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Extrusion is a basic operation allowing the generation 
of higher intrinsic dimension polyhedra. The paper gives 
closed formulas both to generate a ( d + 1)-dimensional 
polyhedron obtained by affine extrusion o[ a (d)- 
dimensional polyhedron, and to generate a polyhedral 
approximation of the curved solid generated by rotational 
extrusion. Algorithms for the boundary evaluation when 
a decompositive representation is given are also discussed. 

The representation used in the paper, based on 
simplicial complexes, is general and simple, and allows 
us to represent nonconvex, unconnected, unoriented, 
nonmanifold and unbounded linear polyhedra. A 
simplicial complex triangulating the extruded polyhedron 
is generated by independently extruding the simplices 
of the input object. The approach is very efficient because 
no a posteriori triangulation of the extruded polyhedron 
is required; furthermore, both the underlying complex 
and the adjacencies between cells are calculated by using 
closed formulas. 

solid modelling, polyhedra, multidimensional modelling 

Multidimensionality is a new frontier for computer 
graphics. New needs for multidimensional visualization 
and manipulation of higher dimensional objects are in 
fact quickly emerging from various areas, specifically 
in the fields of statistical graphics, scientific visualization, 
modelling and simulation, and robotics. For example, 
time was included as a variable to extend space 
partition representation ~2, and 4D solid methods were 
proposed for the solution of the collision detection 
problem 3. Furthermore, a new method has been recently 
discovered 4 to construct a polyhedral approximation 
of the free configuration space of mobile systems by 
using extrusion, projection and set operations in higher 
dimension.al spaces. In the present paper the authors 
aim to present a representation paradigm for high 
dimensional polyhedra based on welt-known tools from 
algebraic topology and to show that with this approach 
efficient and powerful algorithms for managing 

multidimensional objects can be devised. In particular, 
the paper gives closed formulas to: 

• generate a (d + 1 )-dimensionaipolyhedron obtained 
by linear affine extrusion of a d-dimensional poly- 
hedron; 

• generate a polyhedral approximation of the curved 
polyhedron generated by rotational extrusion; 

• evaluate the boundary of a given decompositive 
representation of a d-polyhedron. 

Simplicial complexes are largely used in the area of 
engineering design (finite element codes) but only rarely 
adopted in solid modelling and computer graphics. The 
'winged representation' used in the paper, based on 
simplicial complexes, is general and simple, and allows 
the representation of a large class of linear polyhedra. 
This representation can also linearly approximate curved 
polyhedra, can be used with nonregular polyhedra, 
which have subparts of different dimensions, and is 
suitable for implementing nonregu!arized set operations. 
In the three dimensional case it has been shown ~ that 
winged representations are space optimal in representing 
the topology of linearized approximations of curved 
polyhedra. 

Previous work 

Basic computer graphics techniques for the wire-frame 
display of d-dimensional objects have been exploited 
by the early works of Noll 6'7. Burton and Smith8 have 
described a hidden-line algorithm for higher-dimensional 
scenes. Armstrong and Burton 9 presented various 
graphical techniques based on cues for 'hyperdimen- 
sional' objects. Banchoff 1° discussed the real-time 
rendering of four dimensional objects and extends basic 
algorithms of computer graphics (like Gouraud?s 
shading) to 4D objects 11, Glassne r12 gives efficient 
techniques for ray tracing of animated scenes working 
in 4-dimensional space. 
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Putnam and Subrahmanyam 13 have given Boolean 
operators on d-dimensional solids. In their approach 
the representation of solids is done by recursively listing 
the boundary elements and their orientation, without 
explicit storage of adjacency information. Bieri and Nef ~4 
have described polyhedra with 'adjoined pyramids' 
associated to the boundary faces. Any pyramid is 
represented as a set of cells in the space partition 
induced by the set of the boundary hyperplanes. Each 
cell is described as a bit sequence whose length equates 
the number of boundary hyperplanes. Analogous 
representation of d-dimensional unconvex polyhedra 
is given by G0nther 1~ by using bit sequences. Rossignac 
and O'Connor TM are developing a powerful dimension 
independent representation for pointsets with internal 
structures and incomplete boundaries by using 
geometrical cell complexes, where each cell is a 
connected manifold. The 'winged representation' of 
d-dimensional polyhedra used in this paper, proposed 
by Cattani and Paoluzzi ~71~ and used in its 3D 
boundary version in the solid modeller Minerva 5, is 
based on the direct use of simplicial complexes and of 
their maximum order adjacencies. In the present paper 
we detail that approach by giving closed formulas to 
fully compute the representation of extruded objects. 

Preview 
The paper is organized as follows. The second section 
introduces basic concepts about simplices and simplicial 
complexes, the definition and some properties of the 
'winged' representation of a simplicial complex. It is 
also shown that the winged representation can be 
considered a paradigm for (linear) solid modelling, as 
it allows for a unified treatment of decompositive, 
boundary, sweep and hierarchical representations of 
(possibly unconnected, unlimited, nonconvex, non- 
manifold, unoriented) polyhedra. The third section 
illustrates the d-dimensional interpretation of the 
extrusion operation, used to build higher dimensional 
polyhedra. Extrusion can be regarded as a special case 
of the join operation, which plays a central role in 
algebraic topology. In the third section it is first given 
a closed combinatorial formula to generate a simplicial 
complex triangulating the (d+  1)-polyhedral 'tube' 
generated by extruding a simplex. A simplicial complex 
triangulating an extruded polyhedron is then generated 
by independently extruding the various simplices of a 
complex associated to the input polyhedron. The 
approach is very efficient because no a posteriori 
triangulation of the extruded polyhedron is required. 
The shown formulas for affine (linear) extrusion are 
closed over the set of winged representations of 
polyhedra-with-boundary, and can be therefore applied 
to any decompositive representation. The fourth 
section introduces the polyhedral approximation of 
rotational extrusion by using any desired number h of 
affine (linear) steps. The fifth section discusses 
algorithms for the boundary evaluation and gives a 
formula relating the size of the boundary of an extruded 
polyhedron with the size of decompositive and 
boundary representation of the generating polyhedron. 

