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Robot Sensing Techniques Based on
High-Dimensional Moment Invariants and Tensors

Vishal Markandey, Member, IEEE, and Rui J. P. deFigueiredo, Fellow, IEEE

Abstract— A generalization of the concepts of moments and
moment invariants to n-dimensions is presented. These concepts
are used to develop techniques for object identification and
attitude determination. Experimental results for these techniques
are presented, and theoretical error analyses are developed.

I. INTRODUCTION

HE concepts of moments and moment invariants have

been extensively applied to the problems of object recog-
nition and attitude determination [1]-[4], [6], [7]. Hu [1] uses
2-D invariants for estimating orthogonal transformations in
the image plane, and Dudani et al. [2] apply 2-D invariants to
object silhouettes. Cyganski and Orr [3] have used a tensor
representation to derive the invariant formulation for 2-D
image data of 3-D objects. Sadjadi and Hall [4] have developed
an object recognition technique using 3-D moment invariants,
while Lo and Don [11] have used 3-D moments for object
identification and positioning. Faber and Stokley [12] compute
the affine transformation between two 3-D medical images
using a tensor formulation similar to that of Cyganski and
Orr [3]. Bamieh and deFigueiredo [6] use invariants of 2-D
moments with respect to 3-D scaling, translation, and rotation,
all of which correspond to invariants with respect to 2-D affine
transformations. We extend this formulation to the general n-
dimensional case and discuss its applicability in multisensor
fusion.

In this paper, we first present a general theoretical frame-
work for the n-dimensional case, which provides a basis for
unifying the earlier work in the field mentioned above, for the
special cases of n = 2 and 3. An incentive for developing
such a unified representation is the increasing use of multiple
sensors and sensor fusion in robot vision, for example 2-D and
3-D data of the same scene could be respectively obtained
from camera and laser range devices. One of the problems
in sensor fusion today is the integration of such data from
multiple sensors into a uniform representation, ideally without
loss of information. Our technique uses high-dimensional
moment invariants for the representation of features using
data obtained from multiple-sensor or high-dimensional mea-
surement spaces. The term “high dimensions,” as used in
this paper, refers to dimensions greater than three. Exam-
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ples of high-dimensional data are multispectral satellite data
for agricultural, surveillance, and other applications, and the
combinations of visible, several infrared, and laser radar
measurements used in military applications.

The rest of this paper is organized as follows: A formulation
for n-dimensional moments and moment invariants is given in
Section II. This includes a technique for invariant construction
from raw data. Section III is a discussion of object representa-
tion and identification using moment invariants. It is shown in
this section that while 2-D moment invariant representations
are limited to polyhedral objects, 3-D representations can be
extented to objects with curved surfaces, under the condition
that the object surface can be subdivided into well defined
patches. An attributed graph representation similar to that in
[6] and [9] is used. Each node of the graph represents a face or
patch of the object and has its moment invariants associated
with it. Arcs between nodes represent connectivity between
the corresponding faces or patches. The graph representation
derived from the image is a subgraph of the corresponding
object’s graph representation. For object identification, graphs
obtained from images are matched against object graphs in the
system library, using a recursive graph matching algorithm.
Experimental results for object recognition are presented.
Section IV is a discussion of attitude determination using
moment tensors. It turns out that if a face or patch of an object
has any axis of reflection symmetry or will have it under any
affine transformation, then its moment tensors will reduce to
zero. As many geometric objects do have symmetric surfaces,
this can be a serious constraint. A technique is developed for
automatically checking the symmetry conditions of a polygon
and if symmetry conditions exist, artificially deforming it
so that the symmetry condition is destroyed. This deformed
polygon is then used for attitude determination. Experimental
results for attitude determination are presented. Section V
is an error analysis that explores the sensitivity of moment
invariants and attitude parameters to errors in input.

II. n-DIMENSIONAL MOMENT INVARIANTS

n-dimensional moments of order (p; + p2 + ...+ pn) for a
function f(z,z2,...,zn) are defined in terms of the Riemann
integral as
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— P1 P2 P
upxpg...pn —/ / / Ty To" ... .Tn"
—0C — 00 —00
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where p1,ps,...,pn = 0,1,2,.... In this paper, we assume
that f is sufficiently well behaved for the above moments to
exist.

If f(x1,%2,...,2,) is assumed to be a piecewise continu-
ous (and therefore bounded) function and is nonzero only in &
finite part of R", then moments of all order exist, and it can
be proved that the central moments {my,,. . p,} (see [4] and
(5] for a definition) uniquely determine f(z1,%2,...,%n) and
are uniquely determined by it.

