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Abstract.
via an object called o fexel, o rendering primitive inspired by volume den-

We present a methed for rendering scenes with fine detail

sities mixed with anisotropic highting medels. This technique solves a long
outstanding problem in image synthesis: the rendering of furry surfaces.

Iptroduction

Rendering scenes with very high complexity and a wide range of detail
has long been an important goul for image synthesis, One idea is to
mtroduce a hierarchy of scale, and at each level of scale have a corre-
sponding level of detail in a hierarchy of geometric models (Crow 1982).
Thus very complex small objects may have a hierarchy of progressively
simplified geometric representations.

However, for very fine detail, a significant problem has so far prevented
the inclusion of furry sufaces intc symthetic images. The conventional
approach gives rise to a severe, intractable aliusing problem. We feel
that this aliasing problem arises because geometry is used to define sur-
faces ab an inappropriate scale. An alternative approach is to treat fine
geometry as texture rather than geometry. We explore that approach
here,

This paper presents a new type of texture map, called a tezel, inspired
by the volume density {Blinn 1982). A texel is a 3-dimensional texture
map in which both a surface frame—normal, tangent, and binormal—
and the parameters of a lighting model are distributed freely throughous
a volume. A texel is not tied to the geometry of any particular surface.
Indeed, it is intended to represent a highly complex collection of surfaces
contained within a defined volume. Because of this the rendering time
of a texel is independent of the geometric complexity of the surfaces that
it extracts. In fact, with texels, one can dispense with the nsual notion
of geometric surface models altogether. That is, it is possible to render
texels directly, foregoing referents to any defined surface geometry.

We will use the idea of texels to represent fussy surfaces and present an
algorithm for rendering such surfaces.

Review of High Complexity Rendering

Many attempts to model scenes with very high complexity have been
made. One method is to attack the problem by brute force computing.
A very early effort by Csuri, et al.{1979) generated images of smoke and
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fur with thousands of polygons. More recently, Weil(1986) rendered
cloth with thousands of Lambert cylinders. Unfortunately, at a fairly
large scale, microscopic geometric surfaces give rise to severe aliasing
artifacts that overload traditional antialiasing methods. These images
tend to look brittle: that js, hairs tend to look like spines.

The brute force method fails because the desired detail should be ren-
dered throngh textures and lighting models rather than through geom-
etry. What is desired is the painfer’s illusion, a suggestion that there
is detail in the scenme far beyond the resolution of the image. When
one examines a painting closely the painter’s illusion falls apart: zoom-
ing in on a finely detailed object in a painting reveals only meaningless
blotches of color.

The most successful effort to render high complexity scenes are those
based on particle systems (Reeves 1983, Reeves and Blau 1985). We
belisve their success is due in part to the fact that particle systems
embody the idea of rendering without geometry. Along the path of
the particle system, a lighting model and a frame are used to render
pixels directly rather than through a notion of detailed microgeometry.
In some sense, this paper represents the extension of particle systems
to ray tracing. Ae the reader will readily discern, even though our
rendering algorithm is radically different, particle systems and texels are
complementary, ¢.g. particle systems could be used to generate texel
models, Indeed, this paper can be modified to render particle systems
in 2 manner that is independent of the number of particles rendered.

Gavin Miller in (Miller 1988} advanced a solution that uses a combina-
tion of geometry and a sophisticated lighting model much in the spirit of
this paper to make images of furry animals. However, like particle sys-
tems, the complexity of the geometric part of his algorithm is dependent
on the number of hairs.

The idca of texels is inspired by Blinn’s idea for rendering volume densi-
ties {Blinn 1982). Blinn presented an algorithm to calculate the appear-
ance of a large collection of microscopic spherical particles uniformly
distributed in a plane. This cnabled him to synthesize images of cloads
and dust and the rings of Saturn. Because Blinn was interested in
directionally homogeneous atmospheres, he analytically integrated his
equations to yield a simple lighting model.

In Kajiya and Von Herzen (1084), Blinn’s equations were solved for
nonhomogeneous media by direct computation. It was essentially a
volume rendering techrique for ray tracing. Because our work is based
on that earlier effort, we now briefly discuss the relevant equations from
Kajiya and Von Herzen (1984).

