research (similarly for other ordered 
models - see below). It has been shown % that it is 
possible to associate any n-G-map with its barycentric 
triangulation, i.e. an n-G-map where the different 
n-dimensional cells are simplex n-G-maps (a simplex 
n-G-map defines the topology of a topological nD 
simplex). The topological operation which corresponds 
to the combinatorial operation of 'sewing' is still being 
studied (cf. below). This study could provide a 
constructive definition of subdivisions of spaces 
associated with n-G-maps (the idea is similar to the idea 
of the constructive proof presented above for n = 2). 

We conclude this sub-section with a definition of 
cells associated with an n-G-map. 

Definition 2. Let G = (B, ~0, ~ . . . . .  ~ )  be an n-Gap-map 
(with n ~> 1 ); then n + 1 (n - 1 )-G-maps of the elements 
(G~)~_0 . . . .  are defined, such that: 

• Go = (B, a~ . . . . .  ao); 
• Cn = (B, ~0, ~x~ . . . . .  0% ~); 
• V i e { 1  . . . . .  n - - 1 } , G , = ( B , ~ o , . . . , o ~  , ~,0~,+1 . . . . .  ~n). 

G,, is closed; the other (n--1)-G-maps (G~)~=o ...... 
are open or closed depending on whether C is open 
or closed. For each i, each connected component of 
G~ is an /-dimensional cell of C, i.e. each connected 
component of Go is a vertex of C, each connected 
component of C~ is an edge of G, each connected 
component of C2 is a face of G .. .  (cf. Figure 5), and 
C may be constructed by tying together the connected 
components of Gn (nD cells) by the involution c¢,. 

Remark. Let G be a 2-G-map, and S be a subdivision 
of surface, such that C models the topology of S. To 
each iD cell of C ( i =  0, 1, 2) there corresponds an iD 
cell of 5, and vice versa 2~,~°~. 

Definition 3. Let G = (B, ~0, '~ . . . . .  :~,,) be an n-G-map, 
and beB. If b~n=b  (i.e. b is a fixed point of ~,~), b is 
free, else b is tied. 

Theorem 2. Let C = (B, 0%, 0~1 . . . . .  .~,,) be an n-G-map 
(n >~ 2), and b e B; if b is free (tied), then all darts incident 
to the connected component (~0, ~, . . . . .  ~,, 2>(b) are 
free (tied). 

Let G . . . .  1 be the (n - -  2)-G-map (B, ~o, ~1 . . . . .  0%-2). 
Any connected  component  of C, ,, i is free ( t ied)if  
and only if it is incident to a free (tied) dart. 
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Figure 5. 2-G-map and its 7-C-maps of vertices, edges 
and faces 

Definition 4. Let C = (B, 0%, ~ . . . . .  ~n) be an n-G-map 
(n/> 1). The (n - -1 ) -G-map of the boundaries of C is 

i t 
defined as the ( n - 1 ) - G - m a p  (~(C)=(B',  0% ~ . . . . .  
~'~_~), defined (see Figure 6) by: 

• B' = {b~BIb~n = b}  --- set of the free darts of B 
• Vi~ {0, . . . ,  n - 2 } ,  ~ is the restriction of 0% to B' 

(Vb~B', b0< = b0q) 
• ~'n-~ is defined as follows. Let b¢B'; there exists 

exactly one free dart b', such that b and b' are 
distinct and are incident to the same connected 
component of the 1-G-map (B, ~_~,  ~,~) (this 
connected component is open, and then defines a 
simple elementary path, where b is incident to one 
extremity, and b' is incident to the other extremity). 
Then b0(,_~ = b', b'0(~ ~= b, and 0(~_~ is formally 
defined by: 

~'~_~ = {{b,  b '}  ~B'2Jb # b' and b'~ < ~ _  ,, ~n>(b)}. 

Theorem 2. cg(G) is a closed (n - 1)-G-map. 

28 27 

U 
b o u n d  i r i es  

Figure 6. Boundaries of 2-G map of Figure 5 
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Any connected component oi ~:(; i:, a boutidea~ ~,[: 
G (the boundaries are made up by tying together d-m ~ 
free connected components oi ; .. bv the U-w,:)iution 

Remark. It is easy to compute the relationships of 
adjacency and incidence between the different ceils oi 
an n-G-map. For instance, let: C ---: {B, ~, . . . . . .  ~:., ~ :<} 
be an n-G-map, and let b be a dart of B. Let V =- {.~,, 
:~:: . . . .  , ~,~}(b) be the vertex incident to b, and suppose 
we want to compute the set 5%,' oi the vertices which 
are adjacent to V.SV is defined in the following way. 
For each dart b' of { ~ ,  .~:~ . . . .  :<,>(bL let V' be the 
vertex which is incident to i>x,, <i.e. <:~, ~.: . . . . .  
:<,)(b'0%)). SV is the union of all these vertices~ All the 
different relationships of adjacency and incidence are 
defined in this way. 

n-Maps 
Only the combinatorial definition of the concept of the 
n-map is given here (see Figure 7. for a more complete 
presentation of this notion, see Lienhardt~'3% 

Definition 5. An n-map (n >/1/ is defined by an 
( n + l ) - t u p l e  C=(B,  ~o,.-- ~.. l), such that: 

• B is a finite, non empty set of darts; 
• ~o, ~ ,  . . . .  ~,, ~ are involutions on B. ~..._, is a 

permutation on B. such that. Vi, j, 0 <. i < i + 2 <~ 
j~< n -  1, ~0~, is an involution. 

By extension, a 0-map is defined as a 1-tuple (B). where 
B is a finite, non empty set of darts. 

Definition 6. Let C = (B, ~0,- -., ~. 
The n-map C ~ =  (B. ~ . . . . . . .  :c 
n-map of C. 

e, ~n ,) bean n-map. 
-~ ) is the ~nverse 21 n 

Definition 7. Let C = (B. ~0, . - - .  ~.- lJ be an n-map. If 
n ~> 2, we deduce from C n + I ( n -  1)-maps of the 

~ \  5 
1 5 X 1 7 ~ 9  \ "  

w i I "-- ~ -  
12 11 22 21 "- 

7 - 
8 

c~o~- dI,21,{3.41,{5,6).{7,81,{9.101.~11,12 • 13,14,,{15.161, 

{17,18, 19,201,{21,221.~23.241} 

al = {{I.161,{2,3,19,181.{4,51,{6.7 .(8.9L{20,21 .{I0.11.23. 

221, {12,131, I14,15,17.24 ~ 

-I ~I ~0 =I11"15"13"11"9"7"5"31"i2"17"161"14"6"8"I0"21"191" 

12,14,23 } , {18 .20 ,22 ,24  }1 

Figure 7. N-map and associated vertices, edges and faces 
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elements C~ (i = 0 . . . . .  n), defined by (see Figure 7): 

c , ,=  (B, ~ ,  . . . ,  ~n ~); V i~ {1 ,  . . . ,  n - 2 } ,  

C i = (B,  O~l), . . ,  , ~ i - 1 ,  0~ i+1 ,  . . . ,  O ~ n - 1 ) ;  

C,~ ~= (B, 0{o, 0{1 . . . . .  O~r, 2);  

C n = (B,  O{n 1 10{0, 0{,, 1 10{1, . . . ,  0{n~1 1{~{n_2 ). 

Each connected component of each (n -1 ) -map  C i 
(i = 0 . . . . .  n) deduced from C is an oriented iD cell of 
C (each connected component of Co is an oriented 
vertex, each connected component of C~ is an oriented 
edge, etc.). 

Relationship between n-G-maps and n-maps 

In this subsection the notion of orientability of 
n-G-maps is considered. In particular, a relation is 
established between the notions of n-G-map and 
n-map, which makes it possible to compute the 
orientability of an n-G-map. 

Definition 8. Let G = (B, %, ~1 . . . .  , 0~) be an n-G-map 
( n ~ > l ) ; t h e n - m a p H G = ( B , c ( ~ 0 , ~ n ~  . . . . .  ~n~ n ~)is 
the n-map of the hypervolumes of G (by extension, if 
n = 0, HG = (B)). Let beB; the connected component 
<~0{o, 0{nOq . . . . .  CZ~O~n ~>(b) is a hypervolume of G. 

Definition 9. Let G = (B, ~,, ~ . . . . .  ~ )  (n >~ 1) be an 
n-G-map with boundaries, and let BG' be an 
(n-1) -G-map such that G and BG' are disjoint, and 
BG' is isomorphic to the (n-1) -G-map of the 
boundaries deduced from G, by an isomorphism ¢. 
The closure of G is defined as an n-G-map G" without 
boundaries, deduced from G by (informally) gathering 
each boundary of G with the corresponding connected 
component of BG' using the isomorphism q~ (the closure 
is formally defined by Lienhardt~.39). By extension, if G 
is an n-G-map without boundaries, the closure of G is 
equal to G. 

A fundamental theorem is the following, which defines 
in particular the relationship between the concept of 
the n-G-map and that of the n-map (cf. Figure 8). 

7 1~ 
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tetrahedron and two connected 
components of 2-map of hypervolumes; (a) orientable; 
( b ) non-orientable 

Theorem 4. Let G = (B, ~0, ~ . . . . .  ~,,) be a connected 
n-G-map (n >~1), and let HG be the n-map of the 
hypervolumes deduced from G. Then: 

HG has at most two connected components. 
If G is an n-G-map with boundaries, HG has exactly 
one connected component. 
If G is an n-G-map without boundaries and if HG 
has exactly two connected components vg~ and vg2, 
vg~ is isomorphic to the inverse n-map of vg2. 
Conversely, given two n-maps C~ and C2, such that 
C] is isomorphic to the inverse n-map of C 2, we can 
construct an n-G-map G without boundaries, such 
that the n-map of the hypervolumes of G has exactly 
two distinct connected components, which are 
isomorphic to C1 and C2. 

Definition 10. An n-G-map G without boundaries is 
orientable (non-orientable) if and only if the n-map of 
the hypervolumes deduced from G has exactly two 
distinct connected components (one connected 
component). An n-G-map with boundaries is orientable 
(non-orientable) if and only if its closure is orientable 
(non-orientable). 

Remark. Let G be a 2-G-map, and S be a subdivision 
of a surface, such that G models the topology of S. C 
is orientable if and only if S is a subdivision of an 
orientable surface 2~. If G is orientable, each connected 
component of the 2-map of the hypervolumes deduced 
from G corresponds to a possible orientation of the 
surface (cf. Tutte > and Bryant and Singerman~°; on the 
orientability of subdivisions of surfaces and nD spaces, 
see, for instance, Griffiths 5~ and Agoston~7). If G is 
non-orientable, the connected component of the 
2-map of the hypervolumes models the topology of 
the corresponding subdivision of the usual two-sheeted 
covering surface ~° - for instance, a sphere for a 
projective plane, a torus for a Klein bottle. 