A. Moment Generating and Characteristic Functions

The moment generating and characteristic functions for the
function f(z1,z2,...,Z,) are respectively defined as

M(ulau27' "7un)
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where 7 = —1.
B. Central Moments
The central moments are defined as
Mpips...pn
/ / / (1 = 2" (22 — 22)”
( )Pn f(xlvz% axn) dwld-’l?z d-rn
C))
where
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H00...0 Ho0...0 Noo.‘.o

From here on, all moments refered to are central moments.

C. Algebraic Forms and Invariants

A homogenous polynomial in n variables of order q is called
an n-form of order ¢ if and only if

q9
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Z q!
p(x17:1:27"'$x71) = ) aP]P2-~Pn
p!pa! ... pal
P1,P2;--,Pn=0 )
AT ST o (6)

where p; +p2+. ..+, = gand p1,p2, ..., arc all integers.
A homogenous polynomial I(a) of coefficients ay, 5, .. 5, is an
algebraic invariant of weight w if

i
Hap, p,..p,) = 8% I(ap,p;..5,) @)
where amp2 p, aT€ the new coefficients obtained under a

linear transformation of the original polynomial and A is the
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determinant of the transformation matrix. When w = 0, the
invariants are called absolute invariants.

D. Moment Invariants

Expanding the exponential factor in the moment-generating
function (2) into a series form, we have

u17u27"'

///
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+ o Funza)? f(zl,:vg, ey Ty ) dry dzo ... dTn.
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Interchanging the orders of summation and integration
e} 1 q
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Let (u1,ug, -, us) and (21, Zo, . . ., Tn) undergo the follow-
ing transformations:
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Transformation (10) is refered to as a contragredient transform
and (11) as a cogredient transform. The variables of these two
transforms satisfy the condition

U1y + ugT2 + ...
I W 10 /
=uTy + uUsTy + ... tu

+ UnTn
.. (12)

By applying transforms (10) and (11) to (8) we obtain
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where f'(x,5,...,2%) = f(z1,%2,...,7,) and |J| is the

Jacobian of the transform (10). Mi(u},ub,...,u,) is the
1, %2 n
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moment generating function after the transformation. If the
moments after transformation are defined as

TR B B BT
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It is a fundamental result in invariant theory [5] that the
transformation for the “a” coefficients in (6) is the same as
that for the monomial x’f‘:cgz ...x2~ in the expansion of the
expression

(16)

From (8), (9), (13), and (15) it is obvious that the same
relationship holds between the kth order moments and the
monomials, except for division by the |J| term. From this we
have the following theorem:

Theorem 1—Fundamental Theorem of Moment Invariants:
If an algebraic form of order ¢ has. algebraic invariants

(w121 + upZa + ... Fupzy)"

I(a;’lpz- Pu) =AY I(GP1P2-~P7») (17)
then the moments of order ¢ have invariants
I(m;hp?vvvpn) = ‘Jl AY I(mP1P2.-~Pn)' (18) )

E. Moment Invariants and Linear Transformations

Theorem 2: When the underlying space is linearly trans-
formed, moments of a given order get transformed as a tensor.

A moment tensor of a function f(zy,z,...,&,) is
[ [ [
flzy,z2,... 2p) dey d2y ... dz,  (19)

where i, j, k, ... take the values 1,2, ..., n. (The rest of this
section and also Section IV assume a knowledge of tensors
and tensor transformations. Space limitations preclude the
possibility of providing some background material on tensors.
The interested reader may refer to [10] for a detailed discussion
of tensors and tensor transformations.)
Proof: Consider the transformation of space
P =Qi ¢ or 2 =Q & (20)
where the Einstein summation convention is used to represent
the transformation. The moments after transformation are

[ et e

“Za, ,...,an Zo,) dz,...dz,

A
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where |J| is the Jacobian |Q; |. If we consider the normalized
moments mi ¥~ = Tk /n where 5 is the zeroth order
moment and

S
p= (23)
|71
then .
mik = QL QL .. .mMee (24)

which shows that m is indeed a tensor.

F. Invariant Construction

If T%*- is the tensor representation of a moment My, ,, . p.,
and the tensor components are ¢1,13, . .., then (18) reduces
to

Ut th, ..., 15) = AY Uty o, ..., 1) (25)
where U is the algebraic invariant for the tensor. From this
representation of invariants for moment tensors, we have the
following theorem for invariant construction:

Theorem 3: An algebraic invariant of weight w and order d
of a tensor T is a linear combination of terms that have been
constructed from A by d — 1 tensor multiplications and |w|
total alternations.