Ag a beam of light travels through a volume of spherical particles, it
is scattered and attenuated. The attenuation is dependent on the local
density of the volume along the ray. The scattering is dependent on
the density of the particles scattering the light and the albedo of each
particle. The amount of scattering varies in different directions due to
the particle partially occluding scatbering in certain directions. This
scattered light then is attenuated and rescattered by other particles.
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(1

This model ignores diffraction around scattering particles.

In ray tracing, we follow light rays from the cye backwards toward the
light sources (figure 1}. The progressive atienuation along the ray due
to occluding particles is computed for each point along a ray emanating
from the eye. At each point on the ray through the volume, we measure
the amount of light that scatters inte the direction toward the eye.
This light is then integrated to yield the total light reaching the eye.
Tn this work we use Dlinn’s low albeduw single scattering approximation.
That is, we assume that any contribution from multiple scattering is
negligible. We assume that the light is scattered just once from the
light source to the eye. The accuracy of this assumption is relatively
goad for low albedo particles and suffers as the albedo increases (Blinn
1982, Rushmeier and Torrance 1987).

Figure 1 shows a schematic of the situation. A volume containing par-
ticles with density p(z,y,z] at each point is penetrated by a ray. The
light reaching the eye is computed along the ray R. At each point
P = (z(t),y(t),z(t}) of the ray at distance ¢, the fllumination I; for
each light source is multiplied by a phase facior p(cos @) that indicates
how much of the light is scattered from the light source to the ray. The
brightness is then welghted by the density p of the particles at this point.
The attenuation between point P and A due to the medium is given by
an integral of the density along the ray. The equations are:

PO N CORO EIDIES (1)

and "
B :/ = o Lo Plaluho(z)s(n) du
tnear

« [Zl,v(z{f),y(t),z(t})p(cosﬂ) )
% p(=(t), y(#), = (t)) de

Equation 1 calculates the transparency T of the density p. It says that
that each small distance ds along a ray multiplicatively accumulates
the transmission coefficient by ¢~ "#%. The coefficient r converss the
density of the particles intc an attenuation coefficient. The quantities
tnear, trar are the near and far distances of the density that contribute
to the calculation,

Equation 2 calculates the brightness B by integrating the brightness
of each piece dt along the ray {z(t), y(t), 2{t)) according to three fac-
tors. The first factor introduces the attenuation of the medium along
the ray into the surface. Bright particles burijed deep within a density
are accluded by many particles, thus the accumulated transmission co-
efficient 13 low and the particle will not contribute much Light to the
pixel. Note that this facter is calculated as in equation 1. The second
factor multiplies the illumination I; for each light source ¢ reaching the
particle {which is given as a transmission as in equation 1), times the
lighting maodel for each single particle, this is given by the phase factor
plcosf). This phase factor is a (unction of the angle é between the light
divection and the eye direction. It represents the amount of occlusion
of the scattered light and is much like the phase of the moon. The third
factor weights the brightness by the density of particles at a given point.
A few bright particles will contribute less light than a large number of
dimmer particles.

Calculating the illumination component I; can be done in many ways,
Blinn (1982) assumed a homogeneous field and celculated the trans-
parency of the medium from point P to point C; for each light source =
{fizure 1). Kajiya and Von Herzen (1984) assumed an infinite distance
{viz. collimated) light source and precalculated the intensities for each
point in the volume by marching along a parallel wavefront. Rushmeier
and Torrance [1887) solve a system of linear equations ta yield ;.

Following Blinn{1982}, many workers have expanded on the voluma
density theme: Voes(1983), Max (1983}, Kajiya and Von Hergen(1984),
Max(1986b, 1986¢c), Rushmeler and Torrance(1987), and Nishita,
Miyawaki and Nakamae(1087). These algorithms extended Bline’s orig-
inal work to rendering densities with nonuniform distribution, to high

albedo sclutions, and to more general geometries. Rushmeier and Tor-
rance(1987) represents the most sophisticated effort to date, calculating
a physically zccurate distribution of light for érue multiple scattering—
albeit with isotropic scattering models.

The recent popularity of scientific visualization has engendered much re-
cent activity in volume rendering, e.g. Sabella{1988), Upson and Keeler
(1988), Drebin, Carpenter, and Hanrahan(1988}. The technique out-
lined in this paper has direct application to the volume rendering of
vector fields. In pariicular, vue resuls of this work has particular rele-
vance to volume rendering: the importance of shadows. In the results
section, we have rendered an identical texel with and without shadows,
As the pair of torii in figures 10 and 11 show, rendering without taking
inta account shadows creates a situation that is so unphysical that the
data cannot be properly interpreted by our visual system.

