Some techniques for
visualizing surfaces in
four-dimensional space”

Christoph M Hoffmann and Jianhua Zhou

The issues of visualizing two-dimensional surfaces in
four-dimensional space are discussed, including methods
to specily the orientation of objects and of projection
centres, lo determine sithouelle points of a 2-surface
with respect to projections and to calculate the normal
ol a projected 2-surface from its normal plane in 4-space.
We have implemented an interactive 4D display system
on a z-bufler graphics workstation. Prefiminary experiments
show that such a 4D display system can give valuable
insights into high-dimensional geometry. Some examples
are presenied illustrating nonuniform material property
display, offset curve geometry and collision detection.

solid modelling, visualization, 4-space

High-dimensional space is playing an increasing role in
computer-aided design and solid modelling. Applications
include describing the motion of 3D objects, modelling
solids with nonuniform malerial properties, deriving
spline curves uniformly, and formulating constraints for
offset surfaces and Voronoi surfaces®™". Apart from
the modelling aspects, it is important to develop
visualization aids for high-dimensional space. We have
begun to investigate this topic with a view towards
CAD and solid modelling, concentrating on four-
dimensional space. Visualization of high-dimensional
space has also successfully provided insights and
methods for investigating geometric phenomena and
dynamic systems*®.  ~

We consider 2D surfaces in 4-space. Objects in
4-space could have dimension 0, 1, 2, 3, or 4, so dealing
only with 2-surfaces is a restriction. However, it is not
a severe one: for example, one could draw a 1-surface,
i.e., a curve, in 4-space in the natural way. But displaying

instead a tubular 2-surface ‘wrapped around’ the

T-surface provides better shape cues. Similarly, one
could render velumetrically semi-transparent 3- and
4-surfaces. But just as the shape of a 2-surface in
3-space can be grasped from a rendered net of curves
in the 2-surface, so 3- and 4-surfaces in 4-space can
be understood from nets of 2-surfaces in them.

Rendering 2-surfaces in 4-space is thus a quite powerful
tool.

Graphics workstations have built-in hardware to
render polygons in 3-space at interactive speeds. This
custom hardware cannot be reprogrammed to deal
with 4-space directly, and so 4D visualization would
be much slower. Nevertheless, much efficiency is
retained by separating the projection into two stages™.
First, projecl the 2-surface into 3-space, then project
its image onto the screen. As long as the first projection
remains from a fixed view point, the second projection
can be left to the hardware and is therefore as efficient
as 3D graphics. The two projections are defined by two
movable ‘eyes’, called eye, and eye,. Here eye, controls
the first projection, into 3-space. Object and view
orientation are controlled by generalized Euler angles,
as sketched in the second section, and are specified
by users during animation. Note that the authors restrict
attention to pure rotation, The object can be translated
in 4-space during the animation. This section also
discusses how properties of the 4D geometry can be
recovered from certain projection strategies.

Given a 2-surface in 4-space, we first approximate it
by a mesh of polygons. Since a 2-surface in 4-space
has two independent normal directions, we do the
rendering after the first projection has mapped the
mesh into 3-space, where also vertex normals are
added. Instead of computing the normals from the
projected data in 3-space, in the third section a method
for calculating them from the original 2-surface is given,
thereby gaining some accuracy and speed. The fourth
section discusses our implementation and its efficiency.
Several examples illustrating the use of the system are
given in the fifth section.

Projecting down two dimensions obliterates
information; eye, might see some interesting features
not seen by eye,. In particular, silhouette points, at
which the line of sight grazes the object, provide crucial
shape information. Thus, we have ways of computing
analytically silhouettes with respect to the projections
and then render them as curves in the 2-surface so that
they can be viewed from different directions. This
computation is also explained in the third section.
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Figure 1. Torus projected into a plane and then into a line

A silhouette with respect to two projections is more
complex than a silhouette with respect to one. As an
analogy from 3-space, consider a torus projected into
a 2-space that contains the page on which Figure 1 is
printed. The centre of this projection, eye;, is
somewhere in the first octant of the (x, y, z}-coordinate
system and not shown. Imagine now that we live in
that 2-space and try to ‘see’ the picture in a 1D
projection. This is the second projection which
produces a 1D image of the torus, on a line. The centre
of the second projection, called eye,, is then confined
to the plane orthogonal to the direction of eye,, ie.
orthogonal to the vector from the origin to eye, in
3-space.