Remarks 

Some properties of n-G-maps and n-maps 

Definition 11. Let G = (B, ~,, 0{~ . . . . .  ~,,) be an n-G-map 
without boundaries. The n-G-map G*, the dual of G, is 
defined by C * =  (B, ~,,, ~,, ~ . . . . .  ~,,). 

Definition 12. Let C = (B, ~0, ~ . . . . .  :~,~ ~) be an n-map. 
The n-map C* the dual of C, is defined by C* = (B, 0{o~, 
0{(1 1 0 { n - l ,  • • . ,  0{o 10{I). 

These definitions are needed for the following 
theorems: 

Theorem 5. Let G be an n-G-map without boundaries. 
The dual of G* is C. If n >~ 1, let (G~),_,~, ..... be the 
(n - 1)-G-maps of the elements of G, and (G,*),~, ....... 
be the (n - 1 )-G-maps of the elements of G *. For each 
i, such that 0~<i~<n, G* is the dual of G,, ~, G 7 is 
orientable if and only if G is orientable. 
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Theorem 6. Let C be an n-map. lhe dual of C" is C. It 
n >~ 2, let (C;), = 0 ....... be the (n - 1 )-maps of the elements 
of C, and (C?)~=0 . . . . . .  be the (n -1) -maps of the 
elements of C*. For each i (with 0 d i d  n), C' is the 
dual of C .... . 

Theorem 7. Let G be an n-G-map without boundaries, 
and G* be the dual of G (n ~> 1). The n-map of the 
hypervolumes deduced from G* is the dual of the n-map 
of the hypervolumes deduced from G. 

ClasMtical ion ter n = 2 
It is well-known that four integer-valued characteristics 
can be associated with any subdivision of any surface ~. 
They are the number of boundaries, the Euler 
characteristic, the orientability factor and the genus. The 
set of all subdivisions which have the same number of 
boundaries, orientability factor and genus defines a 
topological surface. For instance, a ring is defined by its 
two boundaries, an orientability factor of 0 (meaning 
it is orientable), and genus 0; a M6bius band has one 
boundary, an orientability factor of 1, and genus 0. 

We define here for 2-G-maps (and for 2-maps) four 
equivalent characteristics (also integer-valued), which 
make it possible to classify 2-G-maps (and 2-maps), 
according to the classification of the subdivisions whose 
topologies are modelled by these 2-G-maps (and 
2-maps). These characteristics can be easily computed 
on 2-G-maps and 2-maps. Such a classification is not 
known to exist for higher dimensions. 

Let G --- (B, ~o, oq, o~ 2) be a 2-G-map. Associated with 
G are the following characteristics39's~: b(G) is the 
number of boundaries of G, which equals the number 
of connected components of the 1-G-map of the 
boundaries deduced from G; c(G) is the Euler 
characteristic of G, and is equal to (z(0~00q) + z ( ~ )  + 
z ( ~ 0 )  - I B I ) /2,  where t B I is the number of darts, and 
z(0~0~), z ( ~ 2 )  and z(~0~0) are, respectively, the 

numbers ol l:he orbits oi tile p~:lr~,tuLai/Jo~ls :z~.  X z~- 
and ~ q(C) is the ,.)rientabilit'~ factor, clefirled .~ , 
thai, if ( ; is  orientable,~t(C;:=i else, i fb(C) i ~(:;~;< 
odd, q(G) : :  1 (for instan(:e, io~ a M?:~bius band~ else 
(,'((:>:= 2 {:i(Jlinstance. tor a Kk-,,u. bott le:  and~l(-: ~:~ 
the genus of (;, and equals I -  . :~,( : ;- .~, i~;:+q(C i ~ :2 
(for instance, 0 for a sphere i i, ,r a torus with {)he 
'hole'). 

Let C(B, ~,,, ~, t be a 2-map. By detinition, (: is oriented 
without boundaries, so that b i ( : = 0  and q(( :~--:0: 
thus, it is necessary to define only the following~'~s~: 
((C is again the Euler character,stic of C, and equal 
to z(~0) + z(~t) + z(0~0~ ~)-- I BI, where I BI and z are 
defined as for 2-G-maps; and g i (  is the genus of G; 
defined as 1 - c (C ) / 2 .  

Operal ions 
Two operations are defined for constructing any 
n-G-map, and consequently any n-map11'391 Given an 
(n - 1 )-G-map G without boundaries, the first operation 
creates an n-G-map C' = (B', ~,  ~'~; .. :, 0~,); such that 
~, is the identity on B', and the In - 1)-G-map of .the 
boundaries deduced from G' is equal to Ci The second 
operation is (informally) the following (see Figure 9): 
any n-G-map can be defined by putting together 
(n - 1 )-G-maps without boundaries (Le. the connected 
components of Gn), by 'sewing' together free connected 
components of G ....... ~ ( ( n -  2)-dimensional) (see the 
constructive presentation of n-G-maps at the beginning 
of this section; 'sewing' is achieved by the second 
operation). The most representative caseS of 'sewing' 
operation in two dimensions are studied by Lienhardt~. 
according to the variations of the characteristics 
associated with a 2-G-map. 

The operations presented above make a set of basic 
operations, from which more elaN)rated operations can 
be defined (cf., for instance, operations defined by 
Tutte 29, for subdivisions of surfaces). These operations 

v 

a 

! / 
b C 

Figure 9. Different cases of "sewing': ( a) sewing two distinct connected components (dimension 3); (b) treatihg 
M6bius band (dimension 2); (c) bending edge back on itself (dimension 2.) 
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have been implemented and verified in two modellers: 
a modeller of subdivisions of surfaces, based on 
2-G-maps and 2-maps, and a modeller of subdivisions 
of 3D spaces, based on 3-G-maps and 3-maps. 
Higher-level operations have also been defined, based 
on these operations. Other basic operations are defined 
by Dufourd 42, for a study of the algebraic specification 
of n-G-maps and n-maps. They also allow any n-G-map 
and any n-map to be constructed. 

Data structures 
Data structures can be easily deduced from the 
definition of n-G-maps and n-maps (for instance, using 
pointers, or relational data structures; see, for instance, 
Lienhardt s~ and Dufourd et al s~, who present 
implementations of 2-G-maps and 2-maps). A possible 
implementation of n-G-maps is as follows. Three types 
of object exist: n-G-maps, connected components and 
darts. An n-G-map is defined by a set of connected 
components, a connected component is defined by a 
reference dart, and a dart contains n + 1 pointers 
symbolizing the involutions ~. The consistency 
constraints, necessary for such a data structure to 
define an n-G-map (or an n-map), can be directly 
deduced from the definition of n-G-maps and n-maps. 
For instance, the relations in the data structure between 
two darts (symbolizing the involutions ~,) must satisfy 
the constraints given in the definition of n-G-maps (all 
~ are involutions, and the composition of c~ and ~,, for 
i +  2 ~</, is also an involution). 

It is obvious that it is possible to deduce other 
implementations. For instance, for geometric modelling, 
other types of object are needed, such as vertices, 
edges and faces, mainly for the information associated 
with them (embedding, etc.). Such implementations 
have been studied at CNRS, in particular for the two 
modellers of subdivisions we are developing. An 
implementation in the general case of n dimensions 
has been realized (in this implementation, n is a 
parameter, and the data structure can handle 
simultaneously generalized maps of different dimensions). 
Darts, cells, boundaries, connected components and 
n-G-maps are explicitly represented in this data 
structure, and all constraints of consistency have been 
directly deduced from the definition of n-G-maps (just 
apply definitions of cells, boundaries, connected 
components, etc.: cf. above). 

TOPOLOGICAL MODELS USED IN 
BOUNDARY REPRESENTATION 

In this section some of the most representative 
topological models used in boundary representation 
are studied (the choice of the models studied here does 
not reflect any value judgement). Two main types of 
model are distinguished: 

• 'incidence graphs', where the different cells of the 
modelled subdivision, and some adjacency and 
incidence relations between these cells, are explicitly 
rep resented; 

• 'ordered' topological models, which use, more or 
less explicitly, a single type of basic elements (for 

instance, darts in n-G-maps and n-maps), and where 
the different cells are implicitly defined s ~'; this 
implicit definition may be explicit in a data structure 
deduced from the model (cf., for instance, the above 
discussion on data structures). 'Element functions' 
act on these basic elements (using the terminology 
of Guibas and Stolfi 7 and Dobkin and Laszlo"', which 
define 'edge functions' and 'traversal functions'). 

The aims of this section are twofold: to show the 
important evolution of topological models, as a 
consequence of which, the field of boundary 
representation (i.e. the set of objects which can be 
modelled) has been notably extended; and to compare 
ordered topological models, using the n-G-map and 
n-map concepts, to bring out the ideas on which these 
models are based. An (incomplete) study of the 
topological operators which act on these models is 
made in the next section. 

Incidence graphs 

Models of this type represent explicitly the different 
cells of the modelled subdivision, and some adjacency 
and incidence relations between these cells. Three 
incidence graphs, quite equivalent, are described in 
recent work:the 'polytopal mesh representation'~; the 
'incidence poset '~s and the 'incidence graph' itselff ~, 
for the representation of the topology of (respectively) 
nD polytopes, finite regular CW-complexes (see below), 
and arrangements of hyperplanes in nD Euclidean 
space. Informally, these incidence graphs represent a 
finite collection of open disjoint iD cells (0~<i~<n) 
whose union is an nD manifold. The boundary of each 
iD cell is equal to the union of cells which have a 
dimension lower than i. Each iD cell belongs to the 
boundary of an (i + 1 )-dimensional cell. 

The topology of the modelled subdivision can be 
represented schematically by a graph, where the nodes 
correspond to the cells of the subdivision, and the edges 
represent the incidence relations between/-dimensional 
cells and (i + 1)-dimensional cells (for i between 0 and 
n - l ) .  For notational convenience, Brisson ~'' and 
Edelsbrunner ~ assume that two cells always exist: an 
(n - 1 )-dimensional cell in(ident to all vertices, and an 
(n + 1 )-dimensional cell, incident to all n-dimensional 
cells. Brisson ;~' has shown that this representation is 
sufficient for the representation of all topological 
information (up to isomorphism). 