We also point out that the technique presented in this paper fits well into
the ray tracing/distributed ray tracing/rendering equation framework.
That is, texels can be mixed with the wide variety of primitives already
amenable to ray tracing. It is not clear whether texels can be made
compatible with the radiosity approach to image synthesis,

Texels

In Kajiva and Von Herzen(1984) it was suggested that volume densities
were potentially capable of rendering many complex objects beyond
particles of dust and smoke: this would mclude phenomenz such as
hair and ferry surfaces. We began this work attempting to generalize
volume density rendering along these lines. During the course of the
investigation, we found that the idea of using volume densities to model
surfaces is not entirely appropriate. Although the idea of distributing
lighting models instead of spherical particles within the volume density
is the right idea, we have found that one cannot not simply replace
particle lighting models with surface lighting models. The physics of
scattering from surfaces is so different from that of particles that new
equations governing the rendering process must be derived.

To generalize volume densities we now introduce texels. In practical
terms, a texelis a three dimensional array of parameters approximating
visual properties of a collection of microsurfaces. If texels are to he
used to replace geometry—such as trees on the side of a mountain—
then the micresurfaces of leaves and branches will be stored into the
volume array. At each point in space, several items must be stored.
First is the density of microsurfaces. That at certain points, space
is empty; at others, there is a dense array of leaves. A second item
distributed throughout space is a lighting madel. In a texel, each leaf is
not stored as a polygon. Insiead the collection of leaves is represented
by a scattering function that models how light is scattered from the
aggregate collection of serfaces contained within a volume cell. This
scattering function is represented by a pair of quantities, the first is a
frame, that is a representative orientation of a microsurfrce within the
cell, and a reflectance funciion,

Texels may be generated many different ways. We have not investigated
techniques for generating texels for many interesting cases. For example,
the geometry for the trees could be sampled into three—dimensional
arrays using some sort three-dimensional scan -conversion technique.
We have not done this, however. For representing fur, the generation of
texels is atraightforward and is presented in a section below,

Texels are intended to simulate a volume cell that contains bits of sur-
faces, not spherical particles. Thus the first companent of a texel is
scaiar density p which represents not relative volume, but an approxi-
mation to relative projected areq of the microsurfaces contained within
a volume cell. The second component of a texel is a field of frames B,
that is the local orientation of the microsurface within a volume cell.
The third component is a Reld of kghting models ¥, which determine
how light scatters from this bit of surface.

Definition, A fezel is a triple 0, B, ¥ consisting of a scalar density
Az, v 2}, a frame bondle B = [n(z,y,2),t(z,v,2),b(z,y,2)), and a
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field of bidirectional light reflection functions

W(z,y.2,0.4,9).

The scalar density p measures how much of the projected unit area of u
volume cell is covered by microsurfaces. It should properly be a higher
tensor quantity that takes into account the viewing vector, but we adlopt
the approximation that this quantity is an isotropic quantity and hence
a scalar,

The trame bundle B indicates the local orientation of the surfaces within
the texel. It is a field of coordinate basis vectors m,t,b that are called
the nermal, fangent, and binormal fields, resp.

The bidirectional light reflectior function ¥ indicates the type of surface
contained therein. It is possible to combine B and ¥ into a single
anisotropic lighting model field, but we have separated them because,
often, either component may be taken to be constant throughout the
volume while the other varies.

Texels appear to be a natural extension of a volume density. Because
in a vofume density the spheres are physically and materially isotropic,
the frame and reflectance fields are homogeneous. Thus they do not
need to be distributed throughout a density but can be established as
single quantities. Texels simply generalize this a bit.

Rendering Texels

How can one modify volume densities to model hair? A naive approach
would be to simply reinterpret the density p to reflect the densities of
the hair at each volume cell; and to modify the lighting model at each
point to correspond to scattering from a cylinder instead of a sphere.
Unfortunately this direct approach, while correct in spirit, has flaws.