Figure 1 is not the projection of the whole torus but
the projection of the sithouette curve of the torus with
respect to the first projection. A point on a surface
becomes a silhouette point if the tangent plane of the
surface at that point is projected into a line. This
happens when the ray from that point to the projection
centre falls into the tangent plane. Clearly, when eye,
is moving, the silhouette curve changes its shape and
50 does its projection. Now let’s fix the eye, position
and concentrate on this silhouette curve as an ordinary
space curve C. A point on a curve becomes a pinch
point if the tangent line of the curve at that point is
projected into a point”. This happens when Lhe ray from
that point to eye, coincides with the tangent line. The
four cusps in Figure 1 are such points. They may cause
trouble in determining the normal of the projected
curve, which is necessary if shading is added to the
second projection. The second projection may also
introduce pinch points, for instance the point P on C
in Figure 1. It appears as a discontinuity of shading in
the 1D image. Note that the ray from P to eye, does
not necessarily coincide with the tangent line of C at
£ in 3-space. Also note that the tangent plane of the
torus at P is mapped to a point under the two
projections. So it could be called a doubly silhouette
point of the torus with respect to the two projections.
The concepts of silhouette, doubly sithouette and pinch
point have the common feature that at such points
the tangent space of an object reduces its dimension
under the projection.

* For the definitian of pinch points on a 2-surface in 4-space see’.

R4

ORIENTATION SPECIFICATION

In this section we focus on the orientation problem for
displaying 2-surfaces in 4-space. We want to orient the
two projection centres so that the 3D and 2D images
of the 2-surface can be controlled independently. We
also discuss some specific orientation choices and what
information they reveal about the 4D geometry.

In 4-space, we assume a world coordinate system.
Each object is translated and rotated by specifying a
transformation relating its body-fixed coordinate system
to the world coordinate system. The 4-space is first
projected into the 3D image space orthogonal to the
first projection direction, Then, the 3D image space is
projected into the 2D image space orthogonal to both
the first and second projection directions. The first and
second centres of projecfion are called eye, and eye,,
respectively. They can be at finite or infinite distance
from the origin. We require that the origins of the three
coordinate systems of the 4D world, of the 3D image,
and of the 2D image space coincide. Thus, the
relationship between the coordinate systems can be
expressed by pure rotations with only six independent
parameters.

Euler angles, cormmon in 3D kinematics", specify the
orientation of objects by three successive rotations.
Generalized to 4-space, Euler angles orient objects by
six successive rotations. Denoting the six angles as 8,,

.., B, the coordinates are related via

p= Rf}.((h)R;{(Uz}R:“,(U;)R':},(D_l}R;Z(OS)R:\,(Hﬁjq

where R, (-} are basic rotation matrices in the (x, y)-
plane, etc, and p and q are the coordinates of a
point in the world and in the body-flixed coordinate
system, respectively. The rotations are grouped into
three phases, as indicated by the common superscripts.
In the first phase with superscript 4, the body-fixed
w-axis is oriented into its final position in 4-space. In
the second phase with superscript 3, the body-flixed
z-axis is oriented into its final position within the 3D
subspace orthogonal to the {oriented) body-fixed
w-axis. In the third phase with superscript 2, the
body-fixed x- and y-axes are oriented within the 2D
subspace orthogonal to the other two axes. Note that
the angles 8,, f,, 0, constitute polar coordinates in
4-space.

The authors specify the projection directions in the
same way as object orientation. A single set of Euler
angles specifies the orientation of both eye, and eye,
because we can think of the two lines from the origin
to eye, and eye, as the w- and z-axes of a rigid object.
Thus, the projection is determined by 0 =(4,, ..., 8,)
and by the pair r = (r,, r,} of reciprocal distances of eye,
and eye,. .

