
34 COMPUTING IN SCIENCE & ENGINEERING

H I G H - D I M E N S I O N A L
D A T A

Studying dynamic aspects of physical and
chemical processes is critical to the ad-
vances of many sciences. State-of-the-art
scientific computing technologies allow

accurate numerical modeling of many physical
and chemical processes in their spatial and tem-
poral domains. However, an increasingly chal-
lenging problem scientists must face is how to
effectively explore and understand the resulting
time-varying volume data that is large in space
(from 100 million to a billion voxels), time (hun-
dreds to thousands of time steps), and variable
domain (from five to over 100 variables).

Scientists’ ability to visualize time-varying
phenomena is absolutely essential to ensure cor-
rect interpretation and analysis, provoke in-
sights, and communicate those insights to oth-
ers. For instance, by appropriately rendering a
time-varying data set, scientists can produce an
animation sequence that illustrates how selected
underlying structures in the data evolve over
time. In particular, interactive visualization lets
scientists freely explore the spatial and temporal

domains in both the variable space and visual-
ization parameter space. Figure 1 presents se-
lected time steps from the visualization of a tur-
bulent jet data set. The figure demonstrates
scientists’ ability to interactively explore the data
and derive visualizations that clearly separate
vortices with positive and negative values. To
achieve the needed interactivity, a visualization
solution’s design must account for hardware con-
straints. How fast can a sequence of time steps
be transferred to the rendering engine, and how
can we accelerate the rendering calculations?

The availability of texture hardware support
for volume rendering enables real-time volume
visualization.1 However, the sheer size of a data
set from a contemporary scientific application
can easily overwhelm the texture memory space
of a typical graphics-acceleration card designed
for video games. How to reduce a data set’s stor-
age requirement without removing fine features
in the data is thus central to time-varying data
visualization research. Should we do data reduc-
tion at the simulation time or as a postprocessing
task? Is lossy compression acceptable? Is auto-
matic feature extraction possible? Is there a way
to couple these data-reduction strategies with

rendering?
This article reviews the strategies developed

so far for visualizing volume data from time-
varying simulations. My work, and therefore this

VISUALIZING TIME-VARYING
VOLUME DATA

KWAN-LIU MA

University of California, Davis

1521-9615/03/$17.00 © 2003 IEEE

Copublished by the IEEE CS and the AIP

This article reviews strategies developed so far for enabling interactive visualization of
volume data from time-varying simulations with a focus on encoding, feature extraction,
and rendering issues. The author also discusses emerging trends in time-varying data
visualization research and their potential impact on the scientific research community.

MARCH/APRIL 2003 35

article’s focus, concentrates on encoding, feature
extraction, and rendering issues. I also discuss
emerging trends in time-varying data visualiza-
tion research and their potential impacts on the
scientific research community.

Encoding

We can reduce a volume data set’s size and there-
fore make it more manageable by using compres-
sion. The advantages of compressing volumetric
data are twofold. First, it reduces the data’s storage
requirements. This could let a data set fit in tex-
ture memory that might otherwise not fit, elimi-
nating the need for transferring data across the
graphics bus from main memory to texture mem-
ory. It is also possible to use storage reduction to
fit relatively large compressed data sets entirely
in main memory, thus eliminating the need for
swapping from disk. The other benefit of com-
pression is the reduction in I/O. Even if a data set
does not fit into texture memory, transferring
compressed data across the graphics bus can be
substantially faster than with uncompressed data,
allowing interactive visualization. In addition, for
out-of-core rendering of very large data sets,
reading compressed data from disk requires less
time than reading uncompressed data.

There are two basic approaches to compress-
ing time-varying volume data. The first ap-
proach is to separate the time dimension from
the spatial dimensions. For example, differences
in encoding the data coherence between con-
secutive time steps can result in a significant re-
duction.2 However, this approach is limited to
sequential browsing of the data’s temporal as-
pect. That is, browsing must start from the first
time step. We can use quantization together with
octree and difference encoding to effectively
compress both the spatial domain and temporal
domains of the data.3 Subtrees can be merged
for consecutive time steps. During rendering, for
stationary view, we can reuse partial images built
from subtrees that do not change in the subse-
quent time steps.