Edelsbrunner ~' describes an implementation of such 
an incidence graph, where the incidence relations are 
represented in the following way. Two lists of cells are 
associated to each iD cell ,': a list of all ( i - -1)-  
dimensional cells incident to ? and a list of all 
(i + 1)-dimensional cells incident to 7. Sobhanpanah ~ 
defines only the first list (for instance, a polyhedron is 
defined by a list of faces, a face is defined by a list of 
edges, an edge is defined by a list of two vertices). 

Selective geometric complexes 
Selective geometric complexes (SGCs) are employed in 
the representation of nD pointsets ~- (more precisely, 
subsets of real algebraic varieties in Euclidean n-space). 
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Informally, a geometric complex is a finite collection of 
open disjoint iD cells. The boundary of each iD cell is 
equal to the union of cells which have a dimension 
lower than i. It should be observed that an iD cell may 
not belong to the boundary of an (i + 1)-dimensional 
cell. For instance, the boundary of a face may be a 
vertex; a 3D cell may be combined with dangling faces 
and edges in Euclidean three-space (cf. presentation of 
'non-manifold' objects below). 

Two sets of cells are associated with each cell c the 
set of all cells which belong to the boundary of c (c. 
boundary), and the set of all cells such that c belongs 
to their boundaries (c. star). Let c and c' be two cells 
of the geometric complex. If c belongs to (:'.boundary, 
c' belongs to c.star, and vice versa. A geometric complex 
may be represented by an incidence graph, where the 
nodes correspond to the cells of the geometric 
complex, and the edges represent the relation 'belongs 
to the boundary of' and its inverse. Notice that edges 
may exist between cells of dimensions i and i + k, with 
k > l .  

A ne ighbourhood parameter is associated with each 
pair of cells (c, c'), such that c belongs to the boundary 
of c'. In a simplified way, the neighbourhood is defined 
if c is iD and c' is (i + 1 )-dimensional (for a more precise 
study, see37). The neighbourhood of c with respect to 
c' can take one of the following three values: 'full', 
'left' and 'right'. If its value is 'full', c is not in the 
boundary of the topological closure of c' (in other 
words, c is an interior boundary of c'). When its value 
is not 'full', it must be 'left' or 'right', and denotes the 
'side' on which c' is located with respect to c (c is an 
exterior boundary of c'). The neighbourhood parameter 
can be used, for instance, to define an orientation of 
the cells. 

Selective geometric complexes are defined as 
geometric complexes where active and non-active cells 
are distinguished. Pointsets associated with active cells 
should be included in the pointset defined by the SGC. 

Consequently, the pointset associated with an SGC 
is the union of all pointsets associated with active cells 
(this enables an SGC to represent a non-closed 
pointset). SGCs are represented by incidence graphs 
(as geometric complexes can be represented by 
incidence graphs). Attributes are associated with the 
nodes of a graph, in particular an active attribute 
(meaning that the corresponding cells are active or 
not). Other (mainly embedding)information is also 
associated (for more details, see Rossignac and 
O' Connor:~:), 

Face-adjacency graphs 
Another type of incidence graph, the face-adjacency 
graph ~7s~, is used to model the topology of orientabte 
surfaces without boundaries, i.e. for solid modelling. 
This model is an extension of the 'edge-face relational 
scheme '6°. It is in fact a hypergraph, defined by a set 
of nodes, a set of arcs and a set of hyperarcs. Each 
node corresponds to a face of the subdivision (and vice 
versa); each arc corresponds to an edge of the 
subdivision (and vice versa), and joins the two nodes 
representing the two faces which are incident to the 
edge; each hyperarc corresponds to a vertex of the 

subdivision ~and vice versa.,, m4J join-, ,ii] !~_~d~b 
representing the faces which are incident to ~t~e vertex 
Ansaldi et al ~: have shown that ta(e-adjacency graphs 
are sufficient for representing all topological information 
for subdivisions of orientabte surfaces without boundaries. 
up to isomorphism 

Remarks 
The foregoing raises some ap~arently important 
problems. First, what are the con<tralnts of consistencv 
with respect to these models, n order thaL they 
represent 'valid' obJects? Fo~ ~nstance ~n two 
dimensions, incidence graphs exist which do not model 
the topology of a subdivision of a surface. Control over 
consistency is exerted in Ansald et al ~" through 
topological operators defined lot handling face- 
adjacency graphs Euler operators,. Similarly 
Sobhanpanah ~ presents a method for constructing an 
incidence graph, given a convex polytope defined by 
a set of hyperplanes: but no topological operator is 
defined (cf. the next section). 

Second, the topological information contained in this 
type of model is sufficient, but perhaps its representation 
does not enable easy computation of certain mportant 
topological properties (orientability, for instance) In this 
regard, notice that an incidence graph can easih, be 
deduced from an ordered topological model. For 
instance, the definition of the cells can be deduced 
directly from an n-G-map, as can the relationships of 
adjacency and incidence between these cells of. the 
previous section). No algorithm is known Lo exist for 
converting an incidence graph into an ordered 
topological model ~a hint of such an algorithm is 
contained in the definition of the cell-tuple structure ~'- 
cf. below). It may be useful to study such algorithms. 
for instance in order to deduce algorithms for 
computing on incidence graphs such topological 
properties as orientabilitv. 

'Ordered' topological models 
The topological models presented below are based on 
ideas which are very close to each other, They use 
(more or less explicitly~ a single type of basic elements. 
on which a set of 'element functions' act. The cells of 
the modelled subdivision are defined in an implicit 
manner, using the basic elements and the element 
functions ''~'. A characteristic of these models is the 
notion of 'ordering '~~2 ~r ~see for instance, Brisson ~ on 
the ordering of /-dimensional and (i + 1)-dimensional 
(:ells "about' an (i l I-dimensional cell, and 'within' 
an (i + 2)-dimensional cell). 

Different models are presented according to the class 
of objects which can be modelled, i.e. taking into 
account dimension and orientability In particular. 
models defined for the representation of the topology 
of subdivisions of oriented topological spaces are 
compared with n-maps, models defined for the 
representation of the topology of subdivisions of 
orientable or non-orientable topological spaces are 
compared with n-G-maps. The relations between the 
two types of model can be deduced from the relations 
between n-G-maps and n-maps Isee the previous 
section). In this sub-section topological models are 
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compared, but not the data structures deduced from 
these models, except to point out different approaches. 
Notice that the topological model subjacent to a data 
structure is sometimes not explicitly defined (in the 
cases of the winged-edge, vertex-edge and radial-edge 
data structures, for instance). 

Models for representing the topology of 
subdivisions of orientable surfaces 

Winged-edge data structure. The 'winged-edge' data 
structure is presented by Baumgart 5 for modelling the 
topology of subdivisions of orientable surfaces without 
boundaries. The main element in this data structure is 
the edge. With each edge e are associated pointers 
which maintain the topological information. They are: 
two pointers to the faces incident to e; two pointers 
to the vertices incident to e; and four pointers to the 
edges which are 'directly' adjacent to e, i.e. the edges 
which can be reached, starting from e, turning 
clockwise and counter-clockwise around each extremity 
vertex (see Figure 10). These pointers define doubly- 
linked cycles of edges around the vertices. The dart 
(intuitively oriented edge) concept is not expressed 
explicitly, but can be found here by the fact that all 
pointers which represent the adjacency and incidence 
relations can be, for any edge, partitioned into two 
similar disjoint sets. The element functions which act 
on these implicit half-edges are symbolized by the 
pointers which define cycles of edges around the 
vertices. The ordering of cells about or within cells with 
lower or higher dimension is achieved through these 
pointers. 

Initially, the winged-edge data structure was used 
for the representation of subdivisions of orientable 
surfaces without boundaries, where each edge is 
incident to exactly two distinct vertices (no loops) and 
to exactly two distinct faces (no isthmuses), and where 
two distinct edges are not incident to the same two 

/ 
! 

/ 
I 

I 
I 

\ 
\ 

/ / / /  n c c w ~ e )  \ \ \ 
\ 
\ 
I 
I nface [edge) edge pfoce (edge) ! 

ge ~ C c  !11 \ / \ // 
\ \ \  ncw (ed w (edge) / ,  

Figure 10. pvt and nvt define vertices incident to edge, 
pface and nface define faces incident to edge, pcw, 
pccw, ncw, nccw define edges 'directly' adjacent to 
edge, turning clockwise or counter-clockwise around 
vertices incident to edge 

vertices (no multiple edges). Weiler ~ has shown that 
this data structure is sufficient to model unambiguously 
subdivisions including loops, isthmuses and multiple 
edges. But case studies are then necessary to restore 
all topological information (on the modelling of such 
'degeneracies', see Guibas and Stolfi7). 

We can formally prove that any 2-map (B, ~ ,  ~ )  
(where ~0 is without fixed points) can be represented 
by a winged-edge data structure (pointers defining 
cycles of edges around the vertices correspond to 
permutation ~,  and to its inverse), and vice versa. This 
can be proved, using the results of Weiler ~ (see below). 

Assume that a winged-edge structure W and a 2-map 
C=(B,  ~,  ~ )  represent the topology of the same 
subdivision of the same surface (in the general case 
where no loop or isthmus is represented, in order to 
avoid studies of cases). We have seen that implicit 
'element functions' act on implicit half-edges in W. 
Thus, we define exactly two half-edges for each edge. 
A dart in C corresponds to each half-edge, and vice 
versa. ~0 'ties' two darts such that these darts are 
associated with the two half-edges corresponding to 
the same edge (consequently, ~ is an involution 
without fixed points). We have seen that pointers define 
doubly-linked cycles of edges around the vertices. It is 
easy to deduce cycles of half-edges from these cycles 
of edges. These cycles are represented in the 2-map C 
by involution ~ (~1 is a permutation, and defines cycles 
of darts around the vertices: see Figure 7). So, ~ and 
its inverse ~i -~ define doubly-linked cycles of darts, 
which correspond to the double-linked cycles of 
half-edges (a similar comparison is made below 
between 2-maps and vertex-edge data structures). 

Let G = (B', ~[~, ~'1, 0~) be an orientable 2-G-map 
without boundaries, such that the 2-map of the 
hypervolumes deduced from C has exactly two 
connected components, one of them isomorphic to C. 
If ~(~ is without fixed points in the 2-map C then c ( ~  
is without fixed points in C. If we consider that C is 
constructed by putting together faces along their edges, 
using 'sewing' operations then the fact that ~ ' 2  is 
without fixed points means that no edge has been bent 
back on itself (cf. Figure 9). 