For an insight into understanding why volume densities are not appro-
priate for rendering microsurfaces, consider the rendering of a single
plane surface via a volume density (figure 2). Assume that the surface
ig stored into a volume density so that it bisects the cube. The optical
depth of the surface is so high that it simulates an opaque surface. Let
the phase factor of the particle lighting model be say a Lambertian gur-
face lighting model in equations 1 and 2. Let us not use eguations 1 and
2 to calculate both the transparency and the brightness of the surface.

For the transparency calculation, even though the optical depth param-
eter 7 is set very high, the line integral of the density in the exponent
will be vanishingly small. This is because the surface is infinitely thin,
50 the line integral will pierce the surface at only a single point. This
yeilds an integral of 0,

A similar problem occurs in the brightness calculation, The brightness
integrand yields a finite value whose contribution to the integral along
the ray will be zero, since it is nonzero only for a single point.

Thus the transparency and brightness for this surface will both be sero—
an invisible surface! Obviously, volume rendering needs to be modified
somewhat to be able to render surfaces. The problem is that the relative
volume of microsurfaces does not determine brightness and opacity for
surfaces as it does for point particle densities. A single surface with zero
volume can be completely opaque and can reflect 100% of its incident
light. Yet its relative volume will be zero. Thus, what is called for is
something like a density which is given by Dirac delta functions. This,
along with 2 more general lighting model, is the essence of the texel
idea.

Texels are rendered in a manner which is similar to that for volume
densities, snitably generalized. Again, the equations model the situation
schematized in figure 1. The texel containing surfaces with projected
area density p(z,y,2) at each point is penetrated by a ray. The light
reaching the cye is compnted along the ray RB. At each point P =
{z(t), ¥(t), 2(£)) of the ray at distance ¢, the illumination I for each
light source is multiplied by the bidirectional reflectance function ¥
that indicates how much light is scattered from the light source to the

ray, The brightness is then weighted by the projected area density at
this point. The attenuation between point P and A due to the medium
is given by an sum of the density along the ray.

The eqiations for a texel illumination are
T elelelylabals)) (3)

and

tfar
B= Y. LD DI 110 ET (AR %)

t—tnear

x Z Ii(x(t): y(t),z(t))‘l’(:t(t), y(t),z[t), 6, ¢, P) (4]

x plz(t), y(t), 2(¢))

Equations 3 and 4 are similar to equations 1 and 2. Equation 3 is just
equation 1 with the line integral replaced by a2 sum. We write the sum
because integrating Dirac delta functions on microsurfaces sums the
contribution at each microsurface.

In equation 4, the relationship to equation 2 is also evident. The inte-
gral has again been replaced by 2 sum. The atternation along the ray
segment AP in figure 1 is represented by the first term in the product.
The second term models the scattering of light from the microsurface.
As in equation 1 there is a term for each Hght scurce. The illumina-
sion J; reaching the microsurface is multiplied by the bidirectional light
reflection function ¥ of the microsurface. Finally, the projected area
density scales the reflected light in the third term.

The transmission equation 3 for texels is a formal sum instead of an
integral. This formal sum is taken over each of the surfaces in the
density along the ray. I this sum is infinite, then the transmission
coefficient is zero, indicating that the density is totally opague. The
brighkness equation 4 iz aleo a formal sum instead of an integral. This is
because, at each surface intersecting a ray, we are adding the brightness
contribution of the surface at that point.

It would appear that eqnation 4 wonld always yield an infinite quantity,
but recall that the terms of the formal sum will be zero where there are
no surfaces and behind any surface the optical depth will be high and
will attenunate all contribetions to zera. Thus the sums are finite.

Calculation of the incident intensities J; are computed by using equation
1recursively. That is, a ray is shot from the point P to each light source
i (Bgure 1). The transmission coefficient is calculated from equation 1.
The intensity I; is simply the brightness of the light scurce attenuated
by the transmission coefficient along the segment PC;.

The algorithm just outlined would be impossibly expensive if the sums
were to he evalnated hy adding terms corresponding to every point along
the original ray. The algorithm presented in the next section approxi-
mates these sums by a Monte Carlo treatment that computes expected
values of random samples along the ray, in the spirit of distributed ray
tracing (Cook, et al. 1984).