It is often desirable to have an underlying
analysis model for characterizing time-varying
data. We can accomplish such a model by wave-
let encoding of each time step separately to de-
rive compressed multiscale tree structures.4 By
examining the resulting multiscale tree struc-
tures and wavelet coefficients, we can perform
feature extraction, tracking, and further com-
pression. It is also possible to compress time-
varying isosurfaces and associated volumetric
features with wavelet transform to allow fast re-
construction and rendering.5

The second approach is to treat time-varying
volume data as 4D data. For example, the 4D data
can be encoded with a 4D tree (an extension of oc-
tree6) and the associated error/importance model
to control compression rate and image quality. A
more refined design is based on a 4th-root-of-2
subdivision scheme coupled with a linear B-spline
wavelet scheme for representing time-varying vol-
ume data at multiple levels of detail.7

Whether we should treat time-varying volume
data as 4D data or not should depend on the
characteristics of the data. For example, if the
discrepancy between the temporal and spatial
resolutions would be large, it could become dif-
ficult to locate the temporal coherence in cer-
tain subdomains of the data. Consequently, we
should consider the time domain separately for
encoding. Another problem with using 4D trees
is that coupling spatial and temporal domains
makes it difficult to locate regions with only tem-
poral coherence but not spatial coherence.

A time-space partitioning (TSP) tree8 is a hi-
erarchical data structure for a better use of spa-
tial and temporal coherence. In essence, a TSP
tree’s skeleton is a standard complete octree,
which recursively subdivides the volume spatially
until all subvolumes reach a predefined mini-
mum size. To store the temporal information,
each TSP tree node is a binary tree. Every node
in the binary time tree represents a difference
time span for the same subvolume in the spatial
domain. The objective of this design is to reduce
the amount of data required to complete the

Figure 1.
Selected time
steps from the
visualization
of a turbulent
jet data set.
Positive-value
vortices are
green and
blue, while
negative
vortices are
yellow and
red.

36 COMPUTING IN SCIENCE & ENGINEERING

rendering task and to reduce the volume ren-
dering time. In particular, TSP trees let the ren-
derer use data from subvolumes of different spa-
tial and temporal resolutions.

Feature Extraction

Visually scanning through terabytes of data for
features, if not impossible, is a labor-intensive
task. Automated feature extraction using domain
knowledge can significantly cut down the stor-
age requirements and rendering cost of visual-
ization tasks. For example, it is possible to track
vortices in an unsteady flow as they appear,
branch, merge, and disappear over time. Previ-
ous efforts9,10 show several orders of magnitude
savings in storage requirements, which enables
interactive browsing through the extracted fea-
tures on an average graphics workstation.

Another example is visualizing particle-beam
data obtained from particle-accelerator simula-
tions. The data set typically consists of hundreds
of millions to billions of particles for each time
step, making it impossible to render in real time
on a desktop PC. One solution is to use a coarse
volume representation for the overall beam and
a point-based representation for selected fea-
tures of interest, one of which in this case is the
outer layer of the particle beam called a halo. An
image is generated by mixing hardware-acceler-
ated rendering of the overall beam’s volumetric
representation with a point-based rendering of
the halo region. The overall savings in storage
requirements makes it possible to load numer-
ous time steps into the main memory for inter-
active visualization. Scientists can then examine
the behavior of individual particles in the halo
region. Figure 2 shows selected frames from an
animation of a disoriented beam.

If it is possible to reliably capture features at
different scales that completely characterize the
data set, we can then integrate this feature ex-

traction process into the simulation process so
that the simulation’s outputs become the ex-
tracted features rather than arrays of numbers.
In this way, the overall scientific discovery
process is optimized by reducing both the data
transfer and storage costs early in the data-
analysis pipeline. This is the optimal goal of fea-
ture extraction. In practice, scientists have not
adopted this approach for two reasons. First,
most scientists are reluctant to use their super-
computer time for visualization calculations.
Second, they must understand the features well
enough to make the automated extraction effec-
tive. The common practice is storing only se-
lected time steps of the data or studying the
stored data at a coarser resolution, which defeats
the original purpose of performing the high-
resolution simulations.

Rendering

Although appropriate encoding can facilitate the
subsequent rendering step, several challenging
issues associated with rendering large time-vary-
ing data still exist. When the available comput-
ing resources cannot accommodate the data set
for scientists to directly interact with the data
and freely browse through it in both the data’s
spatial and temporal domains, we must seek al-
ternative representations of the data or addi-
tional computing resources. The former has to
do with additional compression, automated
transfer function generation, or feature extrac-
tion. The latter involves using parallel distrib-
uted computing.