We explain how to interpret images for certain
positions of eye, and eye,. Consider a bracket of
nonuniform material density that is divided into cubic
elements by a grid of planes x = constant, y = constant,
z = constant, where the w-value represents the density.
The ‘planes’ in the grid are actually 2-surfaces in
4-space. In order to facilitate understanding the
different situations, Figure 2 shows a companion
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Figure 2. Square plate projected into a line. (a) Viewing

positions. {(b) Eye; at B, eye, at A. (c) Eye, at A, eye, at B.
{d) Eyc; at A, eye, at C. (e) Eye, al D, eye, al E.

example of a surface in 3-space that is projected into
a line. In this companion example, a square plate of
nonuniform material density is shown, where the
z-value represents density.

1. By ignoring the w-values, a normal 3D image is to
be obtained. Set r=1(0, a) and 8 =10, 0, 0, a,, x,, 0).
By varying o, %, and a we obtain the usual 2D
pictures of the 3D object {Colour Plate 1(a)). Note
that it is still possible to see the w-value on the
boundary of the 3D object using a colour scale (Plate
1(b}). Moreover, the same effect can be achieved
by setting 8 =1(a,, o, 0, 0, 0, 0) and r=(0, a).
Compare Figure 2(b).

2. Assume that 8 = (e, 0, +7/2,0,0,0and r={F a,
0). Then we obtain the same basic 2D image as
before because of the exchanged eye, and eye,
positions. However, the w-value displayed through
colour is the maximum, or the minimum,’ of all
w-values on a line through the bracket from eye,.
The situation is analogous to looking at a mountain
from atop (Colour Plate 1{c)). The base of the
mountain is the projected bracket shape, and the
height is the w-vaiue. Comnpare Figure 2(c).

3. Once we have generated the picture of {2), the
isosurface (w = constant) can be obtained by
z-clipping {Plate1{d)). The isosurface is not displayed
explicitly but implied by the curves that are the
intersection of the isosurface with the grid surfaces.
These intersection curves would have the same
shape if they were displayed in Colour Plate 1(b).

4. The 3D image implied by the picture of (2} can also
be seen from other directions, with 0=(a,, &,
+x/2, f,, B2, 0)and r=1{F a b). Using the analogy
of the mountain, we fix the base and height of the
mountain {corresponding to the first projection) but
view it from a different direction. Colour Plates 1{e)
and 1(f) show the cases f§,=n/4 and f§,=mn/2.
Compare Figure 2(d).

5. Because & only rotates the 2D image on the screen,
we have the most general case with 0 =(a,, ., o,
8., B., 0)and r=({a, b), When a, is varied from 0 to
+ 7/2, intermediate w-values are seen. The situation
is analogous to viewing the mountain from different

t Approximately if a # 0.
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perspectives, except that now the shape of the
mountain changes as well, because of the 4D mation.
In Colour Plate 1(g) only three surfaces in the
grid, namely x = constant,, y= constant,, and
z = constant,, are displayed. Compare Figure 2{e).

SILHOUETTES AND SURFACE NORMALS
UNDER PROJECTICN

[n this section the authors discuss two related issues:
silhouelle points and the normals of 2-surfaces under
projection.

Silhouette points

Recall from the first section that silhouette points are
characteristic image features that provide important
shape information. In some applications ane would like
to examine the silhouette curve belonging to a
particular projection from a different view. Silhouettes
should also be taken into account when calculating
the normal of the projected 2-surfaces. Thus we give
methods for determining the silhouettes explicitly,
without inferring them from a projected image.

We define silhouette points of a 2-surface with
respect to a projection as those nonsingular points on
it whose tangent plane is projected into a line or a
point. In the following we always assume that:

1. ¢y #— 9 is the first projection with the centre
on the w-axis. ¢, Z'—%#* is the combined
projection with the two centres on the w- and z-axes.

2. pis a nonsingular point on a 2-surface S, and is not

- mapped to infinity under the projection. t,, t, (n,,
n,) are two linearly independent tangent (normal)
vectors of S at p.

3. r, is a vector in the direction from p to the first
projection centre, r, is a vector in the direction from
p to the second projection centre.