Modified winged-edge, vertex edge and face edge data 
structures. Weiler ~ defines three structures for modelling 
the topology of subdivisions of orientable surfaces 
without boundaries. The first is an extension of the 
winged-edge data structure, modified by adding 
indicators. These allow, for each edge, a distinction to 
be made between its two sides, i.e. between half-edges. 
However, the basic element of this structure is still the 
edge. Two other data structures are defined: the 
vertex edge data structure, and the face edge data 
structure. For the two structures, the basic element is 
the half-edge. Element functions which act on the 
half-edges are symbolized by pointers: in the vertex- 
edge data structure, the half-edges are organized into 
cycles around the vertices; in the face-edge data 
structure, they are organized into cycles around the 
faces. Moreover, each half-edge is associated with its 
opposite half-edge. Weiler" has proved that vertex-edge 
and face-edge data structures are equivalent (the 
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face edge data structure is a 'dual version ot the 
vertex-edge data structure~. Also anv winged-edge 
data structure can be converted unto a ver tex-edge 
data structure, and vice versa. 

It is easy to prove that the vertex edge data structure. 
is equivalent to the concept of a 2-map, where z ,, 
wi thout  fixed points. A dart corresponds to eaH~ 
half-edge, and vice versa; ~, corresponds to the pointei 
which joins two opposite half-edges ~ln particular 2 
is wi thout  fixed points); ~ corresponds to the pointers 
which join half-edges into cycles around the vertices 

The consistency constraints which must be satisfied 
by these data structures, and the consistency constraunt~ 
which must be satisfied by data structures deduced 
from the not ion of G-maps. are obviously similar. Thi~ 
means that the pointers must satisfv the definit ion ~t 
~ and ~ (~0 is an involut on wi thout  fixed points 
is a permutation). Moreover. the explicit definition oi 
the cells in the data structure must be consistent with 
respect to their implicit definition for instan(e, n a 
2-map, all darts which belong [o the same orbit o~ ;( 
are incident to a same vertex: cf. the discussion of data 
structures in the previous sechon 

Models for representing the topology of 
subdivisions of orlentable or non-orientable 
surfaces 

Edge algebra and quad-edge data structure. The notion 
of 'edge algebra '7 is used for modell ing the topology 
of subdivisions of surfaces, onentable or non-orientable. 
w i thout  boundaries. This topological model allows the 
simultaneous representation of the topologies of the 
subdivision, the dual subdivision and the mirror-image 
subdivision. Four 'directed and or iented'  edges are 
associated with each edge of the subdivision: similarly, 
four directed and oriented edges are associated with 
each edge of the dual subdivision (cf. Figure 11 ,_ 

These directed and oriented edges are the basic 
elements of the model. Three edge funct ions act on 
these basic elements: Flip, Onext  and Rot. Let e be a 

! 

÷ 

e li t 

eOnex t  

a b 

Figure 17. (a) edge E ot subdivision ot surtace is 
represented, with part of edge E', directly adjacent to E. 
turning counter-clockwise around their common vertex 
(b) k)ur directed and oriented eages corresponding to 
E are represented, with two ot the directed and oriented 
edges corresponding to E'. Direction is shown b) large 
arrow, orientation by perpendicular little arrow. Dashed 
arrows correspond to directed and oriented edges, the 
duals of those corresponding to E 

d i r e ( t e d  a n d  o r i e n t e d  e d g e .  i-Ill) ~{~a(-i~{~> ,. wh!~ i ha-  

same direction but the inverse ,u+,ntat~(q~ r,, +~,,-[ 
that u and ~- are associated witl, the Still'I{." [{,~poio,~tCa! 
edge Onext reaches, . "  whi<h - d, re( th a(Jlacen[ , 
~' l u r n l n g  ,( o { l n t e r - c l o ( : k w l , q ,  £1r, ,~Jn(] t h e  Or ig in  ' ,, '~-rt(~k 

(~rientat=on. Rot ~eaches the d~.r(,~ b~d and ~Hlel]tt'(J ('d~l?, 
the dual ul ~'* the edge tL, I~( [h,~:~ !i~p (_)l}¢,'X[ d[](] R¢~I 
satml~ ten properties presented b~ Guibas and '~toiti 
An edge algebra is formatlv defined as a q-tuple ([. t" 
Onext. Rot Flip~ where [ and t .,n, respe~twef\ tl~e 
sets of oriented and directed ,~ .e~ corresponding u) 
the edges of the primal and ~he dual subdiwslons 

It is possible to define an equivalent structure ,ds~ng 
2-G maps (with the results ol the ,. ~,mpanson made by 
Bri~son ' between the celi-tulfle .~[rtlctLir¢; ~ee below) 
and the quad-edge data structur~.. Let (; = ~/~ ~ ~.. 
~. be ,~ 2-C-map. such thal 7. and ~ ~ are w~thout 
fixed points Let (;" =- B". ,~ ~', ~;~ be a 2-G-map which 
is isomorphk tu the dual 2--(~nap ~ C ~w ,~n 
isomorphism ~" (with R and B" d~s~ouqt 

such that for each i (0 ~< ~ ~. 2 Ihe restriction o~ ~- to 
B is equal to ~,, the restriction ,4 ~:" to B" is equal to 
0d': the restrictnon of ~*" to B ~ equal tu 0(' and the 
restriction of ~*~' to B ~* is equal [~) ('~'~ . Notice that 
:~g = ~*~zt~ *'~ ~see the previous se~ [,on'. 

I_et l" be the 5-tuple /B. ~' ~ ,  ~.~"~. :~.',,. ]- 
simultaneouslv defines the primal an(] the dual of C. 
and we can prove that such a :;-tuple corresponds to 
any edge algebra, and vwe versa Io each directed and 
oriented edge there corresponds a dart of BtJB a ~more 
precisely, each element of ~ corresponds to a dart ol 
B. and vice versa: each element nt E* corresponds to 
a dart of B ~' and vice versa Flip ~orresponds to ~1. 
Onext  corresponds to ~t~, and Rot corresponds to 

Notice that ~ and ~,~: are w~thout fixed points ~n 
G u.e. (; is wi thout  boundanes and no edge of C ,~ 
benl on itself. In this case each edge of C i.e. each 
orbit of (" ~ '~,~! Is composed ol exactly four distinct 
darts i.e. four directed and ,~nented edges ]his 
corresponds in particular to the la{.~ that edge algebras 
cannot directly represent the topology ot subdivisions 
of surfaces with boundaries, n a ,Jmilar wav it should 
be observed that the dual n-G-re,q:) {." of an r~-G-map 
(; ~ only defined f G is wi thout boundaries. This is a 
consequence of the definition ~,; arl t,~-G-map, where 
~.. ~ ~ must be wi thout  fixed points 'see the 
previous sect ion.  An extensnoll of this definition of 
n-G-maps is presented below, in the 2D case where al 
irwolutions may have fixed point-- 

t should be observed that simplifications of edge 
algebras are proposed by Guibas and Stotf( for the 
representation ~f orientable surfa< es. In particular ;t as 
shown that the directed and oriented edges can be 
part i t ioned into two sets each closed under Rot and 
Onext. Moreover  for the representation of a simple 
subdivision ,i.e. w i thout  its dual), only primit ive 
operators Onext  and Rot 2 are needed  This corresponds 
to the relation between 2-G-maps and 2-maps (see the 
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previous section); the 2-map of the hypervolumes 
deduced from an orientable 2-G-map without boundaries 
has exactly two connected components (closed under 
primitive operators c ~  0 and c~2~ 1, corresponding 
respectively to Rot ~ and Onext ~). 

The quad-edge data structure is deduced from the 
definition of edge algebras. It is important to notice 
that directed and oriented edges are partitioned into 
groups of eight, i.e. the data structure contains edge 
records. Each edge record corresponds to an edge of 
the modelled subdivision, and represents the four 
directed and oriented edges associated with the edge, 
and the four directed and oriented edges associated 
with the dual edge. This implementation is quite 
different from the implementation of n-G-maps 
presented in the discussion of data structures in the 
previous section (where a record in a data structure 
corresponds to each basic element, and vice versa; see 
also the vertex-edge and face-edge data structures 
in the previous sub-section). It could be interesting to 
study the generalization to higher dimensions of the 
idea presented in the quad-edge data structure (i.e. 
partitioning basic elements). 

Notions of map. Other topological models (extending 
the notion of the combinatorial map) have been defined 
for modelling the topology of subdivisions of surfaces, 
orientable or non-orientable, with or without boundaries. 
In particular, Tutte 29 defines a map as a 4-tuple (5, 0, 
q~, P), where 5 is a finite set of 'crosses'; 0 and ~ are 
involutions without fixed points on S, such that 0~ is 
an involution without fixed points; and P is a 
permutation on S, such that OP is an involution and 
such that for each cross b of S, (P)(b)  and (P)(bO) 
are disjoint. It is easy to show that this definition is 
equivalent to the definition of 2-G-maps (B, 0% ~,  ~.,), 
such that ~2 and ~0~2 are without fixed points. Crosses 
correspond to darts, 0 corresponds to ~2, ¢ corresponds 
to ~0 and P corresponds to c~2~; this verifies in particular 
the definition of the vertices, edges and faces, given 
by Tutte ~. It will be evident that, as for the edge algebras 
presented above, this definition of a map does not 
allow the direct representation of subdivisions of 
surfaces with boundaries. 

Another extension of the notion of the combinatorial 
map is given by Bryant and Singerman ~°. This uses three 
involutions, ~, ,~ and p (corresponding, respectively, to 
involutions 0~, % and ~1 of the 2-G-maps). But here, 
each of these involutions may have fixed points. This 
map is thus larger in scope than the 2-G-map. It is 
possible to represent subdivisions of surfaces with 
boundaries (~  has fixed points), or subdivisions where 
a face intersects a boundary of the surface at a vertex 
but not along an edge (~1 has fixed points), or an edge 
intersects a boundary but not at a vertex (~0 has fixed 
points, cf. Fig. 12; see Bryant and Singerman's whole 
topological interpretation of these fixed points~°). 
Extensions of the notion of the n-G-map where such 
fixed points are allowed are being studied at Strasbourg. 
The definition of these extended n-G-maps would be 
more homogeneous (not only ~,, may have fixed points; 
and the dual of an n-G-map with boundaries can be 
defined). 
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Figure 12. Dart b is such that b% = b; topological edge, 
corresponding to edge -[ b, b~2 } intersects boundary of 
surface, but not at vertex 

Models for representing the topology of 
subdivisions of orientable three-dimensional 
topological spaces 

Pavings. Spehner 8 presents a definition of 'paving', 
extending the notion of the two-dimensional combi- 
natorial map. A paving is defined as a 4-tuple (B, c~, ~, ~), 
where: 

• (B, ~, ~) is a 2-map such that ~ is without fixed 
points. Each connected component of this 2-map is 
an oriented three-dimensional cell (cf. the definition 
of an n-map in the previous section); 

• q~ is a permutation which satisfies Z~Z = ~, 
o-~ lo "=~,  and such that for each dart b of B, 
bq~ =/= b0~, b~ ~ bo- (i.e. q~ gathers oriented three- 
dimensional cells along their faces). 