REPRESENTATION SCHEME 
In the paper the authors make use of a solid 
representation based on a simplicial decomposition of 
the interior of the object or of its boundary. A 
d-dimensional simplex is simply a d-dimensional 
triangle, which contains d + 1 vertices. For example, a 
1-dimensional simplex is a straight line segment, and a 
3-dimensional simplex is a tetrahedron. 

The point set generated by the convex combination 
of any proper subset of vertices is called a proper 'face'. 
So any subsets of three vertices from a tetrahedron 
generates a 2D face (triangle); any subset of two vertices 
generates a 1D face (edge); any subset of one vertex 
generates a 0-dimensional face (vertex). Note that the 
number of faces of a single tetrahedron is therefore 

( ~ )  + ( ~ )  + ( ~ )  = 2 4 -  2 (see Figure 1). A simp licial 

complex is a set of simplices which can be considered 
as a 'well-formed triangulation'. Some examples of sets 
of simplices which are not simplicial complexes are 
given in Figure 2. 

In the following the authors recall some definitions TM 

with a slightly different notation. 

Simplices and complexes 
A d-simplex ~ c .~n is the convex combination of d + 1 
affinely independent points, called vertices. The set { v0, 
vl . . . . .  Vd} of vertices is called the 0-skeleton of the 
simplex. The s-simplex generated from any subset of 
s + 1 vertices of a d-simplex is called an s-face. 

A (simplicial) complex is a set of simplices ~ verifying 
the following conditions: (a)if (~ ~ ~_,, then any face of 

Figure 1. 3-D simplex (a tetrahedron) and its faces 

a b 

Figure 2. Two sets of simplices which are not simplicial 
complexes. (a) The intersection of simplices is not a 
common face. ( b ) 5implices overlap 
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c~ belongs to ~; (b) if ~,t~,~,, then either o- rh~-  ~ ,  
or o- rh t is a face of o" and of ~. The order of a complex 
is the maximum order of its simplices. A complex £"~ 
of order d is also called a d-complex. A d-complex is 
regular if each simplex is a face of a d-simplex. Two 
simplices ~7~ and ~7~ in a complex 2: are s-adjacent if 
they have a common s-face; they are s-connected il 
a sequence of simplices in ~ exists, beginning with G. 
and ending with G~, such that any two successive lerms 
of the sequence are s-adjacent. This sequence is called 
a simplicial s-chain. We denote as K ~'', 0 ~< s ~< d, the 
s-skeleton, defined as the set of the s-faces of ~" '~ 

Geometric carrier [~:] = uzo- is the point set union 
of simplices in a complex ~. A linear d-polyhedron 
P'~) c .~'} coincides with the geometric carrier of a 
simplicial d-complex, and we write P"~'=[2:'~'I. A 
polyhedron is regular if the associated complex is 
regular. 

The boundary ~tP '~ of a regular d-polyhedron 
P':~=[)-:/~] is the geometric carrier of a closed 
(d-1) -complex whose (d-1)-simpl ices are faces of 
exactly one d-simplex in ~,d). Notice that ~P(~ = J:~. 

An ordering of the 0-skeleton implies an orientation 
of a simplex, according to the even or odd permutation 
class of the 0-skeleton. The two opposite orientations 
will be denoted as + ~7 and o-. Two adjacent simplices 
are coherently oriented when their common face* has 
opposite orientations. A complex is orientable when all 
its simplices can be coherently oriented. The oriented 
s-faces of the d-simplex o-~ = + {v~ . . . . .  v~ ~) are given 
by the formula: 

G~ (-- lY(¢~ ( v '~ ) ) ,  O < ~ i < , d  (1' 

where c7~ and v~ denote the i-th face and the i-th vertex 
of ~7~, respectively, and where the minus sign denotes 
set subtraction. 

Winged representation 
In solid modelling one is usually interested in regular 
d-polyhedra. In this case the set K ~ of maximum order 
simplices is a complete representation of a polyhedron, 
since any other skeleton can be derived from K '~ by 
repeated application of the equation (1). K ~ alone is 
a complete representation, but it takes an O(IK'° ]~ 
time to answer any topological query. It is useful to 
enrich the representation by storing the highest order 
adjacencies. In such a way it becomes possible to 
traverse efficiently the polyhedron and answer quenes 
about the adjacency of topology elements in O(q) time, 
where q is the size of the query output. 

Def in i t ion  "1 The winged representation ~/~(ff~) of a 
polyhedron P ~ c  ~@~ is a pair (K l~l, aft), where K ~ is 
the d-skeleton of P, and a~': K~-+ (K~lu 1 )  ~+~ is an 
adjacency function which associates each d-simplex 
~ K ~ with the (d + 1)-tuple of d-simplices that are 
( d -  1 )-adjacent to it. 

" By now, face (without prefix) of a d-simplex stands for (d - 1 l-face. 

11 G~ (, '~':, ..... v~"),, tile~ ~J i s  .... ,:, :: 
where either dry. = _L or d,. r~ d -: oi. artd the ~ymb~ 
_L stands for 'undefined ~. 1-he firsl notation means that 
o-~, has no adjacent simplex along its lace ai:. With abuse 
c,f notation we use .~/(G'.', t~ i~Micate ~ 1~; ~i~, 
we can write ~r~/'o-,. = { .~/t.G:' . : / iGi ' : : ; .  [a{i~-:~, 
simplex in ~ '(P'~:) will be theref(~re represented by using 
d + 1 pointers to its vertices and {]-F 1 pointers t~) the 
adjacent d-simplices (see Figure {:,. tf iK:" !  .... !; and 
tK'"I = V, then the size of the ~inged representation 
://(P'"'), with P'~J' c :#", is 2{d -~ I~. ~ ;~\,. 

The winged representatioP, {an be considered a 
paradigm, because it allows for a unified treatment of 
various different representation schemes (see the 
taxonomy of representations by' Requicha ~ or Mantyla"°). 
This is a direct consequence of the use of simplicial 
complexes. In particular the following can be shown. 