Texel Rendering Algorithm

The texel rendering algorithm computes the abuve sums by approxi-
mating them with with expected values of random samples along the
ray. To find the intensity of light emanating backwards from a given
ray, the intersection of the ray and each texel boundary iz calculated.
The distances along the ray of these intersections then forms an interval
from Eppar t0 £14, along the ray, shown as poing A and D of figure 1. To
compute the sum, we use the technique known as stratified sampling.
We divide up the ray into a series of segments (delineated by tick marks
along the ray in figure 1). In each segment a random point is chosen to
calculate the scattering term, e.g. point P. The illumination J; is calcu-
lated by recursively shooting a ray toward each light source as discussed
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in the previous section. Finally the sum over segments are calculated
to approximate the quantities in equations 3 and 4.
1. Interscet a ray with the all texel houndaries to find Tpaay, Ear for
each texel. Sort all intersections from front to back and match with
distance. Let Trear =2 MiN g where the minimum is aver all

segments. Similarly Trae = max tiar.

"

. Divide up the ray frem Thear to Tfa, inte ray segments 5 of length
L, where '}: is & reference length parameter, the number of samples per
unit distance in world coordinates set by the user. (The last segraent
may be shorter than L),

3. Set transparency to unity.
4. FOR each segment.

4.1 Shoot shadow rays from the sample toward every light source to
caleulate the amount of light reaching this poink.
4.2 Calculate brightpess from lighting model and illumination intensity
and multiply by transparency to give overall brightness contribution
to the pixel pixel = pixel + trans * lighiMadel
4.3 Multiply transparency by €77, the transmission coefficient of the
segmient.
2. At the ¢nd segreent, caloulate brighiness as above but normalize by [raclienal
length of the segmoent.

Step 5 in the algorithm above is required to avoid bias in the Monte
Carlo calculation. If the final segment were to he treated as a full
length section then the averages would be thrown off. This has an
effect of making the edges of the volume appear slightly more opague
than they should be.

This section presents an algorithm for rendering a single texel. However,
to make pictures of fuzzy objects, four steps must be carried out, These
are the creation of the texels, the mapping of texels into world space,
the intersection of rays with texels, and the computation of the lighting
]nOdCI.

Generating Texels for Hair

We will now direct our attention to methods for generating texels that
represent patches of hair. The general problem involves long flowing
hair. Particle systems could be used to trace the trajectories of the
individual hairs through a three-dimensional array. The particle would
leave an “anti-aliased” trail of density that would be summed in with
previous densities,

A texel representing hair may be simplified by storing only the density
p and the frame B at each point. The bidirectional reflectance function
¥ is constant for each hair and common to all hairs (if the hair does
not change colar). Thus it is not necessary to store it throughout the
volume. For the lighting model derivation we treat an individual hair
as an infinitely thin cylindrical surface. Thus, the only element of the
frame that is necessary is the tangent vector along the hair, The rest
of the frame B, normal and binormal, do not enter nto the lighting
calculations and were omitted. Thus a particle system generating hair
would not only leave a track of density but also store a tangent vector
representing the direction of the velocity of the particle.

The teddy bear model presented in this paper uses a single texel repli-
cated over the bear’s skin. The contents of the texel were generated
using a much stnplified version of the particle system approach. All
hairs on the teddy bear are straight lines that point in the same direc-
tion, perpendicular to the scalp {in texel space}. This implies that the
hairs will lie along an axis 6f the three—dimensional array used to store
the texel. Thus the tangent vectors are all the same in that they all
perpendicular to the scalp. Thus they were also excluded from vokime
structure,

The bear’s fur texel was stored as a 40x40x10 array. The contents of
the array were designed based on several criteria:

L. The “hairs” are diséributed as « Poisson disk.

2. The Poissun disk is created with a torus tapology, so the single texel can tile

the entire bears surface without showing seams.

3. Anibmal fur often comes in twe layers, an “ovcrcoat,” and an “undcrcoat.”
The undercoat is a dense cover of short fur, while the overceat is a sparser
distribution of long hair. We have found this to be an wnportant feature tor
avoiding a brushlike appeararnce.

A “modeling” program allowed us to search the parameter space and presented

us with top and side projections of the texel. Using purely aesthelic {and largely

arbitrary) judgement, the texel used in figures 15 and 16 was created.

Mapping Texe! To World Space

By placing texels over the surface of the bear, we created a bear whose
fur flows smoothly over its entire body, while at the same time shows
local randomness. However, a texel represented as o three-dimensional
array, is shaped as a rectangular solid, at least in texel space. The texels
must be mapped onto the shape of the bear in a contimnous way to avoid

gaps.