Selection of color and opacity transfer func-
tions determines how the information in the vol-
ume data is presented visually. If we can auto-
matically generate the transfer functions that
effectively capture the data’s essence, it is possi-
ble to produce an animation of the data in a
batch-mode step. On the other hand, rendering

Figure 2. Selected time steps from the visualization of a particle beam data set using a hybrid rendering technique.11

(Images generated by Brett Wilson.)

MARCH/APRIL 2003 37

extracted features (such as vortices, shocks, or
streamsurfaces) rather than original volume data
can significantly cut down the storage require-
ments and rendering cost, leading to more effi-
cient data exploration.

Transfer Functions
Batch-mode rendering requires preselected
transfer functions. Although researchers have ex-
tensively studied the problem of defining trans-
fer functions for a single volume data,12 properly
using and creating transfer functions for time-
varying volume data is still unaddressed.

In time-varying volume visualization, the phe-
nomena under study evolves in some manner
over time and space. Features of interest in a
time series might exhibit a regular, periodic, or
random pattern. A regular pattern is character-
ized by a feature that moves steadily through the
volume. The feature’s structure neither varies
dramatically nor follows a periodic path. Fea-
tures exhibiting a periodic pattern appear and
disappear over time. Transient features of inter-
est or features that fluctuate randomly are com-
mon, such as those found in turbulent flows.
Generally, we can more easily detect and more
efficiently render regular and periodic patterns.

Therefore, transfer functions for time-vary-
ing data need to capture one of the aforemen-
tioned three behaviors. Ideally, we want to cap-
ture these behaviors by using a single transfer
function. In practice, this is not always possible,
especially when several different types of features
exist in the data and persist for different lengths
of time. Using more than one opacity transfer
function must be done with care because the
transition between two transfer functions can re-
sult in a sudden change in the visualization that is
physically misleading.

There are several different ways to generate a
single or minimal set of transfer functions for
rendering time-varying volume data.13 Volumes
possessing features with a regular structure, re-
gardless of their motion, often can be adequately

rendered with a single transfer function. For data
sets with dynamic boundaries, multiple transfer
functions are needed to capture essential features
appearing in each specific time span. By mea-
suring the coherence level of the data in the time
dimension, it is possible to identify individual
time spans for each of which a transfer function
can be defined in a straightforward manner. Fig-
ure 3 displays three selected time steps of an an-
imation produced by using an automatically
generated transfer function. The animation suc-
cinctly captures the impact of the shock over an
argon bubble.

Hardware-Accelerated Rendering
Hardware-accelerated volume rendering re-
quires that we load the volume data into the
video card’s texture memory prior to rendering.
The volume size that we can render interactively
is thus limited by the amount of video memory
the card contains. This is because the access and
transfer of data from main memory across the
graphics bus is relatively slow compared to the
direct access of graphics memory. Time-varying
hardware-accelerated volume rendering exacer-
bates this problem by also requiring transferring
data from disk to main memory. Joe Kniss and
his colleagues demonstrate interactive texture-
based volume rendering of large time-varying
data using a 16-pipe SGI Origin 2000, but the
overall performance was limited by how fast each
time step can be brought into the texture mem-
ory from the disk.14 David Ellsworth, Ling-Jen
Chiang, and Han-Wei Shen develop a render-
ing method that better utilizes 3D texture mem-
ory by exploiting a TSP tree representation of
the time-varying volume data.15

One solution for this I/O bottleneck is to treat
video memory, main memory, and disk as a
three-level cache for volume rendering. By com-
pressing the volume data, we increase the
amount of data that can fit in each level while
decreasing the I/O costs of transferring data be-
tween these levels. In this way, the interactive

Figure 3. Selected time steps from a visualization of an argon shock-bubble data set. The transfer function I used was
automatically generated.13 (Images generated by T.J. Jankun-Kelly.)

38 COMPUTING IN SCIENCE & ENGINEERING

volume rendering of large data sets is possible
using commodity PC hardware.

I along with Eric Lum and John Clyne16 in-
troduce a low-cost strategy for visualizing time-
varying volume data that integrates lossy com-
pression and rendering to take full advantage of
the increasing power and decreasing cost of com-
modity PC graphics cards. The basic idea is
based on the temporal encoding of indexed volu-
metric data that can quickly be decoded in hard-
ware. The actual implementation extensively uses
OpenGL’s support for changing color palettes
without reloading volume textures. The cycling
of color palettes can be used to create simple an-
imations from static images. Similarly, using
color palette manipulation lets a single scalar
value represent multiple time steps’ values. Even
though this results in lossy compression, accord-
ing to our test results,16 in most cases, the differ-
ences between the compressed and uncom-
pressed visualizations are hard to discern.