This theorem provides a means for constructing invariants
from moments. As an example, the construction of moment
invariants for order 2 and weight 2 are considered here for
the 2-D and 3-D cases. The invariant is constructed by two
alternations of the product m* m*?. For the 2-D case it is

‘I’l = 2(m11 m22

- (m'?)*) (26)

and for the 3-D case it is

\Ifl -9 [mll m22 + mll m33 + m22 m33
- (m?)’ = ()" — (m*)]
+ 4 [m11m23 + m12m23 _ m13m2

+ m12m33 _ m13m21 _ m13m22}

@7

It should be noted that these ¥’s are not absolute invariants.
An absolute invariant I; can be computed from
L =9, (" (28)

where ( is the determinant of the transformation matrix.
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III. OBJECT REPRESENTATION AND IDENTIFICATION

For object identification using moment invariants, an object
is represented in terms of a graph, each node of which
represents a face or patch of the object. Arcs between nodes
represent connectivity between the corresponding faces or
patches. Associated with each node is a feature vector contain-
ing the moment invariant values. An important issue here is the
number of moment invariants required for the completeness
of representation. While for a given order of moment tensor
the number of invariants is finite (according to Hilbert), the
order of moment tensors has no upper bound. But it is not
practical to use moment invariants of an arbitrarily high
order. Also, as shown in the error analysis section, the error
sensitivity of moment invariants increases with the tensor
order. It has been experimentally found that if tensors up
to the fourth order are used, good representation accuracy
is obtained while maintaining the errors within reasonable
limits.

For object identification, graph representations of objects
are stored in the system library. Given an image of an
object, its graph representation is computed. The sequence of
processing operations required to convert raw data to the graph
representation is described in [8]. The graph representation
derived from data will be a subgraph of the graph represen-
tation of the complete object. The graph-matching algorithm
described below is used for matching the data-derived graph
representation against object graph representations stored in
the system library for object identification.

A. Graph Matching

Let G; represent the image graph and G, represent the
object graph. We pick a node of G; and try to match it against
all nodes of G,,. If a match is found, then the next node of G;
is picked and a match is attempted against the remaining nodes
of G,. This procedure is implemented as a search algorithm
as follows.

Let the number of nodes in G; be n, and let the number of
nodes in G, be m. The nodes of G; are numbered as G, and
those of G, as G’g. Arrange sets of nodes of G, in n levels.
The level number is denoted by ¢. Each level contains the
nodes in G, with respect to which the gth node of G; needs
to be matched. The number of nodes in any level is m — q.
The nodes in the above sets are numbered Gi¢ when they
correspond to a match between G§ and G%. Here, s and ¢ are
dummy indices. A cost of 1 is assigned to a match between
two nodes if the Euclidean distance between their moment
invariant vectors is above a certain threshold (no match) and a
cost of 0 if this distance is below the threshold (match). If two
matching nodes are connected in either the image or object
graph and the corresponding nodes in the other graph are not
connected, a cost of 1 is assigned to the match, otherwise the
connectivity cost is 0.

1) Main Algorithm:

For q from 0 to n-1 do:
For k from 0 to m-g-1 do:
fcall function: zero-cost-match (G?,Gk)
If (function zero-cost-match returns
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Fig. 1, Graph representation of a 3-D object. Subgraph of the portions seen
by the camera: (a) object and (b) attributed graph.

zero-cost)
then (go to x)
else (next k)
Call function back-track
Next k
*Mark nodes G? and G* as an associated
pair
Next g
Declare object identification
2) Function Zero-Cost-Match:
1f (G? and G* are matched)
then (If (G} has marked neighbors)
then (If (Gg and G§ have correspond-
ing marked neighbors)
then (return zero-cost)
else (return unit-cost)
else (return zero-cost)
else (return unit-cost)

3) Function Back-Track:
If g=0, declare object not identified,
terminate.
else
(g=g-1
For a from q to n-1 do:
Check for next marked node at level q,
let it be Gk
For b from k to m-a-1 do:
Do rest
) .

Note: The rest of the function back-track is essentially the
same as from { of the main algorithm, and so is not repeated
here. ¢ and b are dummy indices used in function back-track
to differentiate from the indices in the main algorithm.
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Object Library
J: Solarmax OBJT
2: Shurle:OBJT
3. Octbox.OBJT
4: Qcthall OBJT
5. Cube.OBJT

Choice? S

Enter roll, pitch, and yaw (space scparated) : 45 45 45

Recognition Phase
Attempting to match Solarmax .OBJT
Sorry, no match

Attempting to match Shuttle OBJT
Sorry, no match

Attempting to match Octbox OBJT
Sorry. no match

Attempting to match Octball OBJT
Sorry, no match

Antempting to match Cube. OBJT
OBJECT IDENTIFIED IS:
Cube . OBJT

Match correspondences:

Wireframe face # —e~ Model face #
Q2

I—»b

2—»c¢

Fig. 2. Graph matching for object recognition.