The teddy bear was modeled using a new technique called generative
models. Each body part (head, body, ear, arm, leg, and nose) was
constructed by designing a parametric mapping ® from a rectangle U
{parameterized by u and v) into world space R®. If we were to render the
bear as polygons {as we do in the case of the bear’s nose), we would chap
the rectangle into a mesk of n X m small squares. Each square would
be mapped vertex by vertex through ® into world space. The resulting
objects (bilinear patches) would then be rendered {usually by further
approximating each patch as two triangles). Figure 3 demcnstrates
this approach. For the sake of simplicity, all figures will present just
two dimensions when possible. The extension to three dimensions is
obvious.

The texel cubes are mapped into world space in exactly the same way.
‘The parameterized rectangle is chopped inte n % m small squares. Each
square is mapped into world space and is identified with the base of
a texel {figure 4). (In the case of the teddy bear, a single texel was
replicated over the entire surface of the bear.)

The mapping @ defined by the generative modeling specifies what hap-
pens orly to the base of each texel: The texel’s third dimension (height)
must alsc be mapped into world space. This mapping specifies if the
fur on the bear stands straight out or if it lies down. The extension of
& to the third texel dimension need only be defined for the corners of
the texel. Once the corners of the fexels are mapped, they are no longer
necessarily boxes. Additionally, the gaps between adjacent texels dis-
appear (figure 5). The linear nature of the texel interpolation described
in a following sections assures that the hairs within a texel will fow in
the same general direction as the corners.

A modeling program was created that allowed the designers to manipu-
late the orlentation of the corners of the texels. The program starts with
the corners of each texel sticking straight out (i.c., the corners of cach
texel correspond with the surface normals of the scalp). The corners
are then perturbed by global Fourier maps.

Intersecting Rays With Texels

A texel is shaped as a rectangular solid in texel space. The mapping
of the texel into world space as described above changes each of the six
faces of the rectangular solid into a bilinear patch. The intersection of
a ray with a texel is accomplished by intersecting the ray with the six
faces of the texel in world space.

Intersecting Rays with Bilinear Paiches

Bach edge of a bilinear patch, zs well as all “horizontal” and “vertical®
¢cross sections on the patch are straight lines. All other cross sections of
a bilinear patch are quadratics, Therefore, it seems reasonable that the
ray—patch intersection calcelation should involve solving the quadratic
equation.
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A ray is defined by the equation R = at + b with 0 < t. The 3-vectors
a and b specify the origin and direction cosines of the ray. A hilinear
patch is of the form P = Auv + Bu+ Cuv+ D with 6 < » < 1 and
0 < v<1where 4, B,C, and D are also triples,

The intersection of the ray R with the patch P cccurs when R = P,
Expanding into components yields three ecuations of the form,

Ajwv+ Biu+ e+ Dyt o B, =0, (5«1}

Azut + Byu+ Chuv+ Dot + Eg = 0, (55)
and

A3!LU+B3U+C3U+D3t +Ey =0, [55)

These equations should be reordered so that the first is the one with
the largest [ coefficient, This will assure that, in the case of a patch
aligned with an axis, the denominaters in the equations that follow will
be reasonable (thereby avoiding floating point overflows).

The first equation is solved for ¢, yielding

Ayuv 4+ Bou+ Cun+ E,
Dy

t= ; (6)
which can be substituted into the remaining two equations to remove
references to £, resulting in two equations of the form

Fouv + Gout+ Hov + 13 =0 (7a)

and
Faut + Gau+ Hau+ o =0, (7b)

These two equations can be multiplied by F3 and F; respectively, and
the uv term can be eliminated, giving a linear equation relating v and
v, Solving for u and backsubstituting into equation {7a) or (7b) results
in a quadratic equation in v. Once v is determined, » quickly follows,
as does 1.

When solving the quadratic equation {of the form az? + bz + ¢ = 0),
there is a possibility that the coefficient on the square term (o) may
be very small. This could occur, for example, when the four points of
the bilinear patch are coplanar. Since we are looking only for values of
0 <u <1, we can compute if a is too small using the equation

b+ sgn(b)vbh? ~ 4ae < 2a. {8)

If the equation fails to hold, then the root would be out of the range
—1 € 4 £ 1, and need not be computed. This and similar tests will
help avoid floating point overflows.