Boundary representation 
A winged boundary representauon ~s a two-step 
mapping between the set of d-polyhedra-with-boundarv. 
the set of (d 1)-polyhedra-without-boundary and the 
set of ( d -  1Pcomplexes. Both mappings are one-to- 
many so that the resulting representation is complete 
but not unique, g d-polyhedron P" is represented as 
~//'(~P"J). Some kind ofcanonical  representation can 
be easily defined. Non-manifold polyhedra are 
represented as pseudo-manifolds, where any boundary 
(d--2)-face eventually duplicated is contained only 
in two boundary ( d -  1 -faces tsee Figure ~; 

Decompositive representation 
Winged decompositive representations are largely used 
in this paper. P" in ~n is represented as one of the 
complexes ~'" such that [~Z 1~;] =ff"~. Triangulated 
decompositwe representations are better than boundary 
triangulated ones from many points of view: the authors 
argue that decompositive representations have smaller 
size than boundary ones with the same vertices tthis 
can be easily shown n some special cases,; set 
operations and domain ntegration are simpler: 
decomposltive representations (:an directly interface 
finite element codes: finally, many algorithms over 
decomposltive representations can be easily parallelized. 

Sweeping representation 
In this paper the authors show that the winged 
representation ~s a natural way to represent the (d + 1 ~- 
polyhedron obtained by extruding a d-polyhedron. 
Exact rotationally extruded polyhedra are outside o~ 
the domain of the representation, but they can be 
linearly approximated, as is usual in low dimensional 
graphics, by the polyhedron obtained by the iterative 
application of a suitable affine transformation. 

Hierarchical representation 
In many geometrical computations, e.g. in computing 
the intersections or the visible contours of polyhedral 
approximations of curved surfaces, as well as in using 
muttigrid methods for field problems over geometrical 
models, ~t is useful to use hierarchical representations, 
in order to improve locally the computations where it 

42 computer-aided design 



? (prlntpol p) 

Intrinsic dimension : 2 
E-space dimension : 2 
Simplices number : 2 

Vertices number : 5 b e 

B : (I i) 

C : (7/2 9/2) 

D : (6 8) 

E : (1 8) 
S0 : +(A C B) (0 0 0) ea eG " 

Sl : +(C D E) (0 0 0) 

? (printpol (boundary 

P)) 
Intrinsic dimension : 1 

E-space dimension : 2 

Simplices number : 6 

Vertices number : 5 b 
c 

B : (I I) 

C : (7/2 9/2) • 

g : (I 8) 

S0 : +(C B) (Sl 82) 

Sl : -(A B) (S0 S2) a 

82 : +(A C) (S0 Sl) 

S3 : +(D E) (S4 S5) 

84 : -(c E) (s3 S5) 

S5 : +(C D) (s3 S4) 

Figure 3. Winged representations of simple polyhedron 
P". Abow, : decompositive representation; below: 
boundary representation. Notice that object is nonmanifold. 
Simplices are scaled with respect to their centroid 

? (printpol p) 
Intrinslc dimension : 3 
E-space dimension : 3 
Simplices number : 6 

Vertices number : i0 

A0 : (6 1 0) 
B0 : (1 1 0) 

C0 : (7/2 9/2 0) 
DO : (6 8 0) 

E0 : (i 8 0) 
A01 : (6 3 2) 

B01 : (I 3 2) 
C01 : (7/2 13/2 2) 

D01 : (6 i0 2) 
E01 : (I i0 2) 

SO : +(A0 CO B0 A01) (SI 0 0 0} 
S1 : +(CO B0 A01 C01) ($2 0 0 SO) 

$2 : +(B0 A01 C01 B01) (0 0 0 SI) 
S3 : +(C0 DO E0 C01) (S4 0 0 0) 

$4 : +(DO E0 C01 D01) ($5 0 0 $3} 
$5 : +(E0 C01 D01 E01) (0 0 0 $4} 

bO bO1 eO eO1 

Figure 4. Winged decompositive representation of 
polyhedron ff ", obtained as the extrusion of the object 
in Figure 3 

is necessary, while maintaining one or more coarser 
related representations. This can be easily achieved by 
using an ordered set of complexes, where each complex 
Y.J~ is a refinement of a subcomplex (eventually 
unconnected) of ]]l~J' ~. Such a succession of triangulations 
can be implemented efficiently by using a slightly 
modified winged representation scheme, with a few 
more pointers for each d-simplex. In particular, each 
such simplex, while maintaining topological information 
relative to the complex to which it belongs, will also 
point to the higher level simplex ('parent' simplex) 
containing it, as well as to one of its 'sibling' simplices, 
whose set constitutes a decomposition (or a finer 
approximation) of the parent simplex. This simplicial 
thread can be implemented in many ways, to improve 

access efficiency as desired. Such a scheme (winged 
representation + some more pointers) can also be used 
to associate geometric directories to the representation, 
i.e. spatial indices (see, e.g. 2~) which allow efficient 
access to the complex elements whose intersection 
with a given space region is not empty. 

AFFINE EXTRUSION 

In this section we analyze the extrusion of a polyhedron, 
used as a basic operation in order to generate higher 
dimensional polyhedra. It is easy to see that (a) the 
extrusion p~t. t, of a regular polyhedron p~t~ is regular; 
(b) boundary points of p~t~ are mapped onto boundary 
points of W j+''. 

Preliminaries 

The point set generated by an extrusion operation over 
a polyhedron W/~= [Y/e)] c ,W"(d < n) is defined as the 
polyhedron p,0+~=[y;d+~,], where the simplices in 
X '°+" are generated by triangulating the convex 
combinations of corresponding simplices in ~,ld> and 
T,Y, (d~, under the conditions: (a) T is an invertible affine 
transformation of :~" and (b) 22 (~' and TY; ~ do not lie 
in the same affine subspace. 

