
Visualization of Force Fields in Protein Structure Prediction

Clark Crawforda and Oliver Kreylosa and Silvia Crivellib and Bernd Hamanna

aInstitute for Data Analysis and Visualization (IDAV),
University of California, One Shields Avenue, Davis, CA 95616;

bLawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720

ABSTRACT

The force fields used in molecular computational biology are not mathematically defined in such a way that their represen-
tation would facilitate a straightforward application of volume visualization techniques. To visualize energy, it is necessary
to define a spatial mapping for these fields. Equipped with such a mapping, we can generate volume renderings of the
internal energy states of a molecule. We describe our force field, the spatial mapping that we use for energy, and the visu-
alizations that we produce from this mapping. We provide images and animations that offer insight into the computational
behavior of the energy optimization algorithms that we employ.

Keywords: Molecular visualization, applications of volume graphics and volume visualization.

1. INTRODUCTION

A central focus in post-genomic biology is the prediction of the three-dimensional (3D) structure – the native structure –
of proteins and their interactions. The 3D structures of proteins have typically been determined by means of X-ray crystal-
lography and nuclear magnetic resonance (NMR) spectroscopy. While an increasing number of individual 3D structures
are known from these experimental approaches, it is an unfortunate reality that only a small fraction of those structures
have been solved due to their cost and time constraints. The need for shorter turnaround times generates great interest
in more effective approaches. Among them, computational methods are a promising alternative to both complement and
guide the experimental ones. Furthermore, computational methods can potentially provide insight into and understanding
of the behavior of proteins on a level difficult to attain by experiments alone.

Computational methods are based on the hypothesis that the native structure of a protein corresponds to a global
minimum of its free energy surface. Therefore, the protein structure prediction problem is often approached as a high-
dimensional optimization problem. The objective function to be minimized can be computed by various formulae, such as
CHARMm, GROMOS, ECEPP, and AMBER. Finding the global minimum of the energy surface is an extremely difficult
task for several reasons:

1. the ability of energy functions to accurately model protein interactions is uncertain;

2. the number of local minima increases exponentially with the size of the protein;

3. the energy functions are ill-conditioned; and

4. the lack of effective global optimization methods that can deal with such large-scale problems.

We have implemented an energy visualization system to help researchers understand the complex biological systems
they are trying to simulate. This system permits us to animate the folding process by recording the steps of an optimization
procedure in terms of atom positions, energy states, and gradients. Our goal is that, through animation, we can observe
changes in the force fields over time, and analyze the relationship that these fields have to a molecule’s evolving structure.
We can also evaluate the algorithm’s behavior in comparison to expected results, and monitor its progress.

Because the objective function assigns a single scalar value to an entire protein, it is difficult to visualize the relation-
ship between the energy function and protein structure in an effective way. We use a straightforward calculation to map
selected components of the objective function back to the positions of the atoms comprising the protein, enabling volume
visualization techniques to display the two in superposition. These combined visualizations lead to a better understanding
of both the objective function and the ongoing optimization process.
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The energy visualization system is implemented in conjunction with the energy computation plug-in architecture of the
ProteinShop application software.1–4 ProteinShop is a graphical environment developed to create low-energy structures
for use as initial configurations in a global optimization process (see Figure 1). Therefore, it supports on-the-fly calculation
of a protein structure’s internal energy using the same function used by the global optimization algorithm. This feature
allows users to judge the overall quality of the generated structures. To be useful in a more general context, ProteinShop
provides a plug-in system that allows users to specify their own energy formulations.

Figure 1. ProteinShop.

Integration with ProteinShop allows the energy visualization to be utilized in conjunction with the expanding set of
steering and analysis features in that application. Use of the plug-in architecture will make possible the comparative
analysis of different energy computation formulae and optimization algorithms on specific inputs. We expect that the
pending release of ProteinShop under an open-source license will facilitate more rapid expansion of the repertoire of
algorithms that are available in its plug-ins.

In the future, ProteinShop’s visualization of molecular force fields will be applicable to more than protein folding
applications. It will also assist in analysis of molecular docking and the stability of multiple-protein structures. The
visualization system only requires the ability to measure force fields in relation to the positions of atoms, residues, and
secondary structures. As capabilities are added to the calculator and optimization systems, this visualization system will
support them. Moreover, this visualization approach can find application in the analysis of high-dimensional optimization
problems in general.