A differentiable mapping ¢: %" — %™ will induce two
linear transformatians (see e.g.):

¢, (tangent vector to y)=tangent vector to ¢oy
¢ (normal vector to f) = normal vector to fog

where 7:# — %" is a curve in the domain of ¢, and
f:@&" = is a function on the range of ¢. The matrix
forms of the two linear transformations ¢, and ¢ are
the Jacobian matrix J(¢) and its transpose j(¢),
respectively.

femma 1

{a) The null space of ¢,,, namely ¢, '(0), is span(r,).
(b) Thenullspace of ¢,,, namely ¢ 5. (0}, is span (r, r,).

This can be verified by means of the Jacobian
matrices.

Proposition 1

(a) pis asilhouette point with respect to ¢, if and only
if t;, t,, ry are linearly dependent.
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(b) p is a silhouette point with respect to ¢, if and
only if t;, t,, 1y, r, are linearly dependent,

(c) Let m,, m, be two linearly independent vectors in
the plane orthogonal to the plane span (r,, ry), then
p is a silhouette point with respect to ¢, if and
only if n;, n,, m,, m, are linearly dependent.

Proof: (a) and (b) are similar and so only the proof of
{(b) is given as follows. First we assume thatt,, t,, r,, 1
are linearly dependent, and so .t + ot, + ey, + 22,5, = 0
where at least one of «, and «, is not zero. Applying
the linear transformation ¢, we get a,¢,. (t,)+
o, ¢h,, (1,) = 0. That means the tangent plane is mapped
onto a line which may degenerate into a point, and so p
i5 a silhouette point. Conversely, assume that p is a
silhouette point. Then the two vectors ¢, (L) and
¢, (1,) are either zero or parallel. In either case we have
a6, (4} + aycha, (1)) = O with &,0, # 0. By Lemma 1(b)
we get o4 + ayt, + r =0 where r is any vector in span
(r,, 1) e by, t, 1, 1y are linearly dependent.

(¢} itis sufficient to prove that t,, t,, r,, 1, are linearly
independent if and only if n,, n,, m,, m, are linearly
independent. Assuming that t;, t,, r, r; are linearly
independent, they form a base of £2". Then both r, and
n, are linear combinations of r,, r,, and both m, and
m, are linear combinations of t,, t,. Therefore n,, n,,
m,, m, must be linearly independent. The converse
direction fs symmetric. O

Thus the silhouette point of S with respect to ¢, is
determined by r,-n, =0, r;-n, = 0. Together with the
equations for §, the solution is usually a 0-dimensional
set. The silhouette point of § with respect to ¢,
is determined by det(t,, t,, r,, r;} =0, or equivalently
by det(n,, n,, m,, m,) = 0. Here, the solution is usually
a T-dimensional set called the silhouette curve.

Surface normals

In 3D graphics, illumination and shading of surfaces is
computed from the surface normal and the light
directions. Since a 2-surface in 4-space has two
independent normal directions, the generalization of
3D illumination models to 4-space is more complicated
than illuminating the 3D image of the 2-surface after
the first projection step, using standard methods.
Furthermore, the critical problem in 4D visualization is
to gain insight into the properties of the first projection
step, from 4-space to 3-space. Therefore, we obtain
maximum information about the shape of the 3D
image when shading in 3-space, and can concentrate
on understanding the first projection step.

One way to find the normal of the projected
2-surface is to calculate it from the equation
representing the projected 2-surface. Another way is
to calculate the normal directly from the tangent or
normal plane of the 2-surface before projection. The
latter is usually more efficient because the derivation
of the equation of the projected 2-surface could be
expensive®.

If the 2-surface is in parametric form and so the
tangent vectors are directly available, it is easy to
calculate the normal vector i of the projected 2-surface
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by first transforming the tanmgent vectors and then
applying the cross product:

n =g, () x ¢, (L}

If the 2-surface is in implicit form and so the normal
vectors are directly available, we can first use the cross
product in &' to find the tangent vectors and then
follow the same procedure as that for parametric
2-surfaces.