Intuitively (and from a constructive point of view), the 
principle consists in putting together oriented three- 
dimensional cells (represented by connected compon- 
ents of the 2-map (B, ~, (7)) along their oriented faces 
by permutation q~ (conditions on q~ involve faces being 
tied together by q~). 

Let G = (B, 0% 0~1, 0~2) be a 3-map such that 0~0, ~ 
and ~0~ 2 are involutions without fixed points. It can be 
shown that any paving is equivalent to a 3-map of this 
type, and vice versa. ~ corresponds to ~0~2, 
corresponds to ~ 2  and ~ corresponds to 0~ 2 (this 
verifies, in particular, the definitions of vertices, edges, 
faces and volumes given by Spehnerg). The fact that 
~0, ~1 and 0~0~ 2 are without fixed points means that no 
face is bent back on itself in a paving and no edge is 
bent back on itself in a three-dimensional cell (in the 
sense of the previous subsection). 

Pavements. The definition of 'pavement' is presented 
by Arqu~s and Kochg.% This is another extension of the 
concept of the combinatorial map (see also Arqu~s 
and Jacques'2). The basic element used in pavements 
is the 'oriented angular sector', which can be explained 
in the following way. Let S be a subdivision of Euclidean 
three-space, and let v be a vertex of S. Let s be a little 
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sphere, centered in v, with a radius such that .s does 
not contain any other vertex of S. The intersection of 
s with S defines a subdivisions of s. More precisely, the 
intersection with s of the edges of S incident to v defines 
vertices on s. The intersection with s of the faces of S 
which are incident to v defines non-oriented edges on 
s, i.e. 'angular sectors' (an angular sector is then defined 
by two 'oriented angular sectors', inverse to each 
other). Finally, the intersection with s of the three- 
dimensional cells incident to v defines faces on s. 
Formally, the topology of the subdivision defined on 
sphere s may be modelled by a 2-map (B, ~, ~), where 
B is a set of oriented angular sectors, ~ is an involution 
without fixed points and ~ is a permutation. 

It is important to compare oriented angular sectors 
and darts (as intuitively presented in the previous 
section). For this purpose, the 1-G-map of the vertices 
deduced from the 2-G-map of Figure 5 is used (with a 
result similar to when using the 2-map of the vertices 
deduced from a 3-map). Each edge of this 1-G-map 
corresponds to an angular sector, and each of these 
edges is defined by two oriented angular sectors, which 
here are darts. This means (using the terminology of 
n-G-maps) that a dart, related to ~0, corresponds to an 
oriented edge; when related to ~1, it corresponds to 
an oriented angular sector; when related to ~2, it 
corresponds to an oriented angle between two faces 
which are incident to the same edge, and so on. 

Other topological interpretations of the dart concept 
have been offered, involving the half-edge% directed 
and oriented edge 7, facet-edge element 1~ (cf. below), 
cell-tuple ~2 (cf. below). The most general interpretation 
is the concept of the cell-tuple (defined in the general 
case of n dimensions), but it will be seen that it is still 
not general enough (cf. below). 

Pavements (sensu Arques and Koch '~) are defined by 
adding an involution, (b, without fixed points, such that 
6 = gbo" is an involution without fixed points. Informally, 
~b gathers two oriented angular sectors (i.e. two darts), 
which are incident to the same face. Finally, a pavement 
is formally defined as a 4-tuple (B, (b, ~, &). We can 
show that such pavements, and 3-maps (B, ~0, ~ ,  ~.,), 
such that ~,, ~ and ~0~2 are without fixed points, are 
equivalent. Oriented angular sectors correspond to 
darts, q~ corresponds to ~0, ~ corresponds to ~ ,  and 

corresponds to %c~ 2. 
Arques and Koch ~ restrict the field of application of 

pavements to subdivisions of Euclidean three-space. In 
particular, the intersection of faces incident to a vertex 
with a little sphere centered at this vertex defines a 
subdivision of a sphere. This subdivision is represented 
by a 2-map, so this 2-map is planar (i.e. its genus is 0: 
see the definition of the characteristics associated with 
a 2-map in the previous section). But this condition is 
not explicitly defined in the topological model. It will 
be seen that similar problems arise in other descriptive 
approaches, i.e. approaches where a topological model 
is deduced, given an original set of subdivisions which 
has to be modelled (cf. below). In all cases, the set of 
subdivisions of topological spaces, such that their 
topologies can be represented by the topological 
model, is larger than the original set. Similarly, this 
problem is still not solved for constructive approaches, 

i.e. approaches which study the c~,nstru(tio~ (~ !fine 
topology of) subdivisions of topoh~gical spaces (see the 
constructive approach of n-(;-IT~ap~ in the previous 
section). In fact, the entire set ~!: subdivision~ ~;f all 
topological spa(es associated witi~ a topological mode! 
is incompletely defined, for dimc, ri~i~n.~, greater thar~ 
This is one of the main unsolved ,problems (:~)ncerning 
ordered topological models 

Models for representing the topology of 
subdivisions of orientable or non-orlentable 
three-dimensional topological spaces 

Facet-edge data structure. Dobkm and Laszlo ~ define 
the notion of facet-edge data structure, for modelling 
subdivisions of Euclidean three-space (orientable. with 
or w~thout boundaries/, such that the 3D cells of these 
subdivisions are homeomorphic to a sphere. In fact. if 
the subdivision is with boundaries an 'unbounded 
polyhedron' is considered, whose boundary coincides 
with the boundary of the subdivision. This is a wav of 
defining the closure' ()t the subdivision whicl~ s 
without boundaries (facet-edge structures are equivalent 
to a subclass of 3-G-maps without boundaries: cf. 
below~. Consequently each face ot the subdivision is 
incident to two polyhedra, possibly not distinct. 

Let 5 be such a subdivision. This topological model 
is based on the notion of face-edge pair (f. eL such 
that face f is incident to eoge e For each face-edge 
pair of 5 four 'facet-edge' elements are defined. 
corresponding to the four possible ways of defining an 
orientation of the face-edge pair within the face. and 
around the edge. The 'facet edge elements are the 
basic elements of the model. Four traversal functions' 
are defined on the facet-edge elements (cf. Figure 13) 
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Figure "13. Facet-edge elements represented by two 
cycles joined by dashed line 
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- Clock, Enext, Fnext and Rev - which satisfy properties 
presented by Dobkin and Laszlo ~°. 

It is possible to show that this notion is equivalent 
to the notion of the 3-G-map (B, ~0, ~ ,  ~2, ~), where 
the involutions s%, ~0~, ~0:%, ~ are without fixed 
points. Facet-edge elements correspond to darts, 
Clock corresponds to ~0~-~, Enext corresponds to ~0~1, 
Fnext corresponds to ~ and Rev corresponds to ~ 
(here the results of the comparison made by Brisson 1~ 
between the cell-tuple structure and the facet-edge 
data structure, are used). More precisely, the four 
facet-edge elements of a face-edge pair correspond 
to the four darts of an orbit of (~0, ~ )  (four because 
~c~ is without fixed points). It should also be observed 
that no edge is bent back on itself in the three- 
dimensional cells (s(0~ is without fixed points) and that 
no face is bent back on itself (~0~ and ~ are without 
fixed points). Finally, 3-G-maps without boundaries 
correspond to facet-edge structures (~  is without fixed 
points). 

The complete facet-edge data structure defines 
simultaneously the topologies of the primal and dual 
subdivisions. Each facet-edge element of the primal 
corresponds to a facet-edge element of the dual, by 
an element function Sdual, and vice versa. It is possible 
to define an extension of the notion of the 3-G-map, 
strictly equivalent to the concept of the facet-edge 
data structure, in the same way as used for the quad- 
edge data structure (i.e. a structure can be defined 
which represents the 'union' of a 3-G-map and its dual 
3-G-map: see above). 

Dobkin and Laszlo 1° have shown that the facet-edge 
data structure can represent the topology of orientable 
subdivisions of Euclidean three-space, made up 
by three-dimensional cells homeomorphic to spheres. As 
said above, the converse problem still remains: given 
any facet edge structure which satisfies the combinatorial 
properties presented by Dobkin and Laszlo~% does a 
subdivision of a 3D topological space exist, such that 
its topology is represented by the facet-edge structure? 
As for pavements, facet-edge data structures may 
possibly be applied to the representation of the 
topology of subdivisions of Euclidean three-space, but 
also to the representation of the topology of 
subdivisions of other 3D topological spaces. 

Models for representing the topology of 
subdivisions of n-dimensional topological spaces 
Only the notion of the n-map (cf. the previous section) 
appears to have been defined for modelling the 
topology of subdivisions of oriented nD spaces. So this 
section compares cell-tuple structures and n-G-maps, 
which have been defined for modelling the topology 
of subdivisions of orientable or non-orientable nD 
topological spaces. 

In the previous section the notion of the n-G-map 
was presented constructively, i.e. n-G-maps were built 
by putting together nD cells, defined by (n -- 1 )-G-maps 
without boundaries (see also Lienhardt~,~). 

Brisson ~2'~ presents the cell-tuple structure descriptively 
in the following way: let M be an nD manifold, and let 
C be a finite collection of open kD cells (0 ~< k ~< n), 
whose union is M (the cells are homeomorphic to open 

kD spheres). Informally, the pair (M, C) defines a 
subdivided nD manifold if the boundary of each kD 
cell of C does not self-intersect, and if it is equal to the 
union of cells of C, which have dimension lower than 
k (more formally, the class of objects considered is the 
finite, regular CW-complexes63). 

Let c~ and c 2 be two cells of C 'G is 'a face' of c 2 if 
cl is contained in the boundary of cz. Moreover, if c~ 
is iD (note that dim(q) = i), and if dim(c~) = i + 1, then 
c~ and c2 are incident (for instance, a face contained 
in the boundary of a three-dimensional cell is incident 
to this 3D cell). A cell-tuple is defined as an (n + 1 )-tuple 
(Co, c~ . . . . .  Cn), such that for each i between 0 and 
n - l ,  d i m ( q + l ) = d i m ( q ) + l ,  and c~ and q+~ are 
incident (see Figure 14). Let TM be the set of all cell-tuples 
defined by the cells of C. 