Definition 2 If W ~' = [YYJ:'] c .#", T is an invertible affine 
transformation in ,~" and <% . . . . .  v~j, Tvo> is a simplex 
for each < v, . . . . .  v(t)> e K '~', then the extrusion of P<J) 
is the set 

. ' " +  ' =  sT(z'"') = { q: q = + I rp } 

where peY/(/~, 0~,fl ~> O, and ~ + fl = 1. 
Sr(YTJ~) is a (d+l)-dimensional object, as any 

qeS7(£ ~#) can be uniquely expressed as 0~p + (1--o:)Tp, 
and therefore is determined by the baricentric 
coordinates of p into the simplex to which it belongs, 
and by the parameter sc 

Definition 3 A (d + 1)-tube is the polyhedron St(a) , 
where a is a d-simplex. 

There follows a combinatorial rule generating a 
simplicial chain ~':(~+~(o-) which triangulates the 
( d +  1)-tube S~(G). The proof is given in Paoluzzi and 
Cattani '~. 

Theorem "I If a is a d-simplex, T is a suitable affine 
transformation of .°~"(d < n), then a simplicial chain 
triangulating ST(a) is 

0 ~ " + '  (o ") = {T,:T, = ( - - 1 ) ' " < v  . . . . . .  v , ,  r vo  . . . . .  - r v , ) ,  

i = 0 ,  d ~ . . . .  j (2) 

Example "/ A 0-simplex (point) generates a 1-tube 
(straight line segment), where a simplicial chain 
triangulating the tube has one 1-simplex; a l-simplex 
(straight line segment) gives a 2-tube (rectangle), where 
a simplicial chain triangulating the tube has two 
2-simplices; a 2-simplex (triangle) produces a 3-tube 
(wedge), where a simplicial chain triangulating the tube 
has three 3-simplices; a 3-simplex (tetrahedron) 
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generates a 4-tube, where a simplicial chain has four 
4-simplices, and so on. 

Example 2 The 5-tube generated by extruding a 
4-simplex 0-={vov~v2vsv~) is triangulated by the 
simplicial chain O~s,(~), where: 

f %= + {vo v, v~ v~ v~ Tvo} 
OIst(0-) = ~ = + <v~ v~ v4 Tv o Tv, Tv~} 

"r3= + {vs v 4 Tv o Tv~ Tv2 Tv~} 

"G= + {v4 Tvo Tv~ Tv~ Tv~ Tv4} 

The extrusion of a polyhedron ffa~ is efficiently 
obtained (a) by generating a set of simplicial chains 
{ Ola+ ~!(0-)}, where Otd+ ~(0-)triangulates S~(0-), the tube 
obtained by independently extruding 0-, 0- ~K ~, and (b) 
by 'gluing' the elements of such a set (i.e. resolving 
adjacencies between different chains), under suitable 
conditions on the representation ~//~(Pa~). Since the 
simplicial chain ~ + ~ ( 0 - )  contains 2(d + 1) vertices and 
d + 1 cells ((d + 1)-simplices), the polyhedron P~+~ = 
S~(YY ~) has 2V vertices and (d + 1 )S cells. 

C o m p u t i n g  ~ / / ( / ~ a + ~ ) )  f r o m  ~ / / ( P ( a ) )  

In this section the authors show how to compute a 
decompositive winged representation for an extruded 
polyhedron pl~+l~, starting from a decompositive 
winged representation of the input polyhedron pa~. As 
both the underlying complex and the explicit 
representation of the d-adjacencies in ~//~(p~+~l) are 
calculated by using closed formulas, the complexity is 
O(d~S), where S = I K~a~(ffa~) I. The resulting algorithm is 
also ~(d~S). In fact, there are (d + 1)S (d + 1 )-simplices 
in the generated triangulation of the output polyhedron, 
and (d + 2) d-adjacencies must be evaluated for each 
(d + 1)-simplex. 

Let p~a/= []~/d/], with IK'~'I -- s and p(,s+]i = S~(%ui,). It 
is not difficult to see that: 

(3) 

Notice that 

U o(d+ 1)(0-) (4) 
~ K  'm 

is the combinatorial union of simplicial complexes, but 
it is not necessarily a simplicial complex. In order to 
guarantee.that (4) is a simplicial complex, i.e. that the 
intersection of any pair of simplices is either empty or 
is a face for both simplices, we need a particular 
representation ~lT" (PIdl). 

Definition 4 A representation ~/r(pa~)_-(KI ~I, ~ ) i s  
well-ordered if 0-~ = ¢~ rh 0-i = --0-~, where rh denotes 
combinatorial intersection of O-skeletons, for each pair 
of ( d -  1)-adjacent simplices 0-,~i~K ~dl. 

We note that a representat~n~ ~s weJbordered 
depending on the choice of a su)[able permutatio~ )~r 
the 0-skeleton of each d-simple'< 

E×ample 3 Consider P'" := i}Z 4.i~ere ~ '  :-~ ': n%. ~ '~ 
The representation 

I • I x . ',' r; , ,= + { v . ,  vl, v , , r~,, _L, 4 ..... // .p.- } = . . . . . .  
.c~, + < , , ' ~ , v , ~ . . ~ .  i 

is coherentlv oriented but not well-ordered, because 
0"2----4-(v,, v , )  and 0-9= +('~ , v ), and not. as 
required, d o = {v~, v,]). A coherently oriented and 
well-ordered representation for p~.r is 

(o'~ = -~ {v, ,  v,, v , ,  ', ~-, ~-,, -~ t 
(6) 

Well-ordered representations plav a central role 
because of the following theorem 

Theorem 2 The set Y. ' * '  = ...... 0""* ' (o '~ is a 
simplicial complex if and only if ~//'(P~) is well-ordered. 

We can assume that representations are well-ordered. 
because the following closure property holds: 

Theorem 3 If ~qP~') is  well-ordered, then #.-.(fro ...... ). 
obtained by applying m extrusions to f fa is also 
well-ordered. 

In the following we give closed formulas ~or 
calculating the d-adjacencies in i/¢'~(/~°*-~ therefore 
making it possible to compute a winged representation 
for the extruded polyhedron (see Figure 6). We suppose 
that simplices in K ~ are ordered from c7,, to 0- . . . .  and 
that simplices in K ~+~ range from % to z~,,÷, . . . .  Hence 
the simplices in O"J+~'(cL,, are indexed as ~z ...... 
zn,~J--~ -~Jl ~see Figure 5). 