Let i, j, k., [ be the base vectors of 227, and a, b, ¢
be three vectors where a={a,, a,, a,, a,)" and so on.
The cross product & is defined as:

Pk
a F: | a d,..

' b, )= x y z [
®@b o=, b, b, b,
G C)' G w

From linear algebra we know that ®f{a, b, c) is
orthogonal to the subspace span(a, b, ¢} if a, b, c are
linearly independent. From two normal base vectors n,
and n, we can find two tangent base vectors t, and t,,
and vice versa, as follows. Given n, and n,, choose any
two vectors a and b such that n,, n,, a, b are linearly
independent. A base of the tangent space is then

t,=®I(n,, n, a), t,=@&in,, ny; b)

A more efficient way is to find the normal of the
project 2-surface directly from the two normal vectors
without calculating the tangent vectors first. Define n:
A'— R as the natural projection given by =(x, y, z,
wi=(x v, 2).

Proposition 2

Suppose that p is a nonsingular, nonsilhouette point
of S with respect to ¢),. Let n=oan, + fn, satisfy
n'r,=0 Then =n(n) is the normal vector of the
projected 2-surface at point ¢,{p).

Proof: Assume that n is the normal vector of the
projected 2-surface at the point ¢,(p). From the
Jacobian matrix J(¢h,) we know that z{¢3(n)} is parallel
to n. It suffices to show that n as defined above is
parallel to ¢5(n) in 22°. The vector i satisfies

n-¢, t)=0, n- ¢, 1,)=0 n-¢, (rh)=0

The last equation is actually satisfied when n is any
vector in #°. These three equations are equivalent to

$ilp)-t,=0, ¢n)t,=0 Hin)r,=0

Since p is a nonsilhouette point, t,, t,, r, are linearly
independent by Proposition 1(a). Hence n is parallel to

@i (n). O

IMPLEMENTATION AND EFFICIENCY
CONSIDERATIONS

We have implemented an interactive system version
on Silicon Graphics Personal IRIS workstations. Assuming
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that a 2-surface has been preprocessed into 1200 4D
polygons, we achieve the following performance. If
eye,, the light sources, and the z-clipping plane are
moved, the screen can be updated at a rate of
approximately 10 frames per second. If eye, is moved,
however, the first projection stage must be recomputed
and the screen update rate is only about 4 frames per
second.

The implementation is as follows. The input
2-surfaces are first polygonalized by algebraic or space
subdivision methods (for example see'). The polygons
in 4-space are projected into 3-space and then fed into
the 3D graphics engine. The method of ‘polygonalization
before projection’ is more desirable than the method
of ‘projection before polygonalization” for interactive
display. Usually, polygonalization requires more
computation. Therefore, polygonalizing the 2-surface
as a preprocessing step means that a better response
can be obtained when changing the projection
parameters repeatedly. Moreover, polygonalization in
4-space can better account for the intrinsic geometric
properties of the 2-surface. Some of these properties
are distorted by the projection to 3-space.

Each vertex of the polygons in 4-space is associated
with two normal vectors or two tangent vectors,
depending on the original specilication of the 2-surface
and the chosen method of palygonalization. The first
projection of polygons and the calculation of normal
vectars are done by software. The result is saved and
recalculated only when necessary. For instance, when
the user moves eye,, light sources or the z-clipping
planes, only the second projection and the colouring
are affected and are handled efficiently by hardware.
In this way, a better average response is achieved
because usually after one motion of eye, several
adjustments of eye, are needed to make a {ull
inspection of the 3D image.

Hidden surface removal and z-clipping are almost
standard techniques for 3D graphics. These techniques
are not hard to extend to 4D graphics. However, since
there is no hardware support, implementation by
software seems too slow to be acceptable for
interactive display. If all objects to be displayed are
2-surfaces it is not necessary to implement the 4D
counterpart of hidden surface removal. Likewise, the
4D counterpart of z-clipping is also avoided for
efficiency consideration. It can be simulated in part by
exchanging eye, and eye, and using z-clipping. See th
second section, above. '

EXAMPLES

Examples illustrating some of the applications of our
4D visualization system are given. The authors have
already discussed viewing a bracket with nonuniform
material properties in Section 2. We add to this
application an interpretation of the envelope theorem
from differential geometry and a brief sketch of collision
detection and analysis.