The switch operator is defined in the following way. 
Let c A ~, c~ and ( : ~  be three cells such that 
dim(ck+l)----- dim(ck) + 1 = dim(c k 1) + 2, and such that 
ck ~ and ck, ck and ck+~ are incident (for instance, in 
Figure 14, a cell-tuple of type (vertex, edge, face)). A 
single cell ck. exists such that ck. #: ck, dim(ck.) = dim(ck), 
and ck ~ and ck,, ck, and ck+l are incident. Then 
switch(ck_~, c k, ck+~)= c~, (for instance, in Figure 14, 
edge 1 and edge 2 are the two edges which are incident 
to both vertex a and face A, so switch(a, 1, A) = (a, 2, 
A)). Let t = (c 0 . . . . .  ck_~, ck, ck+l . . . .  , c n) be an element 
of T~4. The general switchk operator is then defined on 
TM, for each k, 0 <~ k <<_, n, by switchk(t) = (co . . . .  , ok_ 1, 
ck,, ck+l . . . . .  Cn), with ck,= switch(ck_~, c k, ck+~): see 
Figure 14. For notational convenience, Brisson ~2 
assumes the existence of two cells c 1 and Cn+l, with 
d i m ( c  1 ) = - 1  and d i m ( c ~ + ~ ) = n + l .  

The cell-tuple structure is defined as the pair (TM, 
.[switch~}), with 0 ~< k ~< n. Brisson '-*~ deduces some 
properties from the definition of switchk. In particular, 
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Figure "14. Only part of subdivision of surface is 
represented: three vertices a, b and c; two edges 1 and 
2; two faces A and B. Cell-tuples are 3-tuples of form 
(vertex, edge, face). Concerning the switch k operator, 
for instance, switcho(a , 1, A ) =  (b, 1, A); switch,(a, 1, 
A) = a, 2, A); switch2(a , 1, A ) =  (a, 1, B) 
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the switchk operator is its own inverse (i.e. an 
involution), and does not have fixed points, for each k 
between 0 and n; the switchk.switchk operator is alse 
its own inverse, and does not have fixed points, for 
each k, k' between 0 and n, such that k' < k - 1. -[-he 
implicit notions of vertex, edge, face, etc., are als~ 
defined by Brisson ~2'~. 

It should be evident that the definitions of cell-tuples 
and switchk operator provide the basis for an algorithm 
for converting incidence graphs (as defined above) into 
an ordered topological model (i.e. a cell-tuple 
structure). But the definition of cell-tuples itself involves 
restrictions on the possible field of application of such 
an algorithm (see below). 

The concept of 'ordering', formally defined by 
Brisson ~:, should be mentioned briefly here. Given a 
(k - 2)-dimensional cell contained in the boundary of a 
(k + 1 )-dimensional cell, all of the cells 'between' them 
may be put into a circular order 'around' the 
(k - 2)-dimensional cell, such that this order alternates 
between (k-1)-dimensional cells and k-dimensional 
cells. For instance, in a polyhedron, circular sequences 
of edges and faces around vertices (:an be defined. Put 
simply, this notion of ordering corresponds to the fact 
that the composition switch~ ~switch~ is a permutation, 
for each k (1 ~ k ~ n), as it is a composition of two 
involutions. 

It can be shown that the cell-tuple structure is 
equivalent to the notion of n-G-map without boundaries 
(~,~ is without fixed points), such that, for each dart b, 
no dart b' exists, such that, for each i between 0 and 
n, b and b' are incident to the same iD cell. This 
condition involves, in particular, that ~;ai is without 
fixed points, for 0 ~< i < i + 2 ~ j ~ n (cf. Lienhardf'4). 
The condition means that the intersection of all iD cells 
q (O<~i<~n) incident to dart b is equal to {b}  (if the 
condition is not satisfied, at least two darts correspond 
to an identical cell-tuple). If the condition is satisfied, 
it is possible to define a unique cell-tuple for each dart 
of such an n-G-map, and vice versa. Thus, for each 
cell-tuple structure, it is possible to define an equivalent 
n-G-map. Conversely, it is possible to define an 
equivalent cell-tuple structure for each n-G-map 
without boundaries which satisfies the condition. 

Concerning this condition, Brisson says that cell-tuple 
structures can not represent the topology of subdivisions 
such that the boundary of a (:ell self-intersects. In fact, 
this is not completely well defined. For instance, in two 
dimensions, a subdivision of a surface with a face which 
intersects itself only at a vertex may be represented by 
a cell-tuple structure. 

More formally, it can be proved than an n-G-map 
(B, c~ 0, a~ . . . . .  ¢¢n) does not satisfy the condition if and 
only if i exists (0 ~ i ~< n -  1) and a dart b of B exists, 
such that <~0 . . . . .  (z,~(b) r~ ~ , + , , . . . ,  ~,~)(b) ~= {b}  ~'4. 
For instance, in two dimensions ~0,  ~ ) (b )  r~ <~} (b )  
{b]. means that a face intersects itself along an edge. 

This restriction of cell-tuple structures is mainly a 
consequence of the definition of the basic elements of 
the mo_del, i.e. cell-tuples. But the notion of the 
cell-tuple is probably the best topological interpretation 
of the notion of the dart (as defined for any dimension): 
It could also be possible to extend this interpretation, in 

order to avoid restrictions ~t~ci ,~t. the (:~nditio~ [,._,-,~ 
mentioned (ci. below) 

Hnally Brisson ~2 restricts the r~eid of application t>[ 
cell-tupte structures to subdivisi~n.s, such that the cells 
of these subdivisions are hc~m~,omorphic t~ gpheres 
But the whole set of subdivision> c~l topological spaces. 
whose topology can be repr~'sented h~ cell-tuple 
stru(tures would appear to be h~completely defined 
(cf. the above remark concerning the field of application 
of pavements and facet--edge data structures)i 

An extension of an ordered topological model: 
the radial-edge data structure 
This subsection is confined to a discussion oi the 
'radial--edge' data structure as presented by Weiler ~. 
This structure makes it possible to model the topology 
of (two-dimensional) 'manifold objects, and of 
'non-manifold' objects ~ (cf. ais~, the presentation of 
selective geometric complexes ~ above). A non- 
manifold object is a three-dimensional geometric 
object, whose (:ells satisfy at least one of the following 
'non-manifold conditions' /(.,."~ Weiler~: see also his 
definition of separation surfaces): 

• more than two faces are incident to the same edge; 
• volumes (or faces) are adjacent through sharing a 

single vertex; 
• dangling edges exist (i.e. edges which are not 

adjacent to a face). 

The notion of volume does not explicitly appear in the 
radial-edge clara structure, but this structure allows 
the topology of subdivisions ot oriented three- 
dimensional topological spaces to be modelled lin 
particular, some of these subdivisions satisfy the first 
non-manifold condition above). In fact, a basic notion 
of the radial-edge data structure is the notion of 
'edge use', which corresponds intuitively to the notion 
of the face-edge pair H~ 

The radial edge data structure is mainly an ordered 
topological model, defined for the representation of the 
topology of subdivisions of oriented three-dimensiona 
spaces. It differs from the topological models presented 
above in particular by virtue of the fact that it is possible 
to model objects of 'mixed dimensionality' c for instance 
a polyhedron with dangling faces or dangling edgesl 
and that the boundary of a cell may be unconnected 
(for instance, the boundary of a face may be defined 
by more than one cycle of edges). For these reasons. 
the radial edge data structure is considered an 
extension of a three-dimensional ordered topological 
model. 

The principle of the radial-edge data structure is as 
follows. Let (L e) be a face-edge pair ~i.e. face f is 
incident to edge el. Two edge-use elements are 
associated with (L e). corresponding to the two possible 
ways of defining an orientation of the face-edge pair 
within the face (edge-use elements correspond to darts 
in 3-maps;. With each edge-use element is associated 
the inversely oriented edge-use element, by a pointer 
/corresponding, for 3-maps. to the involution m~, where 
m~ ~s without fixed points). The edge-use elements are 
organized into cycles, defining the oriented faces 
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(corresponding, for 3-maps, to the orbits of the 
permutation ~ 0 ) .  Finally, the cycles of faces around 
the edges are described by pointers, which gather the 
edge-use elements (corresponding, for 3-maps, to the 
involution ~0~2, where ~0~2 is without fixed points: cf. 
Figure 15). Thus the radial-edge data structure can be 
considered basically an ordered topological model 
(Weiler ~ makes no mention of constraints on the 
different pointers; so the correspondence between 
3-maps and radial-edge data structures is, in fact, a 
personal interpretation). 

This model is extended in order to take into account 
the following ideas: 

• Inhomogeneity of the dimension: the ordered 
topological models, studied above, define a subdivision 
of an nD space by 'gathering' nD cells; each nD 
cell is defined by its boundary, i.e. by a subdivision 
of an (n-1)-d imensional  space. However, the 
radial-edge data structure allows the topology of 
three-dimensional objects to be modelled, made up by 
'gathering' cells, with dimensions less than or equal 
to 3 (for instance, gathering volumes and dangling 
edges - see the third non-manifold condition above). 
Moreover, the boundary of an iD cell may be a 
subdivision of a space with dimension less than i - 1 
(for instance, the boundary of a face may be reduced 
to a vertex). 

• Disconnected cells: it was shown in the previous 
section that n + 1 ( n -  1)-G-maps of the elements 
(G~),~ ....... can be deduced from an n-G-map G; 
for each i between 0 and n, each connected 
component of G, defines an iD cell of G (and similarly 
for n-maps). This formalism does not allow geometric 
objects, where an iD cell is defined by more than 

• _o°°  

, , , \ /  
a 

I edge I 

Figure "15. (a) face, defined by two cycles of edge-use 
elements (thick lines); arrows correspond to pointers 
that define such cycles (corresponding to 3-map 
to permdtation ~i- ~ ) ;  double arrows correspond to 
pointers pining two corresponding inversely oriented 
edge-use elements (corresponding to 3-maps to 
involution ~) (b) Cross-section of an edge: points 
correspond to edge-use elements; thin double arrows 
correspond to pointers gathering two corresponding 
inversely oriented edge-use elements; thick double 
arrows correspond to the edge-use radial pointers, which 
gather edge-use elements that are directly adjacent, 
turning4 around the edge (corresponding to 3-maps to 
involution ~ 2 )  

one connected component, to be modelled directly. 
For instance, the topology of two tetrahedra, 
adjacent through sharing a single vertex, cannot be 
directly modelled by a 3-G-map (this applies to all 
ordered topological models studied above: however, 
see Arques and Koch6~). The radial-edge data 
structure makes it possible, for instance, to model 
faces defined by a set of cycles of edges 
(multiply-connected faces), one of them defining the 
'external' boundary of the face, the others defining 
'internal' boundaries, or to model geometric objects 
(volumes, faces, edges) which are adjacent through 
a single vertex (cf. the second non-manifold 
condition above). 