A formula which generates the d-adjacencies 
internal to the simplicial chain Ou~+~(cL~J is easy to 
write. We note that any simplex in the chain ~ except the 
first and the [astJ is adjacent to two other simplices. 
So we have: 

. 4 t z " ~ = : ~  . p ( d + l  < < . i ~ p ~ d + l  + d  1 

,~/(~,.+~t=z ~, p ( d + l ) +  l < ~ l < ~ p ( d + l ) + d  

d+l 0 

In the following we address the problem of computing 
the d-adjacencies between smlptices belonging to 
different chains. Such adjacencies are induced from 
the original (d--1)-adjacencies in ~¢r(ff~). Since the 
adjacency relation is symmetric, if ,~(0-~).= 0-q holds~ in 
~//-(pa~). then aJ(0-~) = 0-0 must also hold in ~Y/~(P ) for 
some k. Each of these two equations induces d 
adjacency values in ~(P°+I~/ .  

In order to explicitly generate the d-adjacenaes we 
define a function f : [ (p ,  h), ~q, k)}--*{( i ,  j)}a which 
produces an ordered sequence constituted by d index 
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Figure 5. For d = 3 and S = 2, this is the numbering o/ 
simplices in the two simplicial chains 0~ ' (  ~(~) and 0~ ' (  ~ )  

? (printpol (tsweep p ) )  
Intrinsic dimension : 4 
E-space dimension : 
Ein~p11ces number : 24 

Vertices number : 20 

A00 : (£ 1 0 0) 

BOO : (I 1 0 0) 

COO : (?/2 9/2 0 0) 
D00 : (6 8 0 0) 

E00 : (1 8 0 0) 
A010 : (6 3 2 0) 

B010 : (i 3 2 0) 
C010 : (7/2 13/2 2 0} 

D010 : (6 10 2 0} 
g010 : (I i0 2 0) 
A001 : (6 1 0 8) 
B001 : (i 1 0 8) 
C001 : (7/2 9/2 0 8) 
D001 : (6 8 0 8} 

E001 : (I 8 0 8) 
A0101 : (6 3 2 8) 

B0101 : (I 3 2 8) 
C0101 : (7/2 13/2 2 8) 
D0101 : (6 i0 2 8) 
EOI01 : (I 10 2 8) 
S0 : +(A00 C00 B00 A010 A001) (El 0 0 0 0) 
S1 : -(COO BOO A010 A001 C001) ($2 0 0 $4 SO) 
S2 : +(BOO A010 A001C001 B001) (S3 0 E5 0 El) 
S3 : -(A010 A001 C001 B001 A0101) (0 $6 0 0 S2) 
$4 : +(COO BOO A010 C010 C001) ($5 0 0 S1 0) 
$5 : -(B00 A010 C010 C001 B001) ($6 0 S2 $8 S4) 

$6 : +(A010 C010 C001 B001 A0101) ($7 S3 $9 0 $5) 
$7 : -(C010 C001 B001 A0101 C0101) (0 El0 0 0 $6) 
$8 : +(BOO AOI0 C010 B010 B001) ($9 0 0 $5 0) 
$9 : -(A010 C010 B010 B001A0101) (El0 0 $6 0 58) 

El0 : ÷(C010 B010 B001 A0101C0101) (Ell $7 0 0 S9) 
Eli : -(B010 B001 A0101 C0101 B0101} (0 0 0 0 El0) 
S12 : +(COO D00 £00 C010 C001) ($13 0 0 0 0) 

S13 : -(D00 EO0 C010 C001 D001) (S14 0 0 S16 S12) 
S14 : +(E00 COI0 C001D001 E001} (S15 0 S17 0 $13) 
S15 : -(C010 C001 D001E001 C0101) (0 S18 0 0 S14) 

S16 : +(D00 E00 C010 D010 D001) (S17 0 0 S13 0) 
S17 : -(E00 C010 D010 D001 E001} (S18 0 S14 $20 S16) 
S18 : ÷(C010 D010 D001 E001 C0101) (S19 S15 S21 0 S17) 

S19 : -(D010 D001E001 C0101D0101) (0 $22 0 0 S18) 
$20 : +(E00 C010 D010 E010 E001) ($21 0 0 S17 0) 
$21 : -(C010 D010 E010 E001 C0101) ($22 0 S18 0 $20) 
$22 : +(D010 ~010 E001 COl01 D0101) ($23 S19 0 0 $21) 
$23 : -(E010 E001 C0101 D0101 E0101) (0 0 0 0 522) 

Figure 6. Four dimensional image, under extrusion 
operation,  o / t h e  p o l y h e d r o n  ~t/~ (P ~ ~) s h o w n  in Figure 4 

pairs ((d + 1)-simplex, d-face). 

ffp, h ) = t  (il' 

[ (i~, 

S(p(d + 1) + 1, d) 
i,) (p(d + 1 ), h) 

h = 0  

l~<h~<d 
/ = 1  

/~) = { 
(il ~+2, d) /i , = 1  
(i~ 1+1, j~ ~ - l ) j ~  1>1 

2 <~ l <~ d 

(8) 

An analogous definition holds for t(q, k), by exchanging 
p, h with q, k. The d adjacencies in l(~(ff ~+~/) induced 

by a~/(o'~)= o'q are now given b y  

,~/(7:i~) ='Crl, (it, j ,)ef(p, h), (r~, .)el(q, k), 1 <, l<~d 
(9) 

G k For the d adjacencies induced by ~ / ( q )  = o'p the same 
formula holds, by exchanging p, h with q, k. For a 
boundary face O-p h in "#" (P~J~) we have .~/(o'~) = / ,  and 
it is sufficient to write 

0d(ri~) = _L, (i,, j~)e f(p, h), 1 <, I <~ d. (10) 

The formulas (7)(9)(10) completely solve the problem 
of computing the adjacency function ~ in ~(P{a+~)) 
with time and space complexity O(d~S). 