Offset curves

Given a curve flx, y}=0 in 4% its ofiset curve by
distance r>0 can be formulated by the envelope
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method®” as a set of equations:

g —uf+ly—vi—ri=
flu, vI=0
C: V.8 =0

where

_{dg dgY
m%%ﬂ

(3 3y
Ao du

If the parametric form of the curve [ is available, the
set of equations can be simplified as:

h: {x—ull)P+ly—v)? —r*=0
C: x—ulW O +y —vOV() =0

Note that the condition C' is equivalent to dh/dt=0.
If the greatest common divisor ¢{t) = GCD{u'(t), v' (1)}
is not a constant, the condition C' can be further
simplified as":

C" (x—u(plr 4y —vithq{t) =0
where

{t)—w t —w
P ol i 0

An implicit equation for the offset curve can be
determined by the resultant method®, or using Grobner
bases’. The offset curve can also be traced numerically
in #2* or #* by the method described in’.

It is important to note the following points about
the envelope method for formulating offsets:

1. The offset curve may have cusps and/or self-
intersections in the (x, y)-plane (see Figure 3{a}). But
the singularities often disappear when the curve is
traced in higher dimensional space.

2. The equations may describe additional points which
have a distance r from the singular points on the
curve f {see Figure 3(b}).

\\ 'A x

a b

Figure 3. Curves (a) y —x*=0 and (b) y' —x'=0 and
their ofiset curves by 1
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It has been attempted to explain these phenomena
by means of 2-surface visualization. The equations g = 0
and =0 are two 3-surfaces in (x, y, u, v}-space and
their intersection § is a 2-surface. Moreover, at the
point p=(x, y, u, v) on S, the two normals are:

n, = Vglp) ={2(x — u), 2y —v), —2(x — u),
=2y — vy

ar oy
., = ! — 0’ ), ——, —
m, = Vi{p) ( 0 Ew av)

They are linearly independent as long as n, is a nonzero
vector since (x — u) and (y — v} cannot be both zero.
The condition C can be rewritten as det(i, j, n,, n,) = 0.
If p is a nonsingular point on S, by Proposition 1 {c) it
is a silhouette point with respect to an orthographic
projection with two centres along the u- and v-axes.
The sithouette points form a curve on the tubular surface
5 in 22'. In Colour Plates 2(a) and 2(b} we show the
2-surface 5 and the silhouette curve corresponding to
the offset curve in Figure 3(a). In £’ the curve is smooth
without cusps or self-intersections, as we can see in
Colour Plate 2(b) from a different viewing direction.

Alternatively, if p is a singular point, then n, and n,
are linearly dependent, and so n, must be a zero vector.
Surely condition C is satisfied, but according to our
definition they are not silhouettes. They are exactly the
additional points described above as the second
phenomenon. In Colour Plates 2{c) and 2(d) the
2-surface 5 and the silhouette curve corresponding to
the ofiset curve in Figure 3(b) are shown irom different
viewing directions. The silhouette curves are still
smooth without cusps or self-intersections. But the
2-surface is not a smooth tube. The singular points form
a circle corresponding to the dashed circle in Figure
3(b).

If the curve f has a parametric form, the offset curve
can be traced in (x, y, t)-space. The two equations h =0
and 0h/0t =0 are two surfaces and their intersection
i5 a curve. Note that dh/dt=0 is equivalent to
Vh -k = 0. This means that the intersection curve is the
silhouette on the surface h with respect to an
orthographic projection along the t-axis. But the surface
h=0is smooth without any singular points because
dh/0dx and dh/dy cannot be zero simultaneously and
so Vh is always a nonzero vector. The dashed circle in
Figure 3(b} is actually another branch of the sithouette
curve as shown in Colour Plates 2(e) and 2(f).