Mapping Ray-Texel Intersectians to Texel Space

Once the intersections of the ray with the texel have been computed,
they must be mapped into texel space. Then the texel properties (such
us density and tangent vector) can be fonnd by trilinear interpolation
from the texel arrays.

To compute the mapping, all the intersections are sorted. Ideally, they
will come in pairs, the firet of the pair (“near”) representing the ray en-
tering the texcl, and the second (*far”) representing the ray leaving the
texel. The intersections yield pairs of the form (fears tncars tnears Enesr)
and ( fiar, War, Ufac, éfar), where f is the index of the face intersected,
{1, v) is the patch coordinate for the intersection in face f, and ¢ is the
distance along the ray for the intersection.

Each intersection is mapped back to the texel in texel space, resulting
in points of the form (Tuears Yuvars Znesc: tncar) 3NG (Ztaz, Yrars Ztar: tar)s
where [z, y, 2) is the coordinate withing the unit texel of the intersection.
The ¢ values remain unchanged.

The (=, y,=) coardinates of an intersection in texel space will fall in the
unit cube. At least one of the components will actually be either Dor 1,
except when an intersection happens for £ < 0. In this case, the (z,v,2)

coordinates of the intersection must be adjusted by interpolation to
match the point on the ray where £ = 0.

To render the scene, the shader must know the value of the texel at many
points along the ray. Because the ¢ parameter is invariant under the
texel-space-to~world-space mapping, we can use it as the interpolant
ta compute the texel space coordinate for any value of t. The three
compouents are

£~ bnear

~(Frar — Tasas) + Fucurs (9a)
ttar — tnear

t— tne
_“Ei(yfar - ynear) + Unear, (gb)
Eiar ™ tnear
and
t—¢
e (zl'ar - znean) + Zneac- (QC)
tfar ~ tnear

Lighting model for hair

There are two components forming the lighting model for a single hair,
the diffuse and specular. The diffuse component is derived essentially
from the Lambert shading model applied to a very small cylinder, The
specular component is an ad hoc mede! similar to the Phong light re-
flection madel that has been madified for cylindrical surfaces.

A more rigorous approach to defining a lighting model would be some-
thing along the lines of Kajiya (1985}, of Cabral, Max, and Springmeyer
(1987}, or of Krueger (1988). These papers propose algorithms to con-
vert the the surface microgeometry to be represented in the volume
directly to lighting models. We have found, however, the exact form of
the details of the lighting model not to be particularly critical to the
quality of the Images. Examination of the images show that our ad hoc
approach is adequate.

The geometry for deriving the hair lighting model is shown in figure 6.
An individual hair is a line segment specified by a position z and 2
tangent vector £. The light vector | points from s to the Iight source.
The eye vector e indicates the direction of the scabtered light toward
the eye. All of these vactors are assumed to be of unit length. The
projection ' of i onto the plane perpendicular to ¢ forms the second
basis vector. The third basis vector b iz chosen to be perpendicular to
both the previous basis vectors,

The diffuse component

The diffuse component of the hair reflection model is obtained by in-
tegrabing a Lambert surface model alorg the circumference of the half
cylinder facing the Lght source. As shown in figure 7, we integrate over
the half circle visible from the light source. The back of the surface is
not illuminated. The orthonormal basis formed from the three vectors
t,#', b are easily calculated. The first baais vector is t, which is perpen-
dicular to the texel base. The second vector {' is the projection of the
light vector [ onto plane P containing all the normals ta the cylinder.
The vector I’ is given by

{—(t- 0t
Vs e 10
g (o)
It is easy to see that b, orthogonal to ¢ and ! is calculated as
b=ixt. {11)

These three vectors are shown in figure 6.

The total amount of light scattered per unit length of cylinder is inte-
grated over the semicircle from shadow terminater to shadow termina-
tor (ﬁgure 7). Let us parameterize the position along the cylinder by ¢
where 6 ranges between 0 and 7 radians. As a function of ¢ the normal
vector n to the cylinder is

n = b{cos ) + I'{sin9). {12)
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The Lambert model gives the intensity of reflected light as ¥({f) = (k4)!-
n, where kg is the diffuse reflection coefficient. Thus to find the total
amount of light per unit length we integrate aleng the circumference
of the half cylinder. The line integral element ds along the cylinder is
given in terms of 4 by rdf, so

‘I’d;uu,e=kdf {-nrdi
Q
™
= f 7’[ - (b{cosf) + E(sint)) 48
4 f {b{cos §) + ¥'(sint)) (13)
:kdr[-l’f sin & df
0
= (K-t

where K absorbs all the quantities independent of [ and I'. Substitut-
ing the definition of ¥ into the definition yields a particularly simple
expression for the diffuse companent:

L (t-1)t
= - el
1—(¢-1)2 (14)
1-{t )2
= Kq sin{t,1).