The polyhedron P~J+'~ which is obtained by means 
of m extrusion operations on p~U} c ~'~ (d + m ~< n) will 
have 2"Vvertices and (d + 1 ) . . .  (d + m)5 < (d + m)~S 
(d4- m)-simplices, where V and 5 are the numbers 
of vertices and simplices of P'~, respectively. The repre- 
sentation ~,(p,~+m}) has size O(2(d + m + 1 )(d + m)'S 
4- (n + m)2"V). 

Example 4 An m-dimensional hypercube (generated 
by independently extruding simplices) has size m[. Take 
a single point and apply to it a sequence of m 
translational extrusions. The resulting polyhedron is an 
m-dimensional hypercube, with I K<~(P<m') I - (0 + 1) 
... ( 0 + m ) - l = m ! .  

POLYHEDRAL APPROXIMATION OF 
ROTATIONAL EXTRUSION 

In linearly approximating a rotation with angle 0 by 
using h steps, an affine step transformation T~ 
depending on an angle c~ -0 /h  must be applied. In 
order to eliminate special cases and self-crossings, we 
represent a rotation of ~ "  1 as a transformation of ~ "  
composed of a rotation and a translation depending 
on the same parameter (see Figure 10). Without loss 
of generality, we can assume that the rotation is an 
elementary rotation in the x~x~ plane, i.e. is such that 
any point x in the coordinate plane xlx2 is transformed 
into a point Rx belonging to the same plane. More 
general rotations, where the rotation plane is not 
coordinate or does not contain the origin, can be 
obtained, as is usual in graphics, by composition of 
elementary affine transformations. The curve polyhedron 
~u- ,, obtained as rotational extrusion of p,d~= [~,u)] c 
.@" (n >d ,  n >~2), can be linearly approximated as 
/~(d*~, , h zid+l)l by a succession S,r~J+l)t =[k- ) i - - l - - i  ~.~"i ;, 1 <~i<,h, 
of suitable complexes, where ZJ + ~ is defined as follows. 

Under the previous assumptions, the step trans- 
formation T~ :;~'~ ~ .~" is: 

[ vT . . .  v~l '=  T~[vl . . .  v,]' (11) 

where 

t v~=v 1 cos ~ - - v  2 sin ~, 
v~ Vl sin 0~ + v 2 cos 0~, 
V* Vi, 

v,* v n 4- 0~, 

3 < , i < ~ n - - 1 ,  
(12) 
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The polyhedron / ~ d + 1 )  a linear approximation of 
P~÷~:', is defined as the union of a succession of 
(d + 1)-complexes obtained by iterative application of 
the step transformation T~. 

= S~(  ) 

~{(J+ 2l T y(d+ ~) 
i ~ - - ¢ ¢ ~ i - -  1 , 2<- .G i~h  

(13) 

f ~ l d  + t/ Another equivalent definition of ~ , ~ is: 

.~(d+l) ~ (~(d) ), l ~ i ~ h  
i ~ ~ T ~ i -  1 

Ytidl T ~(d, = ~-- i - .~,  l < ~ i ~ h - - 1  (14) 

Notice from the previous definitions that, in building a 
polyhedral approximation of a curved (rotational) 
polyhedron, extrusion and affine transformation 
commute. This is a well-known property in low 
dimensional graphics. In other words the result can be 
generated either with one extrusion operation and 
h - 1  affine transformations, or with h affine trans- 
formations and h extrusions. It is clear that the second 
construction is computationally more expensive. In the 
following we show how to connect the adjacent pairs of 
complexes in the succession {Y:I ~j+~:'t 

(]El"/ We remember that St:, ) is expressed as a set of 
simplicial chains @{"+~/(o-), o-eK ~"~. Their adjacencies 
internal to each step complex ~I ~+~ are known (can 
be determined by using the eq. (7) (9) (10)). In order 
to obtain a winged representation #"(/~"+~) of the 
polyhedral approximation of P'~÷ ~', the problem is now 
to glue together the corresponding tubes in adjacent 
'step' complexes ~+1~ and ,T_J +u l i  i + 1  • 

If IK~'[ = S, then there are S structures ~'~+ ~ in each 
~21"+~/ (1 >~ i>~ h), and consequently ( h - 1 ) 5  pairs of 
(d + 1)-chains must be glued together. It is sufficient 
to note that the final element of the ~"+l ' (~r) chain in 
the complex ,Y_,I ~+~ is adjacent to the starting element 
of the ~1"+1/(o-) chain in the complex Ylid++ ~1, and vice 
versa, for any o'e K ~ and for any pair of adjacent step 
complexes. 

At this point we must remember that any 
(d + 1 )-simplex r~ (0 ~< k ~ d) in ~ + ~ ( o - )  is d-adjacent 
to two elements inthe c ~ n ,  excel~t-the first and the last 
simplices (% and %, respectively). These two simplices 
have undefined adjacencies with the exterior of the 
chain (a~('c0 "+~) and a~'(r°), respectively). If the 
( d +  1)-simplices G (0~< k ~ d ) i n  the tubes ~(¢m) 
(0 ~< i ~< h - 1 ) (0 -G< m ~ S - 1 ) are ordered sequentially, 
then they give an ordered set of (d + 1 ). h • S elements: 
The simplex indexed by the triple (k, i, m)  will be 
positioned ~t the address p = k + m ( d  + 1 ) + iS(d + 1 ) 
in this ordering. In such a hypothesis the various chains 
can be glued together by setting the appropriate 
adjacencies as follows: 

d(l~'Od+ l,+d) = r(d+l)(14 ~1 

' ( d + l ) ( l + S ) ;  ~ " ~ l ( d + l ) + d  

/ = 0  . . . . .  S ( h - - 1 ) - - I  

(15) 

) 

Figure 7. Structure o i  the mnphc;a i  td  4- l ) - comp lex  
app rox ima t i ng  in three steus ( h - d ) t h e  rotat ional  
ext rus ion of P ~ wi th  S - ' 

where (d ± 1)( /+ 5)is obtained t~y grouDng terms Jn 
the explicit address expression (i ~ l l ( d  + 1 + IS - 1 - 
x ( d +  1). 