If the greatest common divisor ¢h{t) is not a constant,
the condition Vh-k =0 is equivalent to:

AOx — ultpt) + ly — vi)g(D] =0

The factor ¢(t) =0 represents those silhouette curve
branches that are circles resulting from intersecting the
tubular surface h = 0 with the planes ¢ = ¢, perpendicular
to the t-axis, where t/s are the roots of ¢(t). The other
factor is the same as condition C”, and represents the
silhouette curve branches corresponding to the offset
curve,
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Collision detection and analysis

The advantage of using 4D geometry to deal with the
collision detection problem has been explained in>™.
Briefly, we can extrude moving 3D objects into (x, y, z,
t)}-space. Two moving objects collide if and only if the
intersection of their extrusions is nonempty.

3D objects are bounded by surfaces in 3-space. The
extrusion of such a surface is a 3-surface in 4-space.
The intersection of two 3-surfaces is a 2-surface and
can be examined by our system. Assume that the
2-surface is nonempty. We will find the initial colliding
point, i.e. the point p on the 2-surface with the smallest
value of t. Assuming p is a nonsingular point of the
2-surface, the natural projections of the two normals
at p into (x, y, z)-subspace are parallel. This condition
often determines a 0-dimensional solution set on the
Z-surface. It is usually too difficult to solve the nonlinear
equations describing these points. By relaxing the
condition, one may use numerical methods such as
curve tracing. By Proposition T(c), p must be on the
silhouette curve of the 2-surface with respect to any
orthographic projection with two centres both inside
(x, y, z)-subspace.

Colour Plate 3 shows a moving cylinder’s intersects
with a moving sphere. The axis of the cylinder and
the centre of the sphere pass through the origin
at t =0. The curves on the 2-surface are the silhouette
curve branches with respect to the orthographic
projection with two centres along the x-, y- or z-axes
but now seen from different viewpoints. Colour Plate
3{a) shows the case where the cylinder and the sphere
have the same radius. Since eye,’s position is just a
little off the t-axis, the 2-surface resembles the sweep
of the intersecting curve in {x, y, z)-subspace. Colour
Plate 3{b) shows the case where the cylinder has the
larger radius. Note that the 2-surface has two separate
components. Colour Plate 3(c} shows the case where
the sphere has the larger radius. Note that although the
2-surface is connected, the silhouette curve branches
can be separated.
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Colour plates

Some techniques for visualizing surfaces in four-dimensional space

C M Hoffmann and J Zhou

Colour Plate 1(a). Bracket viewed
from 8 =10, 0, 0, 45, 60, 0) degrees
and r =10, 0}

Colour Plate 1(d). Bracket in {c) cut
by z-clipping plane to display

isosurface w = constant

Colour Plate 1{g). Bracket viewed
from 8 = (45, 45, 45, 105, 90, 0) and
r=1(0, 0). Only three surfaces in
grid: x = constant,, y = constant,
and z=constant, are displayed.
Red, orange, green and blue lines
are projected x-, y-, z- and w-axes
respectively

Colour Plate 1(b). Bracket viewed
from same directions as {a} but
shaded by colour scale representing
w-values

Colour Plate 1(e). 3D image implied
by (c) seen from another direction,
with 8 = (45, 60, 90, —75, 45, 0} and
r=1{0, 0)
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Colour Plate 2{a). Offset curve of
y —x*=0 traced in 4-space, and
projected orthographically into (x,
y)-plane by 8 =1(0,0,0,0,0,0,) and
r=1(0, 0)
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Coalour Plate 1(c). Bracket viewed
from 0 =1(45, 60, 90, 0, 0, 0) and
r = (0, 0); positions of eye, and eye,
are exchanged from (b)

Colour Plate 1(f}. 3D image implied
by (c) is seen from 8 = {45, &0, 90,
—75,90,0) and r=1(0, 0}
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Colour Plate 2(b). Offset curve in

(a) viewed from & = (45, 105, 45, 75,
165, 0) and r={0, 0)
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Colour plates