This extension of an ordered topological model is 
achieved in the radial-edge data structure by using 
several basic elements ('vertex use', ' loop use', 'face 
use', etc.: cf. Weiler3~), and by representing (in a more 
or less direct fashion) the different adjacency and 
incidence relations between cells. The radial-edge data 
structure is thus complex, and its extension to higher 
dimensions is not obvious. Moreover, it is quite 
redundant when two- and three-dimensional 'manifold' 
objects are represented. Nevertheless, this data 
structure is a very interesting approach for modelling 
the topology of three-dimensional CW-complexes (see 
Munkres '~ definition). 

Unsolved problems 
Ordered topological models are based on similar ideas - 
definition using a single type of basic elements, on 
which element functions act. This simplifies the 
definition of data structures deduced from these 
models, the definition of consistency constraints that 
these data structures must satisfy, and also the 
definition, processing and control of operators which 
are applied to these models (cf. the following section). 

Moreover, important topological properties (orienta- 
bility, duality, number of boundaries, and topological 
characteristics for dimension 2 - Euler characteristic, 
orientability factor, genus) can be directly computed 
on ordered topological models. However, the definition 
of constraints of consistency for data structures 
deduced from incidence graphs seems more critical, 
and no study appears to have been made of this subject. 

A problem, studied by many authors 2,~, is the 
following. Three types of cell exist in dimension 2 
(vertex, edge, face), and so there are nine types of 
adjacency and incidence relation between these cells. 
What are the sets of relations which are complete, i.e. 
provide all topologic information? Among these sets, 
what are the minimal sets (i.e. those which are not 
redundant)? 

Generalizing the problem to dimension n consists in 
determining such relations sets among (n + 1): types 
of relation (these questions are motivated by the 
following: proof of the sufficiency of data structures; 
definition of complete data structures; and limitation 
of redundancy). Brisson ~ has proved the sufficiency of 
the set of incidence relations between /-dimensional 
and (i + 1 )-dimensional cells, but the general problem 

volume 23 number 1 lanuary/february 1991 75 



remains. It should be observed that this problem does 
not directly exist for ordered topological models, the 
cells being implicitly represented. Nevertheless, no 
solution has been provided to the problem concerning 
the degree of necessary redundancy which must exist 
in a data structure in order to ensure good 
performances for basic algorithms (for instance 
computing the number of connected components, 
orientability, etc.). 

It has been shown that ordered topological models 
are equivalent (with respect to dimension and 
orientability), except for some differences concerning 
particularly fixed points of the element functions. It is 
not claimed here than a single model exists, that some 
model is better than any other, or that it is possible to 
define a universal data structure (obviously, many data 
structures can be deduced from a topological model, 
more or less adequate according to their uses). But it 
is important to highlight these equivalences, which may 
simplify the understanding of these models. In 
particular, some models have been deduced from 
descriptive approaches, others from constructive 
approaches, and it is remarkable that different 
approaches produce equivalent models. 

Many problems concerning ordered topological 
models have yet to be solved. We have seen that the 
notion of dart has many topological interpretations: 
half-edge °, oriented edge 4s, directed and oriented edge ~, 
oriented angular sector ~, directed and oriented face-edge 
pair ~°, cell-tuple ~. Only the notion of cell-tuple is 
defined in the general case of n-dimensions, but this 
notion involves restrictions on the class of subdivisions 
of topological spaces whose topology may be 
represented by cell-tuple structures. Another possible 
topological interpretation of the notion of dart is 
suggested by Brisson ~s (see also Vince4~): let M be a 
subdivision of an nD topological space, and let T be 
the barycentric triangulation of M. Informally, 7 is a 
particular decomposition of M into n-dimensional 
simplices, such that the topological spaces subjacent 
to T and M are homeomorphic (cf. Figure 16; for a 
more complete definition, see Agoston ~ and Munkres~). 
A dart corresponds to each nD simplex in T, and vice 
versa. This interpretation of the notion of dart is 
equivalent to the cell-tuple concept if self-intersections 
of the boundaries of cells are not allowed ~s. However, 
this interpretation does not appear to present the 
restrictions involved by the definition of cell-tuples, 
though no proof of this is known to exist as yet; 
nevertheless, see the examples in Figure 16. 

Another problem concerns fixed points of element 
functions. For instance, fixed points are not allowed for 
any switch~ operator in a cell-tuple structure ~ 
(0 ~< k ~< n), nor for any switch~ switch~ operator (with 
k=/:k'). Quad-edge structures ~ are equivalent to 
2-G-maps (B, ~0, ~1, ~), where ~ and ~0~ are without 
fixed points (there are similar restrictions for facet-edge 
structures). In particular, these restrictions on fixed 
points involve problems for the representation of the 
topology of subdivisions of topological spaces with 
boundaries. Similarly, n-G-maps are defined as (n + 2)- 
tuples (B, ~0, ~ ,  . . . ,  ~), where ~0, ~1, . . - ,  ~ ~ are 
without fixed points. This definition involves the fact 

that duality can oniv be define~J., .,~-~,-Fu~q~ ~,.ith,;h~ 
boundaries and the ctefinitlun ,)~ ;~-('..-maps ,~ 
inhomogenous . On ttle Jther har~d, lhe trial) 
concept by Bryant and Singerm.m ~'' allows fixed points 
for any inw)lution, and the~. !~xed p~int~ l~,w,. ,, 
coherent topological interpretali~)n It ~u ld  be u~elui 
to study the generalization ,,t lhi- approa{h ~; ~he 
general case of n dimensions t~.e r~move t.h~' ~ onditioF~ 
on fixed points for H-(]-n/a[~,, a r ld  u) ~I.Lt(J,, the  
topological interpretation of these fixed polnt~. 

It has been proved that the t~pology ot subdivisions 
of topological spaces can be represented bv such 
models (generally, subdivlsu)n- composed b\ cells 
which are homeomorphic ~, ~t, here~/ and that the 
representation ~s unique, up to ~somorphism ~ ~'~'. But 
the class of all subdivisions or all topological spaces. 
such that the topology of these subdivision~ may be 
represented bv such ordered models is still incompletely 
defined 

The evolution of topological models has notably 
extended the class of objects which (:an be modelled 
in boundary representation (thus answering remarks 
made bv Takala ~ concerning tl~e restricted field of 
application of boundary representation L Nevertheless, 
some classes of object (for instan( e. subdivisions where 
cells are multiply-connected) (annot be directly 
represented bv these topological models It shou d be 
possible to extend to the general case of n dimensions. 
some of the well-known methods used in boundary 
representation ~the distinction between 'active" and 
n(~n-active' cells ~: inclusion ~"ees: of. Weiier' 
Michelucci and Gangnet ~" and Dufourd el al ~ but 
there is no known general study of this subject. Finally, it 
may be very useful to extend 'if possible) ordered 
topological models n order to represent the topology 
of CW-com plexes"'. 

EVOLUTION OF OTHER ASPECTS OF 
BOUNDARY R ~ ~ A T I O N  

This section takes a brief look at some of the recent 
developments in boundary representation concerning 
embedding models and operators. 

Embedding models 

Embedding models associated with topological models 
have evolved during the last years. For instance, to a 
topological edge may correspond a straight line s, a 
polyline 5~, a discrete curve consisting of a sequence of 
pixels 4~, a free'form curve 5~'~6 .. To a topological face 
may correspond a planar face ~, cylindric faces; or 
parametric surfaces 4J~, faCes defined by quadrics 4°, 
free-form surfaces (which give important local contr0P: 
see, for instance, Bartels et a167 and Mortenson~). 

Nevertheless, fundamental problems remain. We 
have seen that the whole set of subdivisions of 
topological spaces whose topology maybe associated 
with ordered topological models is stil! incompletely 
defined for dimensions higher than 3. This points to the 
problem of the relation between topological models 
and subdivisions of topological spaces; and thus the 
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Figure 16. (a) 2-G-map G. (b) barycentric triangulation T of a subdivision S whose topology is represented by G: 
vertex labelled i in T is associated with each i-dimensional cell of S, and vice versa. Edge exists in T between two 
vertices labelled i and j if and only if i ~ j and the corresponding i-dimensional and j-dimensional cells are incident 
in S. The faces of T (which are triangles) are defined in a similar manner (for more details, see Brisson~). (c) 
corresponding labelled graph L, deduced from T in the following manner: each node in I corresponds to a triangle 
of T, and vice versa. Edge labelled i joins two nodes if and only if corresponding triangles in T are adjacent along 
edge whose extremities are labelled j and k, with i ~ j and i ~ k. Finally, we can deduce 2-C-map G from labelled 
graph L. Each dart of G corresponds to a node of L (and vice versa); two darts belongs to the same orbit ot ~, if and 
only i/the corresponding nodes are joined in L by an edge labelled i. ( d)2-C-map G; (e) corresponding barycentric 
triangulation and (f) labelled graph. Notice that an edge is bent back on itself in G, i.e. ~o~2 has fixed points, meaning 
that edge of subdivision is only incident to vertex. Informal definition of barycentric triangulation presented can be 
extended to take into account such 'degeneracies' (g) 2-G-map, where dart b exists, such that <c<o, 
~ > (b) r~ < ~ >(b) ~ { b }, and (h) its corresponding barycentric triangulation and (i) labelled graph 
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problem of the geometric realization of such topological 
models, i.e. the problem of embedding. It is (:lear that 
the definition of embedding models associated with 
ordered topological models is a real problem if the 
nature of the subdivisions of spaces which {an be 
associated to these models is not known. However 
different types of embedding models can be defined 
(as was described at the beginning of this paper), h~r 
instance, for 2-G-maps, a possible embedding ~ onsists 
in associating a point in Euclidean three-space to ea(h 
orbit of <cq>, a segment to each orbit of {~q,), and a 
polygon to each orbit of <~0, ~ ). Thus, two segments 
are associated with each edge of the 2-G-map, and 
more than one point is associated to each vertex {ff 
the 2-G-map (see, for instance, Figure 3). This is a 
discontinuous embedding. Another possible embedding 
consists in associating a point with each orbit of {z~, 
~ >  (i.e. to each vertex), a segment with each orbit of 
<~0, ~ , )  (i.e. to each edge) and a polygon with each 
orbit of <(~0, sq) (i.e. to each face). This defines a 
continuous embedding. 