Using four times compression on an AMD
1.2- GHz Athlon with 768 Mbytes of main mem-
ory and a GeForce 3 with 64 Mbytes of texture
memory, we can render 1,492 time steps of a 256
× 256 × 256 volumetric data set in an out-of-core
fashion at approximately 6.8 frames per second
using 256 object-aligned textured polygons. Be-
cause the main memory can hold 280 time steps
of the data, if rendered in-core, we can achieve
25.8 frames per second. Without compression,
the same 280 time steps no longer fit in main
memory and would need to be swapped into
main memory in an out-of-core manner. A mem-
ory-resident subset of this uncompressed data
can be rendered at about 11.5 frames per second,
compared to the 25.8 frames per second with
compression. We obtained these results when
rendering the volume to a 512 × 512 window,
with the volume occupying more than half the
window area. Using a cluster of eight PCs, we
can render time-varying 512 × 512 × 512 volume
data sets in the same fashion at interactive rates.17

There is a distinct trade-off between the com-
pression ratio and rendering performance ver-
sus the compressed volume’s quality. This gives
users a degree of flexibility in choosing the com-
pression ratios that best meet their needs. For
example, if scientists are interested in viewing a
short time sequence at high quality, they can use
the lower compression ratio. To view a long se-
quence of data at high speeds, they can select a
higher compression rate. Scientists can combine
compression ratios to preview a data set at a
coarser temporal resolution and then view a spe-

cific time sequence of interest with less com-
pression. This hardware-accelerated decoding
and rendering approach clearly shows the feasi-
bility of putting a PC-based system on every sci-
entist’s desktop, making interactive exploration
of large data sets accessible to a far broader
group of scientists and engineers.

Parallel Rendering
When the volume data is too large for a single
computer to render interactively, or the display
resolution requirement is high (as for a display
wall), an obvious solution is to use parallel ren-
dering by distributing both the data and render-
ing calculations. Researchers have introduced sev-
eral parallel volume-rendering algorithms,18–20

but they are not for efficiently rendering time-
varying data. The time needed to load each time
step of the data set into the main memory alone
can inhibit interactive rendering.

A scientist who routinely performs large-scale
simulations on a parallel computer operated at a
supercomputer center typically leaves the large
output data on the center’s mass storage device.
To visualize and study the data, scientists re-
motely access the same parallel computer or a
different one to perform the needed visualiza-
tion calculations. The resulting images or ani-
mations are delivered to the scientist’s desktop
computer for viewing. This postprocessing of
precalculated data remains a common practice.

Without a high-speed network and parallel
I/O support, two bottlenecks make interactive
visualization impossible for such a postprocess-
ing scenario. One is the need to read large files
continuously or periodically throughout the
course of the visualization process. The other is
the delay due to transferring the resulting im-
ages over a nondedicated network.

One way to remove the bottlenecks is to em-
ploy parallel pipelined rendering.21 Along with
careful grouping of processors, pipelining can
not only hide I/O overheads but also maximize
processor utilization. Furthermore, visually loss-
less compression can significantly cut down the
cost of transferring output images to a display
device through a WAN. With this remote visu-
alization strategy, David Camp and I have shown
that the display rates on a desktop PC can stay
close to the interactive rendering rates of a 256-
node PC cluster located over 6,200 miles away.21

Using such a parallel-pipelined renderer, the
user can choose to minimize either the inter-
frame delay or the overall rendering time. The
former ensures a particular level of interactivity

MARCH/APRIL 2003 39

whereas the latter cuts down as much as possible
the turnaround time for batch-model rendering.

To achieve highly efficient visualization of large
data, we must carefully optimize every step in the
visualization pipeline. Parallelizing the render-
ing step alone is likely insufficient. The parallel
pipelined approach can address the I/O bottle-
necks. Another critical bottleneck is concerned
with the final image composition step required
by the widely used sort-last parallel rendering.
Especially when the rendering calculations are
hardware accelerated, this compositing step
could severely limit the scalability of the overall
rendering performance. Fortunately, inexpensive,
out-board compositing hardware has become
more widely available so we can build a graphic-
enhanced PC cluster to deliver scalable rendering
performance.