B. Example

The graph representation of a 3-D object (a cube) is shown
in Fig. 1, and simulation results of using the graph-matching
algorithm' described above for object recognition are shown
in Fig. 2.

IV. ATTITUDE DETERMINATION

Three-dimensional rigid body motion has two compo-
nents — rotation and translation. If (x, y, ) are the coordinates
of a point before motion and (z’,%’, 2’) are the coordinates
after motion

8

T
"I =R|y|+T (29)
z

IS~

where

T T T3
R=|ry 15 1¢ (30)
T T8 Tg

is the rotation matrix and
T= Ay (31)

is the translation vector.

The technique for attitude determination using camera data
has been presented by Bamieh and deFigueiredo [6] and is
briefly summarized here.

The translation components can be computed as

’ mio mo1
Azr = — Ay=—. 32
moo Y moo ( )

Az cannot be computed by this method.
Consider the following unit rank tensors formed by contrac-
tion of second-, third-, and fourth-order moment tensors.

V™ =mY € € Mim [ 7 (33

A = i pkim e €jo €kp €1g M / 7’ (34)

where €z = 0 for i = k,e19 = 1, and €33 = —1. If v™, 2™
denote the tensors for a surface patch after motion and T, A™
for before motion

1)1 Ql Ql Tl ‘

o] 1& &][e] e
1 1 1 1

-8 @)k e

According to Cyganski and Orr [3], when an object undergoes
a 3-D transformation, its tensors also undergo the same trans-
formation. So after simplification, Q1 = r1,Q} = 72,Q% =
T4, and Qg = r5. The remaining parameters of the R matrix
can be computed using the fact that the sum of squares of any
row or column equals one.
For n = 3, we have
Ag=T00 Ay TO0 A, 0L (37
™M000 Mo00 ' Moo

Also, using an additional unit rank tensor obtained by con-
tracting second-, fourth-, and fifth-order moment tensors

|

klmn

= m m €io €jp €hq €lr €ns MTI™® / 178 (38)

we have the following relations.

Let 4
Qi Q; Q3
Q=107 @ Q| (39
QF @ @
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Fig. 3. Symmetry conditions for polygons.

Then
Ul 'rl /\1 Al 61 El
V=@ [ =Q A |&|Q|E?
,US ’rS /\3 A.’i 63 53

(40)

The @ parameters can be computed from the tensor values.
The r parameters can then be computed using the following
relations:

1 2 2

Qi=m1 Qy=rm Q=73 Qi=ry Qi=rs
2 3

Qi=rs Q=r: Q3=rs Q3=ry

Thus the rotation paramters can be computed directly from
the () parameters.

If a face or patch has any axis of reflection symmetry, its
tensors all go to zero [10]. To avoid this condition, given a face
or patch, we first check it for symmetry. If it has symmetry
or will have symmetry under an affine transformation, we
distort it so that it will not have symmetry under an affine
transform. While the symmetry conditions for a polygon are
easy to check in terms of its vertices, the same is not true for
curved faces. We overcome this difficulty by fitting a plane
face to the vertices of a curved face and using this polygon
for attitude determination. As the object is rigid, the polygon
undergoes the same transformation as the curved face. So from
here on we discuss symmetry conditions only for polygons.

A. Symmetry Conditions for Polygons

To check the symmetry conditions of a polygon, we use
an approach where we check the polygon for symmetry on a
vertex-by-vertex basis. The symmetry conditions for a polygon
depend on whether it has odd or even number of vertices. If
the number of vertices is odd, the axis of symmetry will pass
through a vertex and the midpoints of two other vertices. If
the number of vertices is even, the symmetry axis will pass
through two vertices or two vertex midpoints.

Let the vertices of a polygon be designated z!,22,..., 2N
where z* = [z;,;]7. Also, let the midpoint of vertices z and
zd be '/, where 79 = (% + 27)/2.

1) Odd Polygons:

Theorem 4: 1f a symmetry axis passes through z* and £/,
then

(@ — 27, a* — 29y =0

for i # k;j # k.
Proof: Consider the triangle z*z?z*, which is a part of
the polygon in Fig. 3.

@41
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Fig. 4. Symmetry conditions for polygons.