This points to problems concerning constraints on 
embedding models. For instance, what constraints must 
a discontinuous embedding model satisfy in order t:o 
define a continuous embedding? Some problems 
concerning constraints on embedding are welt known 
(for instance, for the definition of solids~), although 
many algorithms have been studied, in particular for 
the control of self-intersections (see Casale ~'", for 
example). As topological models and embedding 
models are independent, more than one embedding 
model may be associated with a same topological 
model, in a same geometric modeller. Other basic 
problems concerning embedding models have not yet 
been solved, but space does not permit a detailed 
discussion of these. 

Opera tors  

Many criteria may be defined when classifying the 
operators used in boundary representation. Two of the 
most important are the nature of the operators 
(topological, embedding or mixed); and the level (basic 
operator, high-level operator) and the degree of 
hierarchization of the operators. 

Topological operators 
Euler operators have been studied by Baumgart r', 
and extended by many authors ~4J~'17'1'~. They are basic 
operators, used for handling topological models - for 
instance, creating a connected component, a face and 
a vertex, or an edge and a face, or an edge and a 
vertex, and their inverse operators (when modelling 
subdivisions of orientable surfaces without boundaries, 
the use of these operators agrees with the Euler formula 
for genus). This type of operator has been extended by 
Weiler 7° for modelling non-manifold objects (sensu 
Weiler:~). 

Other basic topological operators have been defined 
for handling ordered topological models. For instance, 
operators for 'inserting' and 'tying' darts are defined 
for handling 2-ma, nJ1, and extended to n-G-maps4~; 
'make-edge' and 'splice' operators are defined for 

handling quad-edge dat,  -~:, , ~ -  ,q,~i.~. ~'(L.c 
ta(et', 'splice-edge' and .fm~, ~4~,I ~,prmat~r~ at,- 
defined for handling l:acet ,,dg~. d4t.  ~tlt~ iu~u .  a 
'merging' ,)perat(~r is definr~! :~r haildlirtg p~,.wnL4~" 
'sewing' operators are define~ ~, ,' ~Tn ~dtinL' n - " ~  ~'~ " 
et~ 

,\ main crlt l(Jsnl of boundary  rc, l)resell l .aiton ,.{~nceHlh 
the difficulty (fi creating and manipulating geume{ric 
oblects ;L'~' :  Euler operator~ r~emg low-level opera~ors. 
numerous and non-standardized. Ior ins{ante basic 
operators used for construchve -.r4~d ~eometrv ( S(;, 
i.e. set operations union JrRer~o,'Hon differen(~., ,ue 
high-level operations m boundary representation tile 
results of operations are ,: orlff~uted m boundary 
representation but not m C/G:. \~oreover prowne that 
a set of Euler operators is co~niHet- t~ nor ver~ ~-asv 
Finally, embedding informatior~ - someurn~>, needed 
for a complete characterlzatl~n ",, an ~l:)era[()r' ' ' 

A major reason for these drawha(k~ is the following: 
classical Euler operators tsee Brmd ,'~ a! TM. M~ntvl;i and 
Sulonen" and Ansaldi et al ~ ,(, mstan(e handle 
different entities {vertex edge-. ~ace connected 
component, etc.). Control over the vatiditv of the model 
is exerted through Euler operat~,rs: thus the different 
entities must be manipulated simultaneously. Parti(ularlv. 
it is the case for operators defined fi~r handling 
incidence graphs (cf. the remark iH the previous se(hon 
concerning consistency constraints on incidence 
graphs). This implies the definitu;n o~ nLimeroL;S bast( 
operators, and difficulties when proving tl~e completeness 
of these operators. Finaltv it mu~t be ~)bserved that no 
bask operator~ have been defined mr manipulating 
incidence graphs in the general Lase of dimension ~ 
(however, see the basic operator~ defined by Welter :~ 
in the cas~, of dimension ~} and ~)nerators presented 
by Rossignac and O'Connor 

On the other hand bask_ ,,perators defined lot 
handling ordered topological models do not present 
such inconvenience:" "~" 4:,. ]-hey handle a single lype 
of element {the basic element of the topological 
model); a small number Igeneratly two or three with 
inverse operators included) provides a complete set of 
operators; the proof of their completeness is (generally) 
easy, and they can easitv .be extended to higher 
dimensions ;~-'. These operato~ qil} remain non- 
standardized. Among these operators £ome :'8 ~' ~{~ seem 
to be higher-level operators thau others ~''~'::~ I1 ,-ould 
be of great interest to studx now tt~ define these 
higher-level operators by the lower-level operau-~. 

An example of a basic ~pe~a[ol ~ the sewing" 
operator (presented above), defined tor the manipulation 
of n-G-maps. Schematically, this basic operator consists 
in putt ing together n-dimensional cells along { n -  1 - 
dimensional cells. It is easy to prove that this is sufficient 
for the construction of any n-G-map. However. i~ is 
possible [o distinguish different cases of applicauon of 
this operation, for instance in two dimensions according 
to the variations of the characteristics associated with 
a 2-G-map. This type of distinction is one of the reasons 
for the multiplicity of Euler or)erators, l-he 'sewing 
operator is very simple to define and to apply. A ma/or 
reason for this advantage also constitutes a major 
drawback: this operator can ()nly be applied to 
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n-G-maps with boundaries. One of the reasons for the 
complexity of some operators is the fact that they can 
only be applied to topological models which represent 
the topology of subdivisions of topological spaces 
without boundaries (see, for instance, merging ~, splice 7, 
splice-edge and splice-facetS°). 

Finally, it is clear that the use of low-level operators 
is tedious; moreover, it is sometimes hard to use 
low-level operators efficiently for creating or manipulating 
geometric objects. But this problem is not a characteristic 
of boundary representation (on the definition of 
high-level operators, see Braid ~3, Braid et al TM, Varady 
and Pratt~a). However, the definition of a basic set of 
low-level operators, used for defining high-level 
operators, is an important step which should not be 
omitted (cf. Dufourd 4z7~, for instance). 

Embedding and mixed operators 
Numerous embedding and mixed operators have been 
defined - for instance, bending, tweaking chamfering, 
twisting 1418'74. Some operators are defined for a 
particular type of embedding model (for instance, 
operators for manipulating free-form surfaces) (cf. 
Barstels et a/~7 and Barsky7~; many works define 
'topological' operators to handle free-form surfaces76T;8), 
while other operators are more general (Boolean 
operations202~ 2,, deformation operations 7~,a~', etc.). See, 
in particular, the operators defined by Rossignac and 
O'Connor ~7 for the manipulation of selective geometric 
complexes (SGCs) (cf. the previous section): 

• subdivision, which makes two geometric complexes 
compatible with each other by refining them, i.e. by 
subdividing their cells (more precisely, two geometric 
complexes, A and B, are compatible if for each cell 
a of A and for each cell b of B, a r ~ b : / : e ~ a = b ) ;  

• selection, which selects cells of one or more 
compatible geometric complexes; 

• simplification, which, by deleting or merging cells 
produces a simpler SGC. 

These operators have been extensively studied by many 
authors, and it is not intended to discuss their 
advantages and drawbacks here. It is important to 
retain consistency with boundary representation logic, 
i.e. to distinguish between embedding operators and 
mixed operators. This means that basic mixed operators 
should be expressed by using topological operators and 
embedding operators (mixed operators being the 
highest-level operators in a geometric modeller). As 
said above, the department of Computer Science at 
Strasbourg is engaged in developing software for 
modelling subdivisions of surfaces and subdivisions of 
three-dimensional spaces, in which this hierarchization 
is maintained. 

CONCLUSION 

Boundary representation has evolved considerably in 
recent years. Such methods are now used not only in 
CAD but also, for instance, in computational geometry. 
This is one of the main reasons why topological models 
used in boundary representation have changed, and 
the set of objects which can be modelled by boundary 

representation methods has been considerably extended 
from subdivisions of orientable surfaces without 
boundaries, to subdivisions of nD topological spaces, 
orientable or non-orientable, with or without boundaries. 

Schematically, two main classes of topological model 
used in boundary representation may be distinguished. 
The first is incidence graphs lr~5 38 defined using (n + 1 ) 
distinct basic elements (the n + 1 types of cell, in 
dimension n). These models are sufficient for modelling 
the topology of subdivisions, but their constraints of 
consistency seem difficult to define. Control over 
consistency is exerted through operators which are 
applied to these models (or, by constructing a particular 
model, when given a mathematical definition of the 
subdivision). Moreover, manipulating simultaneously 
n + 1 basic entities involves the definition of numerous 
basic operators, even in the two-dimensional case. Such 
operators seem to be difficult to define in the general 
case of n dimensions (no thorough study about this 
problem is known). Finally, the computation of some 
important topological properties (orientability, for 
instance) directly on a data structure deduced from 
an incidence graph is not easy. 

The second class of topological model is ordered 
topological models ~ ~z~.~0, which use a single type of 
basic elements, on which element functions act. Data 
structures can be easily deduced from these models, 
and the consistency constraints on these data 
structures can be directly deduced from the definition 
of the models. Control is not only exerted through 
operators but also directly from the definition itself of 
the model. Numerous topological properties can be 
directly computed using the model, or using a data 
structure deduced from the model (classification in 
dimension 2; in the general case of dimension n, 
number of boundaries, orientability, duality, etc.). For 
each model, a small set of basic operators is enough 
to create and manipulate the model; this simplifies the 
definition, processing, control and hierarchization of 
higher-level operators. Finally, it seems important to 
highlight the fact that order models are based on the 
same ideas, and that it is possible to show that these 
models are equivalent (with respect to dimension 
and orientability). No ordered topological model is 
known to have been defined for modelling the topology 
of general CW-complexes (see the approach presented 
by Weiler" for the particular case of dimension 3). 

The evolution of boundary representation has also 
involved embedding models. Topological models 
(initially embedded using planar faces and straight 
edges, for modelling subdivisions of orientable surfaces 
without boundaries) are associated with embedding 
models using parametric surfaces, quadrics, and 
free-form surfaces, and often with more than one single 
embedding model (this is an advantage of boundary 
representatioW"la). But the control of the embedding is 
still an unsolved problem, to which new approaches 
are being studied (cf. Bertrand 2r, for instance). 

Concerning operators (topological, embedding and 
mixed), it is important carefully to define basic 
operators, and a hierarchization of higher-level operators 
based upon these basic operators see, for instance, 
Dufourd 42, who proposes an algebraic functional 
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specification of n-G-maps and n-maps, presents several 
implementations, in particular one by rapid prototyping 
using logic programming; and studies morphological 
aspects, i.e. embedding and photometric aspects, with 
two-dimensional examples. It is also important to 
maintain boundary representation logic, i.e. to define 
mixed operators as high-level operators, expressed by 
using topological operators and embedding operators. 
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