Remaining Challenges

Research so far in time-varying volume data vi-
sualization has primarily addressed the problems
of encoding and rendering a single scalar variable

on a regular grid. There is also the need to si-
multaneously visualize multiple variables. En-
coding a time-varying vector field has largely
been unexplored. Time-varying unstructured-
grid data sets has been either rendered in a brute-
force fashion or just resampled and downsampled
onto a regular grid for further visualization cal-
culations. An even more challenging problem is
visualizing data on a mesh structure that changes
over time.

Multiple Variables
In practice, almost all data sets obtained from
numerical modeling of physical phenomena or
chemical process record multiple scalar and vec-
tor properties at each mesh point. In medicine,
increasingly there is also the need to study time-
varying volumetric data from several different
imaging modalities.22 The need to visualize vec-
tor quantities or multiple variables simultane-
ously would require refined designs of the en-
coding and rendering processes. Although each
variable generally should be encoded indepen-
dent of other variables, in some situations, it

UNVERSITY OF UTAH
Tenure-Track Faculty Position

Scientific Computing and Imaging
Institute and Bioengineering

Department

Applications are invited for an assistant
professor level, tenure-track faculty posi-
tion at the Scientific Computing and
Imaging (SCI) Institute and the
Department of Bioengineering at the
University of Utah. The SCI Institute is an
interdisciplinary research institute consist-
ing of approximately 65 scientists, staff,
and students dedicated to advancing the
development and application of comput-
ing, scientific visualization, and numerical
mathematics to topics a wide variety of
fields such as bioelectric fields in the heart
and brain, multimodal imaging, and com-
bustion. The SCI Institute currently houses
two National research centers: the NIH
Center for Bioelectric Field Modeling,
Simulation, and Visualization and the DOE
Advanced Visualization Technology

Center.
The Bioengineering Department has

an international reputation for research
and graduate education with particular
strengths in biobased engineering, bioma-
terials, biomechanics, biomedical comput-
ing/imaging, controlled chemical delivery,
tissue engineering and neural interfaces.
Tenure-track faculty typically has primary
appointments within College of Engineer-
ing and secondary appointments within
the Health Sciences. The Department is
home to approximately 100 graduate stu-
dents and 90 upper-level undergraduate
students.

The successful candidate will be
expected to maintain/establish a strong
extramurally funded research program
consistent with the research mission of the
SCI Institute, and participate in under-
graduate/graduate teaching consistent
with the educational mission of the
Department of Bioengineering.

The candidate should have a doctoral
degree in a field related to biomedicine or
engineering and have demonstrated
research skills, ideally with 2 or more years
of postdoctoral experience. A strong
record of experience in the application of
computational techniques to one or more
fields of biomedical research is also neces-
sary. Specific areas of relevant, established

strength in the SCI Institute include car-
diac and neurologic electrophysiology,
biomedical image and signal processing,
and bioelectric and biomagnetic fields.
The candidate must be prepared to seek
and secure ongoing extramural research
support, collaborate closely with research-
ers in interdisciplinary projects, and estab-
lish or maintain an international presence
in his or her field.

A complete CV, names of three refer-
ences, and a short description of current
research activities, teaching experience,
and career goals should be sent to:

Director
Scientific Computing and

Imaging Institute,
University of Utah

50 So. Central Campus Drive, Rm. 3490
Salt Lake City, UT 84112
Email: crj@sci.utah.edu
Web: www.sci.utah.edu

Review of applications will begin
December 2002 and continue until selec-
tion of a candidate is complete.

The University of Utah is an Equal
Opportunity, Affirmative Action employer
and encourages nominations and applica-
tions from all qualified individuals includ-
ing women and minorities and provides
reasonable accommodation to the known
disabilities of applicants and employees.

Career Opportunities

40 COMPUTING IN SCIENCE & ENGINEERING

could be advantageous to compress one variable
by taking into account the values of other vari-
ables. One example is to select a particular com-
pression level for a scalar field according to the
corresponding velocity field.

Extended rendering capabilities are necessary
for visualizing multiple variables. The general
approach is to use one or more properties of the
data for the enhanced rendering of another
property of the data. Numerous possible com-
binations exist that we can use to achieve vari-

ous types or levels of enhancement. We can use
multidimensional transfer functions for the ren-
dering of multivariate volume data.23 The key,
again, is to ensure interactive visualization so
that the user can freely explore different combi-
nations for specific feature enhancements.

The new generation of PC graphics cards can
support different rendering styles at interactive
rates for the visualization of multiple variables.24

Generally, our goal is to either highlight impor-
tant features in another variable or add contextual
information to the visualization. For example, Fig-
ure 4 shows simultaneous visualization of vorticity
and velocity fields. The vorticity field is volume
rendered, and the velocity field is stroke rendered.
The user can interactively increase the strokes
density and vary the stroke rendering style.