Colour Plate 2(c). Offset curve of
y'—x'=0 traced in 4-space, and
projected orthographically into (x,
y)-plane
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Colour Plate 2{f). Ofiset curve in {e)
viewed from (=1(0, 0, 0, —40, 60,
0) and r=(0, 0.04)
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Colour Plate 2{d). Offset curve in
(c) viewed from (} = {45, 40, 60, 105,
75, 0} and r= (0, 0.04),
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Colour Plate 3ia). Intersection of
cylinder and moving sphere with
the same radius, viewed from 0 = (0,
18, 9, 120, 75, 0) and r=1(0, 0.1),

Vertical blue line is the t-axis
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Colour Plate 3(c). Cylinder has

smaller radius, viewed from @ = (0,
—15,123,120,90, 0) and r =1(0, 0.1)
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Colour Plate 2{e). Offset curve in (c)
traced in 3-space, and projected
orthographically into (x, y)-plane
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Colour Plate 3{b}). Cylinder has
larger radius, viewed from & = {0, 30,
105, — 705, 30, 0) and r={0, 0.1}
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A relational graphical editing
method for PCB design

Shi Kaijian and Sun Jian

PCB design is currently an essential part of the process
ol manulfacturing electronic equipment, and many CAD
systemns have been developed to facilitate this design
process'*** For all these systems the PCB Editor is an
important and inevitable component because aulomatic
routers usually have a few simple control strategies for
routing’. In many cases they cannol produce satisfactory
PCB design and existing automatic routing methods
cannot guarantee 100 % connection in practice, although
some of them are successfuf in theory.

PCB design, praphical edit

As the PCB edit process is so important in PCB design,
which itself is a fundamental part of electronic equipmaent
design, an improvement in this area would be valuable.
For this reason, an investigation of PCB edit process has
been undertaken which leads to a new PCB edit method
— Relational Graphics PCB Edit method. In the paper,
the principle of this method is described; the algorithmic
description is provided; and some considerations about
editing with the new method are discussed. The method
is capable of performing PCB edit operations auto-
matically wherever necessary to keep the PCB layout
correct, and of avoiding edit errors by verifying connection
completeness and detecting net conilict. The PCB edit
process with this method is more convenient and less
error prone than conventional ones, since the designer
is relieved of the burden of many tedious operations
for editing a set of relative lines since there is a single
fine edit. These editing operations, which constitute a
good part of PCB edit effort, are automatically taken
care of by the proposed method.

PRINCIPLE OF RELATIONAL GRAPHICS PCB
EDIT METHOD

To help the edit process, PCB design systems usually
provide various graphical edit facilities, by which users
can insert, delete, drag, or extend lines to meet their
requirements. However, all these facilities {which are
called conventional methods in the following part of
the paper) are not yet satisfactorily in use and the PCB
edit process is often tiresorme and subject to editing
Errors.

Electronic Engineering Laboratories, The University of Kent at
Canterbury, Kent CT2 7NZ, UK
Paper received: 10 April 1989. Revised: 14 March 1990
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Figure 7, PCB edit case

The authors’ research shows that the main cause of
the inconvenience in PCB edit process with the
conventional methods is that they treat PCB lines as
individual lines or lines having connections at their ends
only*.

Consider the situation of Figure 1.

(The solid lines represent a part of PCB before 1, is
edited. The broken lines show the situation after L, is
dragged down to the position of Lj,, and the relative
lines (L,—Ls) are edited accordingly.}

Suppose L, needs to be dragged down to L. To
keep the connection correct, L, and L, should be cut
downward. L, and 1, should be extended downward,
and L, should be erased while L; should be generated.
This is achieved in two ways using conventional
methods. One way is to drag L, down first and then,
one by one, to edit all the relevant lines by extending
or cutting them according to their situations. The other
way is to treat L, as a set of individual segments {Ly;}
and to drag them by their ends one after another until
every part of L, has been edited’. Neither way is
convenient because first, a geometric change of a line
demands additional edit operations from the user in
order to maintain correct connection, and second these
additional edit operations are tiresome and increase
the probability of edit errors.

PCB lines are connected with each other, grouping
into different connection sets with certain relationships
such as equality of electrical potentials®, and therefore,
they would be better represented as relational networks.
Based on this means of representation a sophisticated
graphics PCB editor could be built which would allow
the user to perform only an initial edit operation and
leave all consequent operations for modifying relevant
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