‘Ild:'ffuse =Kyl

= frg

Thus the diffuse lighting component is proportional to the sine between
the light and tangent vectors. Thus if the tangent of the hair is pointing
straight at the light, the hair is dark. This is readily observed in real
hair. .

The specular component

Calculating the highlights on a hair requires some term capturing spec-
ularity. We could have derived a specular term in a similar manner
starting from the ad ho¢ Phong specular model. However, the process
is more difficult and the resulting model quite complex. We choge in-
stead to invent an ad hoc specular model in the same spirit as the Phong
model modified to approximats some diffraction around the hair. The
mode] is motivated by figure 8.

Any light striking the hair is specularly reflected at a mirror angle along
the tangent. Since the normals on the cylinders poing in all directions
perpendicular to the tangent, the reflected light should be independent
of the azimuthal component of the eye vector. Thus the reflected light
forms the conc whose angle ab the apex is equal to the angle of incidence
as shown in figure 8. The actual highlight intensity is given as

Wspﬂuulur =k, cos"(e, e’) (15)

where k, is some specular reflection coeflicient, e is the vector pointing
to the eye, and e’ is the specular reflection vector contained in the cone
closest to the eye vector, and p is the Phong exponent specifying the
sharpness of the highlight. The highlight is thus a maximum when the
eye vector 13 cantained in the reflected cone and falls off with a Phong
dependence.

To calculate this model we note that the only quantities entering into
the calculation are the angle of incidence and the angle of reflection with
respect to the tangent vector, # and #'. The intensity is given by

\vacuulur =k, cos® 6 — g’
= k; {cos # cost +sind sin 8y (16)
= ky(t -1t e+ sin{t,l)sin(¢, e}

These quantities are easily calculated from the original vectors,
Results

Figure 9 shows a single texel of hair. Discounting the base plane, no
geometric model has been used to create this image. Figure 10 shows

a closer view of the rightmost edge of figure 9. Note ¢hat the painter’s
illusion breaks down on the close up view. We should switch from the
texel representation to actual geometry when viewing the model at this
resclution,

Figures Li, 12, L3 and 14 show a number test images displaying torii
cavered by texels, modeling brushlike fur. These show what happens
when the corners of the texels are not deformed by €.

Figures 11 and 12 are identical except that figure 11 was rendered with
the shadows turned off, so that every cell is always illuminated. Tt is
evident that self shadowing of the texel is one of the principal cues for
realism.

Figures 15 and 16 show two versions of a teddy bear. The underlying
geometric model is identical for each bear. Different Fourier coefficients
were used for defining each local texel deformation, Fewer, larger texels
appear in figure 15. The processor time for each of these images was
substantially the same. These images have a resolution of 1280 by 1024
pixels. No antialiasing was done.

Precise measurements of the CPU time are somewhat problematic, as
each image was rendered concwrrently on a network of large IBM main-
frames. We used a total of twelve 3090 processors and four 3081 pro-
cessors. On average, we obtained approximately 30%-50% of each pro-
cessor. Total wall clack time was about 2 hours.

Further Work

The guestion of how to turn geometry into texture has not yet been
solved. This paper represents only a start on the problem. An auto-
matic way of generating texel densities from complex geometric models
is currently unknown to us. We speculate that the theory known as
geomnetric measure theary may provide the key mathematical insights
into this problem.

Applying texels tu other complex scenes Is also left open: consider the
problem of rendering a forest covering a mountainside in the distance.
Instead of having thousands of polygons, each tree and bush could be
modeled as an appropriate texel. When the texels theinselves become
very amall, one can merge several into a larger texel, somehow adding
densities and merging lighting functions.

We have not modeled long hair, or curly hair; only fur. This i3 an
interesting modeling task especially when oae decides to include the
dynamical behavior of long hair in an animation. We believe that the
methods presented in this paper will adequately render long hair once
the modeling problems are solved.
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