Because the cost of computing velocity field
lines on the fly can be prohibitively high, to
achieve interactive visualization, we must pre-
compute field lines and store them hierarchically
so that visualization can be progressively refined.

Finally, it is desirable to enhance temporal fea-
tures, which is possible by applying hardware-
accelerated, temporal-domain filter to reinforce
the perception of the changing features in the
data over time. Figure 5 shows this type of en-
hancement. Fast-moving features are more
opaque and red.

Irregular Meshes
Increasingly, unstructured grid methods are used
in large-scale scientific computing to model
problems involving complex geometries. By ap-
plying finer meshes only to regions requiring
high accuracy, we can reduce computing time
and storage space. On the other hand, using un-
structured grid discretizations complicates the
visualization task because the resulting data sets
are irregular geometrically and topologically.
The need to store and access additional infor-
mation about the structure of the grid can lead to
visualization algorithms that incur considerable
memory and computational overhead.

By simply disregarding the unstructured mesh,
we could encode time-varying scalar data the
same way for regular-grid data. The question is
if we can achieve better compression ratios by
taking into account the mesh structure informa-
tion. How can we compress the mesh structure
information along with the scalar or vector data
to facilitate the subsequent visualization calcu-
lations? For mesh structure modified by the sim-
ulation over time, is temporal-domain compres-
sion still feasible?

Figure 4.
Simultaneous
visualization
of velocity and
vorticity fields
from the
modeling of
aircraft wake
vortices.23

From top to
bottom, we
see three
selected time
steps. Velocity
direction is
shown with
stroke
rendering,
and the
vorticity field
is volume
rendered.
(Aleksander
Stompel
generated
these images.)

MARCH/APRIL 2003 41

Jeremy Meredith and I have developed a
meshless approach for interactive previewing of
large, unstructured grid data.25 It is straightfor-
ward to incorporate a multiresolution frame-
work such that high-quality visualization can still
be made as needed in an incremental manner. It
is also possible to extend this technique with
temporal-space encoding for the visualization of
time-varying data.

Timely development of visualization
technologies for large time-varying
data is clearly still necessary. Appli-
cation scientists must work together

with visualization researchers to develop tech-
nologies that best meet the application require-
ments with the available computing resources.
In addition to the development of more effec-
tive physically based feature extraction methods
and tightly coupled encoding and rendering
methods, the most promising approach seems to
be simulation-time processing for visualization.

For scientists who run large-scale time-depen-
dent simulations on parallel supercomputers op-
erated remotely, such as a national supercom-
puter center, moving a complete time-varying
data set from the supercomputer center to the
scientist’s own computing laboratory for data
analysis and visualization can be troublesome, if
not impossible. A viable solution to this problem
is based on a simulation-time visualization sce-
nario. That is, visualizing time-varying data
probably can be done most efficiently and eco-
nomically while the data are being generated, so
that users receive immediate feedback on the
subject under study and so that the visualization
results can be stored (rather than the much larger
raw data). Several researchers have demonstrated
simulation-time visualization of time-dependent
simulations. One type operates with tightly cou-
pled parallel simulation and visualization to en-
able runtime visualization.26,27 The simulation

and rendering calculations are performed on the
same parallel computer. The other type relies on
a more loosely coupled setting. VISUAL328 and
SCIRun29 are among the few coherent problem-
solving environments that can support runtime
tracking in this manner. SCIRun moves one step
further to allow computational steering.

Saving images rather than raw data is not al-
ways acceptable, especially if the important in-
formation in the data cannot be captured with a
few simple rules. We need to improve our ability
to perform automatic feature extraction and to
define adequate transfer functions with mini-
mum hints from the user. Simulation-time pro-
cessing to compress and reorganize the raw data
into a form facilitating interactive browsing
ought to be an included feature of future simu-
lation programs. The task of visualizing large
time-varying data then becomes switching be-
tween using a low-cost desktop previewing
method for defining key visualization parame-
ters and running a batch-mode parallel high-fi-
delity renderer for an in-depth study of selected
aspects of the data. Scientists who have not been
able to study their simulation data fully at the
highest possible resolution should rethink their
current approach to the visualization and data-
understanding problem. It is timely to adopt a
new paradigm for data analysis and visualization
that is more integrated into their simulations and
to also take advantage of the emerging interac-
tive visualization technology.