2. RELATED WORK

ProteinShop was originally designed to support a protein structure prediction method involving several members of our
group.1 This method is based on two phases. The first phase generates initial structures, which are local minima. The
second phase improves upon the initial structures using both global and local minimizations. Because there is no global
optimization algorithm that can deal with the large number of variables involved in this type of problem, the global opti-
mization phase improves the initial configurations through global optimizations in subspaces of the full-dimensional space.
One advantage of this approach is that it can be parallelized by selecting different subsets of dihedral angles and performing

SPIE-IS&T/ Vol. 6060  606013-2



small-scale global optimizations on those subsets. Those small-scale global optimizations produce a number of minima
in the chosen subspaces. A number of those conformations are selected for local minimizations in the full variable space.
The new local minima are merged into a list of possible solutions ordered by energy value. The process repeats iteratively
until no further lowering of energy is observed between consecutive iterations. The global optimization process can be
viewed as a search through a large tree of possible solutions. Each node of this tree corresponds to a local minimum and
its children nodes to the local minima generated from it by performing global optimizations on a subset followed by local
minimizations of the full-dimensional space.

ProteinShop provides support for the first phase of the protein structure prediction method. Guided by the energy
function, it quickly creates a variety of protein configurations and locally minimizes them to find low-energy candidates
for the global optimization phase. To that end, it includes a plug-in to compute the AMBER energy of a protein (see
Section 3.1) and to perform local minimization of this energy. The local minimizations are performed using the Limited
Memory BFGS algorithm (LBFGS), as implemented in the OPT++ toolkit,5 running interactively inside the ProteinShop
window. In this context, our energy visualization system allows real-time visualization of the protein minimization process
that drives the protein to its local minimum with the goal of studying, analyzing, and comparing energy functions as well
as local minimization algorithms.

ProteinShop also supports the second phase of the structure prediction method by providing a graphical environment to
monitor and steer the global optimization process. ProteinShop supports interaction with the configuration and subspace
selection module of the global optimization process while it is running and provides access to its internal data structures.
By using this data, ProteinShop can create a graph of the entire tree of possible configurations generated by the global
optimization process thus far and make them accessible for viewing and manipulation by the user. The user can locally
optimize the manipulated structure and insert it back into the global optimization process. The idea is that a knowledgeable
researcher who is following the global optimization process can make changes to certain structures, returning them to an
energy-decreasing path. In this context, the energy visualization system allows users to analyze important information such
as which configurations are forming hydrophobic cores and which areas of a configuration are more likely to produce a
larger drop in energy, making them good candidates for further minimization. The energy visualization system helps users
focus the search on the most promising areas of the tree, thus reducing the time needed to find a solution.

3. FORCE FIELD VISUALIZATION

The energy visualization system renders force fields as a semitransparent cloud around the various geometric “tinkertoys”
that can be used to display a molecule’s structure. Where the cloud is “thickest,”, i. e., least transparent, the forces are
strongest. Where the cloud is wispy or nonexistent, the forces are reaching equilibrium. Rendering is straightforward,
done by hardware with volume textures. The user controls the resolution detail of the texture and all important aspects
of the transfer function, which is tailored to ProteinShop’s functionality. Section 3.1 describes the force field calculator
implemented in ProteinShop’s AMBER plug-in. Section 3.2 describes the pipeline for the energy visualization. Although
we only look at AMBER in this context, other force fields can be visualized for comparative or analytical purposes by
changing the plug-in.

3.1. AMBER

The AMBER force field (Assisted Model Building with Energy Refinement) is used to evaluate the stability of the molecule
in response to local changes in its configuration produced by the modeling tools in ProteinShop. The configuration of the
molecule is defined by the positions of its atoms. The terms of the force field are defined by the differences between the
states of local elements in the configuration (bond angles, distances, etc.) from locally defined equilibrium values. The
greater the difference, the higher the energy. When the energy is minimized, the molecule is assumed to be in a stable state.

The force field definition consists of five terms, which can be visualized individually6:

Etotal = ∑
bonds

KR(R−R0)
2

+ ∑
angles

Kθ (θ −θ0)
2

+ ∑
dihedrals

Kφ

2

(
1+ cos(nφ − γ)

)
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+ ∑
nonbondedpairsi,j

(Ai, j

R12
i, j

− Bi, j

R6
i, j

+
qiq j

εrε0Ri, j

)
.

In the following, we discuss the meaning of the various variables appearing in this formula. The formulation shows
only four terms; we produce an additional nonbonded term for certain pairs of atoms that are separated by exactly three
bonds, called “1–4 nonbonded energy.” To visualize these energies, we map them back to locations in space, averaging
them in a limited volume that is concentrated around the positions of the contributing atoms (two atoms for bonded and
nonbonded pairs, three atoms for angles, and four atoms for dihedrals). These terms are illustrated in Figure 2.