E x a m p l e 5  Let's start with P~ and 5 = 2 .  If h - - 3 w e  
obtain /~s)_ [Z l~u  Z~s~u ]~s~]. Each Y.~ consists of 2 
chains @~ r7 and each (E) ~ (o- contains 5 simptices. 
Figure 7 shows such a structure and the numbering of 
the first and the last simplex in each chain, as explained 
above. Formula (15)is rewritten a~ 

.cY'[T'~ _ j  -~ l 

~1"~,/ 2 '  - -  1" - 1  
/ = 0 . . .  ~ 16) 

and d-adjacencies between corresponding pairs of 
simplices in different step complexes are immediately 
corn puted : 

u 
.@(r~ )  = r,. . ~ / ( r  °) = r,~ . 4 ( r , ~ }  = r2~, 

. 4 ( T ~ )  = r2 

.4(r;~,) - r., .4(r~'~.) = r .  .rd(z~r, = r ~  

171 

It is easy to derive the following properties for the linear 
approximation/~J-1 of a rotational extrusion: (a)/~"* 
has exactly (h + 1 V vertices and (d 4- 1)h5 cells: (b) 
/~d +,,1 obtained with m rotational extrusions, each one 
approximated with h linear steps, contains ~h + 1)"~V 
vertices and (d + 1)h --. ( d +  m)hS cells: (c) the cetl 
number of /gJ+,, can be therefore expressed as 
O[(d + m)hhmS]. The topology representation of such a 
polyhedron has a size O[2(d + m) ~* ~h"S]. 

B O U N O A R Y  E V A L U A T I O N  

Boundary evaluation of a winged decompositive 
representation of a d-polyhedron P~ is very easy. First 
of all. notice that a direct representation of boundary 
faces is already explicitly embedded inthe decompositive 
winged scheme. In fact. for each _L value in the 
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adjacency tuples ,~/(o-~,), where o-~ is a d-simplex, the 
corresponding (d - 1 )-face of o-~ is a boundary face for 
Y ' ,  so that the skeleton K ~ ~(Sp{d~) can be evaluated 
in t ime proportional to (d + 1 )S. Some work is necessary 
to compute the adjacency function between ( d -  1)- 
faces in ~,p,d. At this point two different approaches 
can be taken. 

Simplex boundary 
The boundary of a d-dimensional simplex o" = + <v0, 
. . . .  v~> is the set of its ( d -1 ) - f aces :  

(?o-= [ o-,: o-, = ( -  1)'- ( o - -  < v,>), O<~i<~d} (18) 

We can immediately write a formula giving the 
adjacencies in the complex 90-: 

,rd(,~,) = ';i+ ~ 

z~¢ (o-i + 1 ) = o- i 
o<<.i<<, d, i < . j < . d - 1  (19) 

Example 6 Given the 4-simplex ~7, with winged 
representation Y I (o - )=  + <v0, v~, v2, v~, v4>, < 1 ,  / ,  
/ ,  / ,  i >, then we have the boundary complex: 

~(8o-) = { 
~o = + < v~, v~, v~, v~ >, < ~ ,  ~ ,  ~ ,  ~r~ > 

~ = - < ~o, ~e, v,, ~4 >, < ~o, ~e, ~ ,  < > 

~e = + < Vo, v~, v~, v~ >, < ~o, ~,, < ,  < > 

~, = - < V o ,  ~,, v~, ~ > ,  <~o, ~ ,  ~ ,  < >  

(2o) 

Complex boundary 
Two different methods can be given in order to evaluate 
the boundary ~p/d/ of a polyhedron P~) when a 
decomposit ive representation of it is given. 

Disjoint union of simplicial boundaries 
The first method computes 3~//'(8ff ~) by using a 
composit ion operation of the representations ~//"(c9o "~ 
for each adjacent pair %-~d), O_~/6K~d~. In fact, both the 
complex ~o -/a~ and the adjacency function ~&~ ~/: K~! ~ 
K ~, where K = K !~ ~(8o-/~!), are computable by using 
formulas (18)(19). Afterwards, the boundary complexes 
associated to two d-simplices o-p, ~q, which are adjacent 
in P~;, can be 'glued' together, by eliminating their 
common boundary (d - 1 )-face and by 'crossing' their 
( d -  1)-adjacencies (see Figure 8). Such a 'gluing and 
crossing' operation, which will be called sewing and 
denoted with the symbol ~+, can be performed as 
discussed in the following. 

Definition 5 The sewing of the winged representations 
of two simplicial complexes £h and ~,~ is the winged 
representation of the disjoint union of them: 

(21) 

~ a  ~ b  

Figure 8. (a) The decomposit ion of simple 3-polyhedron 
(stellated tetrahedron). (b) (c) (d) (e) Boundary 
evaluation steps. (f) Boundary of the object 

Let ~//.(p,t~) be given, where ,/~°'(o'l';)=o- q, and 
ef~(o '~)  ~ The  (d - 1 ) - s k e l e t o n  of t h e  . ~. = ~7~,, wi th  ¢I', = ~q" 

d i s jo in t  u n i o n  of t h e  b o u n d a r i e s  ~ ,  a n d  (1~7q is 

K '~t l'(~?op (~ ~o-q) = K ''j 1(~o" 9 w K "/ 1'(?o'~ t) -- { %-h~' 
I ~k ' l  

- -  ~ ~'~i.  (22) 
We want now to compute ~q/,t I ( G O ' p ( ~ ) ~ O ' q ) .  If  the 
(d -1 ) -ad jacenc ies  of the common faces in "//'(~r7 v) 
and "/l. (~0-~i) are expressed as" 

(23) 

.@,,t ~,(~7~t) = < ~/) . . . ..qrT ~' '> (24) 

then, in order to obtain .cd ,~ ~((?rTn@~rTq), it is 
sufficient: 

(a) to start with the union set of adlacencies 
,~/'~f 7~(Serl,)to,@',~ ~'((7%); 

(b) to exchange in ~-~(o-~t~, ') the occurrence of ol ~, 
with o - ~ ( 0 ~ i ~ < d - 1 )  and in .ez"~ ~t'aq ~') the 
occurrence of o-~ with o-I]'(0 ~< i ~< d - 1 ); 

(c) to cancel the two tuples .w-" ~J ~' o',;h' ano" ,d~d ~)(o'~). 