Acknowledgments
This work has been sponsored in part by the National
Science Foundation PECASE award, NSF Large Scientific
and Software Data Set Visualization (LSSDSV) program,
Department of Energy Scientific Discovery through
Advanced Computing (SciDAC) program, Los Alamos
National Laboratory, Lawrence Berkeley National
Laboratory, and Lawrence Livermore National Laboratory.

Figure 5. Selected time steps from the visualization of the rotation flow data set. The fast-moving features are more
opaque and red.23 (Aleksander Stompel generated these images.)

42 COMPUTING IN SCIENCE & ENGINEERING

Robert Wilson at the University of Iowa provided the
turbulent jet data set. The Center for Computational
Sciences and Engineering at LBNL (http://seesar.lbl.
gov/ccse) provided the argon shock-bubble data set.
Robert Ryne and Ji Qiang at the LBNL provided particle-
beam data set. Charlie Zheng at Kansas State University
made the wake vortices data set available. Finally, Pierre
Lallemand at ASCI of CNRS in France provided the
rotation flow data set. T.J. Jankun-Kelly, Eric Lum,
Aleksander Stompel, and Brett Wilson provided the images
in this article. I am grateful to all these people.

References
1. B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering

and Tomographic Reconstruction Using Texture Mapping Hard-
ware,” Proc. 1994 Symp. Volume Visualization, IEEE CS Press, 1994,
pp. 91–98.

2. H.-W. Shen and C.R. Johnson, “Differential Volume Rendering: A
Fast Volume Visualization Technique for Flow Animation,” Proc.
Visualization ’94 Conf., IEEE CS Press, 1994, pp. 180–187.

3. K.-L. Ma and H.-W. Shen, “Compression and Accelerated Rendering
of Time-Varying Volume Data,” Proc. 2000 Int’l Computer Symp. -
Workshop on Computer Graphics and Virtual Reality, 2000, pp. 82–89.

4. R. Westermann, “Compression Time Rendering of Time-Resolved
Volume Data,” Proc. Visualization ’95 Conf., IEEE CS Press, 1995,
pp. 168–174.

5. B.-S. Sohn, C. Bajaj, and V. Siddavanahalli, “Feature Based Volu-
metric Video Compression for Interactive Playback,” Proc. Vol-
ume Visualization and Graphics Symp. 2002, IEEE CS Press, 2002,
pp. 89–96.

6. J. Wilhelms and A. Van Gelder, “Multidimensional Trees for Con-
trolled Volume Rendering and Compression,” Proc. 1994 Symp.
Volume Visualization, IEEE CS Press, 1994, pp. 27–34.

7. L. Linsen et al., “Hierarchical Representation of Time-Varying Vol-
ume Data with ‘4th-root-of-2’ Subdivision and Quadrilinear B-
Spline Wavelets,” Proc. 10th Pacific Conf. Computer Graphics and
Applications - Pacific Graphics 2002, IEEE CS Press, 2002, pp.
346–355.

8. H.-W. Shen, L.-J. Chiang, K.-L. Ma, “A Fast Volume Rendering
Algorithm for Time-Varying Field Using A Time-Space Partition-
ing (TSP) Tree,” Proc. Visualization ’99, IEEE CS Press, Calif., 1999,
pp. 371–377.

9. R. Samtaney et al., “Visualizing Features and Tracking their Evo-
lution,” Computer, vol. 27, no. 7, 1994, pp. 20–27.

10. D. Banks and B. Singer, “A Predictor-Corrector Technique for Vi-
sualizing Unsteady Flow,” IEEE Trans. Visualization and Computer
Graphics, vol. 1, no. 2, 1995, pp. 151–163.

11. K.-L. Ma et al., “Advanced Visualization Technology for Teras-
cale Particle Accelerator Simulations,” Proc. Supercomputing 2002
Conf., CD-ROM, IEEE CS Press, 2002.

12. P. Hanspeter et al., “The Transfer Function Bake-Off,” IEEE Com-
puter Graphics & Applications, vol. 21, no. 3, 2001, pp. 16–22.

13. T. Jankun-Kelly and K.-L. Ma, “A Study of Transfer Function Gen-
eration for Time-Varying Volume Data,” Proc. Volume Graphics
2001 Workshop, Springer, pp. 51–65.

14. Joe Kniss et al., “Interactive Texture-Based Volume Rendering for
Large Data Sets,” IEEE Computer Graphics & Applications, July/Aug.
2001, pp. 52-61.