Figure 2. Optimization targets used in AMBER: bond radius R, bond angle θ , dihedral angle φ , nonbonded radius Ri, j, and 1–4 non-
bonded radius R1−4. There are actually two dihedral angles along the backbone of each residue, called φ and ψ (not shown).

We visualize the force field terms individually to attain a better understanding of the relative influence exerted by
different terms. For this reason, we refer to the energy terms associated with the ith atom and their gradient vectors on an
individual basis as:

• Bond: Ai
1 and ∇Āi

1.

• Angle: Ai
2 and ∇Āi

2.

• Dihedral: Ai
3 and ∇Āi

3.

• 1–4 nonbonded: Ai
4 and ∇Āi

4.

• Full nonbonded: Ai
5 and ∇Āi

5.

The gradients are based on the first derivative of the AMBER formula for energy.

3.2. ENERGY RENDERING

The energy rendering system is built on top of ProteinShop’s older energy visualization feature,1 which remains available
to users. In particular, the controls for that system are also used by the new system. Including both the original settings
and the new ones added for this system, the user has a total of eight settings to control the transfer function and determine
the general appearance and information conveyed by the energy cloud. The assemblage of these settings is illustrated in
Figure 3.
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1. Channel: The user can show either the subset sum of the energy terms selected in the discriminator, or the subset
sum of their gradient magnitudes.

2. Discriminator: This is a block of toggles in the user interface through which the user can select an arbitrary subset
of the energy component terms to be visualized. Those not selected will be ignored. This setting and setting 3
(clamp) are part of ProteinShop’s original energy visualization functionality.

3. Clamp: This interval helps the user eliminate outliers from the data, which might otherwise hide detailed information
elsewhere.

4. Resolution: The user can set the resolution in texels per angstrom (Å). The selected resolution may be automatically
lowered to observe constraints imposed by the platform’s physical memory and OpenGL rendering capabilities.

5. Radial specifier: The user specifies a multiplier and coefficient type for the radial basis function. The coefficient
type can be either uniform (×1Å) or relative; in the latter case, it is equal to either of each atom’s physical or Van der
Waals radius. The final radius is defined in Å.

6. Classifier: The user can specify one classification function, which maps atoms to a limited range of integers [0,m),
where m is the number of classifications in the function’s range. The classifier’s domain consists of everything
ProteinShop knows about the atoms, including their element types, positions, topological relationships, current force
field states, and the secondary structures and residues to which they belong.

7. Normalizing interval: This interval determines how the cumulative atom energy values from the input channel are
normalized into the domain of the color function (below). It can be computed automatically based on the current
energy levels or set to an arbitrary value.

8. Color function: Each integer in the classifier’s range is associated with a color function. The color function maps
the atom’s energy to a color. The colors from all classifications are combined in a weighted average to produce the
final color and transparency of the texture.

Figure 3. Energy visualization pipeline used in ProteinShop.

The data store in Figure 3 labeled “Atom Energy” is the AMBER plug-in, which provides real-valued energy component
terms and gradient vectors for each atom in the molecule. These numbers are processed according to the channel selected to
produce a single floating-point value for each atom. Only the component terms selected in the discriminator are included.
If no terms are selected in the discriminator, every atom’s value will be zero. The number of toggles in the discriminator,
c, is determined by the plug-in. For our AMBER plug-in, c = 5 for the terms illustrated in Figure 2. If, for example, a
solvation term is added to the force field, it will appear in the user interface as a sixth toggle in the discriminator.
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Let the discriminator function D( j) = 1 if the jth energy component is selected and 0 if not, 0 ≤ j < c. We compute
the value ei of the ith atom as

ei =
c−1

∑
j=o

D( j) ·
{

Ai
j for subset sum

‖∇Āi
1‖ for gradients

. (1)

The value of ei is then clamped, and spread through the texel block by means of the radial basis and classification
functions. The radius of the basis function s is determined by the radial specifier, equal to the product of a multiplier
chosen by the user with a slider and one of three coefficients: a constant (chosen with another slider), the atom’s radius, or
the atom’s Van der Waals radius. The basis function f (ri) is a smooth curve similar to that used for the implicit modeling
of molecular surfaces.7 It depends on the texel’s distance ri from the center of each atom:

R(ri) =

{
1− 3r2

i
s2 + 2r3

i
s3 if ri < s

0 otherwise
. (2)

The voxel block store holds texel magnitudes for each classification. Let the classification function L(i,k) = 1 if the ith

atom belongs to the kth classification and 0 if not; 0 ≤ k < m and 0 ≤ i < n, where n is the number of atoms in the molecule.
Given the atom energy value ei, using Equation (1), the radial basis R(ri), using Equation (2), and the classifier L(i,k), the
texel magnitude tk is

tk =
n−1

∑
i=0

ei ·R(ri) ·L(i,k) . (3)