As we have said, #"(ctP ~j>) is obtained from Y,l"(ff ~j~) 
by sewing the winged representations of adjacent pairs 
of d-simplices. In formal terms we can write: 

~J-(~pc0)) = U U (#J'(~Tv), ~J'(~,~q)) (25) 
apEK (d) nqE,~l(~p) 
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Actually, an implementation of the algorithm is instead 
performed by sewing the boundary of a d-simplex at 
a time with the complex constituted by the previously 
sewed boundaries: 

~'(~E0) = l~//'(#d'0) (26) 

~I~"(8~i)= '~P(~;~Z,--1 ) +k~/'~*((~O'i), 1 <~i<.%S--1 (27~ 

Executing this iterative construction we have that 

Local evaluation 
A second method of boundary evaluation starting from 
a decompositive representation ~//~(ff~))is more local, 
and consists of looking for the adjacent boundary face 
~k of a boundary face o -h. This can be done by 
recursively visiting (with thg use of the aft function) 
the subcomplex ,%,~ constituted by the d-simplices 
which contain the (d -2) - face  in common between 
o "g and o'g. This strategy of local evaluation can be 
carefully mixed with that formerly described, in order 
to obtain an algorithm working in O(d~S). 

A formula relating I K(')(P(')) I, t K(È- ~)(SP{")) t 
and I K(~+~-~)(SP(~+~))I 
We now give a formula for [K ~+ . . . .  l'(GqP(d+m))l, the 
cardinality of the boundary of the polyhedron ff~+m~ 
obtained by applying m extrusions to ff~>. We assume 
that I K~-l~(Sff~b I, the cardinality of the boundary of 
ffa), and I K{~(ff~) I, the cardinality of the d-skeleton of 
ffd), are known. For m = 1 we can write: 

IK(~(Sff~+l)) l  = d l K ( ~ - ~ ( S f f ~ )  I + 21K~(P'~)I. (28) 

The expression for any m can be derived by repeatedly 
applying (28) as follows: 

I K(d + m- li( dgpld + m/) I 

= (d + m -- 1)l K"J+"'-2'(SP'J+ ..... ~)1 

+ 21K~+m-~(f f~+m-')  I 

- +21K/~+~ ~(p"~+m-~.')l ~ 

+ 2 I K~+~- ' ( f fa+ ' "  ~ b l _ - . . . =  

- - - - ( d + m - - 1 ) ( d + m - 2 ) . "  ( d +  l ) d l  K~'~-'' 

x (aff~) I 

+ 21K~+ ~-  ~(ff~ + m --1))1 

+ 2(d + m -- 1 )1KI~+~-~)(P(~+~-~) I + " "  + 

+ 2 ( d +  m -  1 ) (d+  m -  2 ) . . .  

x (d + 1 )t K~l(ff~)) 1. 

Observing that I K")(P"))I = i(i -- 1 ) . . .  (d + 1)l K~)(P~'J))I, 
d +  1 ~<i~< d + m- -  1 and collecting the resulting m 

equal terms, we finally obtain: 

1K, d . . . . .  ( ¢,.',pi, ..... )1 

= ( d + m - - 1 ) ( d + m -  2' 

x { d +  l ) d l K  '1 " (#P" i  i 

+ 2 m t d +  m -  I) . .  ~d i- I ) [K'~'(P' I ' ) [ ,  

or, if d ~> 1' 

I K,~J~ .... ,,(Sp,J+,,,) i 

( d + m - 1 ) , {  2m 1 
-- ( d - t ) !  ]K{U-1'(SP";')[ 4 - -d  -]K~j'(P~J~)j ' 

(30) 

Notice that (29, and (30) are identities when m = 0. 

Example 7 Take a point and apply a sequence of m 
translational extrusions. The resulting polyhedron is an 
m-dimensional hypercube. We have d = 0. 8p~0;= .(~ 
and I K~°)(ff°b I = 1, so that (29) becomes 

IK ~m ~'((~PIm)[--2 m! (31, 

(conversely. K"~"(P m') -- m ! - see section 3). Formula 
(31) gives 48 for the 4D hypercube. In fact. it is well 
known that such an hypersolid is bounded by 8 cubes. 
and each of these is decomposed in 6 simplices in our 
triangulation, 

If #~+ 1~ linearly approximates with h steps the curve 
polyhedron P'~'- obtained as rotational extrusion of 
p(d) the equation (28) is easily modified as follows: 

J K"t~(dq/~- ~ )[ = h - d J K "j ~'(~P~II 1- 2 I K"~(P"J')t. 

(32) 

Example 8 For the 2-polyhedral star in figure 9 we 
have d = 2. h = 30, l Km(~3ff2 b = 8, and K(2~(1~2')t = 6. 

T 
Figure 9. Star (simplices are scaled with respect to their 
centro id)  and l inear approx imat ion ~ i  O f ~ f ,  with 
0 = 3 6 0  ° and h = 30 
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\ /  
/ \  

Figure 10. Polyhedral approximation ot rotational extrusion of various order polyhedra. Intrinsic dimension of the 
~4enerated solids is 2, 4, 3, respectively 

Formula (32) gives I K~2~(Sff'~) I = 30 .2 .8  + 2 .6  =492. 
In fact, IK~°'(P'2') I = V = 8, therefore I K ' ° ' ( ~ ' )  I = (h + 
1 ) V = 2 4 8  (see section 4). But it is known that the 
number of triangles on the boundary of a simply 
connected 3-polyhedron P~-~' is 2[K~°~(ff~) I -- 4. In our 
case 21K'°'(/~) I - 4 = 492, which is the result given by 
(32). 
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