15. D. Ellsworth, L. Chiang, and H.-W. Shen, “Accelerating Time-
Varying Hardware Volume Rendering Using TSP Trees and Color-
Based Error Metrics,” Proc. 2000 Symp. Volume Visualization, ACM
Press, 2000, pp. 119–128.

16. E. Lum, K.-L. Ma, and J. Clyne, “Texture Hardware Assisted Ren-
dering of Time-Varying Volume Data,” Proc. IEEE Visualization
2001 Conf., ACM Press, 2001, pp. 263–270.

17. E. Lum, K.-L. Ma, and J. Clyne, “A Hardware-Assisted Scalable
Solution of Interactive Volume Rendering of Time-Varying Data,”
IEEE Trans. Visualization and Computer Graphics vol. 8, no. 3,
2002, pp. 286–301.

18. K.-L. Ma et al., “Parallel Volume Rendering Using Binary-Swap
Compositing,” IEEE Computer Graphics & Applications, vol. 14,
no. 4, 1994, pp. 59–67.

19. P. Lacroute, “Analysis of a Parallel Volume Rendering System
Based on the Shear-Warp Factorization,” IEEE Trans. Visualization
and Computer Graphics, vol. 2, no. 3, 1996, pp. 218–231.

20. K.-L. Ma and S. Parker, “Massively Parallel Software Rendering
for Visualizing Large Scale Data Sets,” IEEE Computer Graphics &
Applications, vol. 21, no. 4, 2001, pp. 72–83.

21. K.-L. Ma and D. Camp, “High Performance Visualization of Time-
Varying Volume Data Over A Wide-Area Network,” Proc. Super-
computing 2000 Conf., CD-ROM, IEEE CS Press, 2000.

22. M. Tory et al., “4D Space-Time Techniques: A Medical Imaging
Case Study,” Proc. Visualization 2001 Conf., ACM Press, 2001,
pp. 473–476.

23. J. Kniss et al., “Volume Rendering Multivariate Data to Visualize
Meteorological Simulation: A Case Study,” Proc. VisSym 2002,
2002, pp. 189–194.

24. A. Stompel, E. Lum, and K.-L. Ma, “Visualization of Multidimen-
sional, Multivariate Volume Data Using Hardware-Accelerated
Nonphotorealistic Rendering Techniques,” Proc. 10th Pacific Conf.
Computer Graphics and Applications - Pacific Graphics 2002, IEEE
CS Press, 2002, pp. 294–402.

25. J. Meredith and K.-L. Ma, “Multiresolution View-Dependent Splat
Based Volume Rendering of Large Irregular Data,” Proc. 2001
Symp. Parallel and Large-Data Visualization and Graphics, ACM
Press, 2001, pp. 93–99.

26. J. Rowlan, E. Lent, N. Gokhale, and S. Bradshaw, “A Distributed,
Parallel, Interactive Volume Rendering Package,” Proc. Visualiza-
tion ’94 Conf., IEEE CS Press, 1994, pp. 21–30.

27. K.-L. Ma, “Runtime Volume Visualization for Parallel CFD,” Proc.
Parallel CFD ’95 Conf., Elsevier, 1995, pp. 307–314.

28. R. Haimes, “Unsteady Visualization of Grand Challenge Size CFD
Problems: Traditional Postprocessing vs. Co-processing.” Proc.
ICASE/LaRC Symp. Visualizing Time-Varying Data, NASA Conf.
Publication 3321, 1996, pp. 63–75.

29. S.G. Parker and C.R. Johnson, “SCIRun: A Scientific Programming
Environment for Computational Steering,” Proc. 1995 Super-
computing Conf., CD-ROM, IEEE CS Press, 1995.

Kwan-Liu Ma is an associate professor of computer sci-
ence at the University of California, Davis. His career re-
search goal is to improve the overall experience and per-
formance of data visualization through more effective
interactive techniques and user interface designs, ex-
pressive rendering, and high-performance computing.
He has a PhD in computer science from the University of
Utah. In 2000, he received the Presidential Early Career
Award for Scientists and Engineers (PECASE) and
Scholumbeger Foundation Award for his work in large
data visualization. He has also served as a guest editor
for several theme issues of IEEE Computer Graphics & Ap-
plications. He is a member of the IEEE, IEEE Computer
Society, ACM, and ACM SIGGRAPH. Contact him at the
Dept. of Computer Science, UC Davis, One Shields Ave.,
Davis, CA 95616; ma@cs.ucdavis.edu.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