The normalizing interval N(tk) maps texel magnitudes to the unit interval (clamp and scale) for use with color functions.
The color function C

(
N(tk)

)
implements an arbitrary continuous color map. ProteinShop provides a dozen of these,

including intensity functions (ranging from a component color at zero to white at one through different paths), constant
functions, and invisibility to hide selected parts of the molecule. The final texel color t is computed from the classified
texel magnitudes tk, using Equation (3) as a weighted average, defined as

t =
∑m−1

k=0 N(tk) ·C
(
N(tk)

)

∑m−1
k=0 N(tk)

. (4)

4. RESULTS

It is possible to implement this pipeline in O(n · (s ·q)3) time, where q is the resolution of the texture grid, by classifying
each atom and determining which portion of the texture grid it will affect prior to iterative computation of Equation (3). The
pixel transfer operations will require O(N3) time in the width of the texel block regardless, but hardware makes this part of
the computation relatively fast. In practice, depending on the size of the molecule and the resolution chosen, the execution
of this pipeline requires anywhere from a fraction of a second to half a minute or more, but all of the textures shown in this
paper were produced in less than ten seconds on an obsolete machine (Pentium III, 733 MHz) with no 3D texture capability
at all. Once generated, the textures can be viewed at interactive refresh rates, using suitable graphics hardware.

We have implemented three classifiers to demonstrate the system. The default classifier is called the unity function,
defined as L(i,1) = 1, i ∈ [0,n). The configuration shown in Figure 4 was locally optimized inside ProteinShop by our
energy plug-in. A playback feature is available that records the state of each iteration in the minimization in a binary file,
supporting later analysis and review. This feature can be used to produce animation frames, or simply to flip back and forth
between selected states in order to produce images like these, which use identical pipeline settings to show the sum of the
AMBER energy terms for each atom before and after minimization.

The second classifier distinguishes atoms belonging to dipoles forming hydrogen bonds from the others. Figure 5
shows two views of 1pgx made with this classifier that are identical except in their energy rendering. The utility of the
invisible color function is demonstrated by its use in this case, because the dipole atoms are small in number. The force
fields of atoms from small classes can be overwhelmed or obscured by large numbers of atoms in other classes.

The third classifier distinguishes atoms belonging to hydrophobic residues from those belonging to hydrophilic residues,
and both of these from atoms whose residues are neither hydrophobic nor hydrophilic. A larger radial specifier was used
for Figure 6 to support a better understanding of the overall shape of the molecule. This classifier can be used to evaluate
the effects of solvation terms in the force field.
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Figure 4. Configurations of CASP6 target T0209 before and after local minimization inside ProteinShop. The intensity of color shows
the relative magnitude of the AMBER energy terms for each atom.

5. CONCLUSIONS AND FUTURE WORK

The classifiers and color functions were implemented in a highly modular way that makes the process of adding new
functions to the source code and user interface simple. The actual time required depends on the complexity of the function,
but a rich set of classifiers can easily be created based on ProteinShop’s existing functionality. Scientists may also find it
useful to develop data mining tools on this framework. Such a system would exploit existing hooks into the framework to
create instantiable functions that can be edited by the user through a customized user interface. As a simple example, a
classifier that partitions the elements into two sets might allow the user to edit the membership of these sets by means of a
checkbox list. As a more complex example, the editor of a compound classifier might allow the user to specify one input
classifier, and then associate each element of that input’s range with another classifier.

To support future analyses of protein docking and interaction, the rendering system must be expanded to support the
force fields of multiple molecules, which will also require us to modify and expand ProteinShop in various places; new
classifiers to support docking analysis will be needed. For example, a docking classifier might distinguish atoms dominated
to varying degree by inter-molecular forces from those that are not. This functionality would be highly dependent on the
calculator plug-in, which is another area that will require additional development. Plug-ins will support the comparative
analysis of different force field definitions in a visual framework.
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Figure 5. Two views of 1pgx showing gradients over hydrogen bond sites. Top: atoms that belong to bonded dipoles are green; all other
atoms are red. Bottom: atoms not belonging to bonded dipoles are hidden.

Figure 6. Different configuration of 1pgx showing gradients over ball-and-stick geometry with the Corey-Pauling-Koltun (CPK) color
scheme. The radial specifier is 1.5 times the size of the Van der Waals radius. Atoms belonging to hydrophilic residues are blue,
hydrophobic orange, and unclassified residues at the ends of the chain are green.
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