Here, %/ — z* is the axis of symmetry. For the triangle to
be symmetric, it must be isosceles, i.e., o = 3. But

a+ % to=x 42)
where
y=n- (a+ p) “3)
Therefore
(0—25)+9=g (44)
»6="7. (45)

The proof is valid in general for all odd polygons because
further pairs of polygons down to the maximally distant vertex
pair from z* would form lines parallel to z* — 27, as shown in
Fig. 4. The maximally distant vertex with respect to another
vertex is defined as the vertex reached by traversing the
maximum number of edges along the polygon. For z*, z”
and z° are the maximally distant vertices in the above figure
as both are three edges away. In general, for an odd n-gon, for
vertex z*, the maximally distant vertices are z**+(®~1)/2 and
zF+(m+1)/2 n checking for a symmetry axis, one needs to
check a vertex and its maximally distant vertex pair. A vertex
need not be checked with any other vertex pair. So every
vertex in the polygon is checked for a symmetry axis with
respect to its maximally distant vertex pair and if no vertex is
found to have an axis of symmetry through it, the polygon is
declared nonsymmetric. For an n-gon the algorithm requires
Ol[n] processing time.

2) Even Polygons: For an even vertex polygon, two kinds
of axes of symmetry can exist.

1) Axis through two vertices.

2) Axis through two midpoints of vertices.

Theorem 5 —Axis Through Two Vertices: An axis of sym-
metry will pass through vertices z® and z? if there exists
another pair of vertices z* and z’ such that
ol g - gy =0

(z (46)

and
(@8 = 2l , z® - 2z¥) =0 47

for i # a or b,j # a or b. z* and z? will form a pair of

symmetric points with respect to z® — z°.
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Fig. 5. Symmetry conditions for polygons.

Fig. 6. Symmetry conditions for polygons.

The proof is analogous to the one for odd polygons given
above and so is not repeated here. As for odd polygons,
here also we check for existence of symmetry axis between a
vertex z* and its maximally distant vertex z(¥+"/2) where n
is the total number of vertices in the polygon. The search for
existence of symmetry axis is conducted with respect to every
vertex. The entire search would thus require O[n] processing
time. If zP is the maximally distant vertex with respect to
z* then if (z*, zP) have been checked for symmetry (z?,z¥)
need not be checked. Thus by marking the vertices which have
already been checked and not checking them again we reduce
the processing time to O[n/2].

Theorem 6 —Axis Through Two Midpoints of Vertices: 1If
(xP —z9) and {z" —z*) are parallel and (2P —z",z" —2°) = q,
{(z? — z°, 2" — z*) = (3, then an axis of symmetry will pass
through z?? and 2" if @ = fora =7 — 3.

Proof: In Fig. 5, let (z, — z3) be the symmetry axis and
zP, 19 be the two points symmetric with respect to it. Two
other points 2", 2° can be symmetric with respect to (z® —z”)
such that (2P — z") and (x9 — z°) are parallel to (2 — z*)
or they are not parallel.

Case 1): (zP — z") and (z? — «*) are parallel to (z® — z°).
In Fig. 6, as (zP — ") and (2% — z°) are parallel , by definition
they make the same angle with any line, specifically with
(z" — z°), so a = (.

Case 2): As in Fig. 7, if (zP — z") and (2?7 — z°) are
not parallel, they will meet at some point z* that will lie on
(z* — x%). So we have a triangle z"z*z® with an axis of
symmetry through z* and z"¢. By theorem 4

{zt — 2", 2"

_$3>:<$t —IIIS,JSS _1_7‘)
= a+ B=m.

(48)
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Fig. 7. Symmetry conditions for polygons.

As in the case of vertices, we define a maximally distant edge
for a given edge. For an edge (z"*! — z*), the maximally
distant edge is (z(*+1)+7/2 — gk+n/2) where n is the number
of vertices in the polygon. In checking for a symmetry axis,
an edge is checked only with its maximally distant edge. Also,
if an edge has been checked as a maximally distant edge, it is
marked and need not be checked again. The total processing
time for an n-vertex polygon is O[n/2].

From theorems 5 and 6 it is obvious that the total processing
time for a symmetry check on an even polygon is O[n].

From theorem 4 and the above results we have:

Lemma: A symmetry check for an n-vertex polygon has
an Ofn] processing time.

If the face has an axis of symmetry as verified above,
then it is subjected to distortion that removes the axes of
symmetry. It has been found that while for any particular
distortion there always exists an affine transformation that
would yield an axis of symmetry, if the polygon is subjected to
two separate distortions that are antisymmetric with respect to
each other, there exists no affine transformation that yields
axes of symmetry for both cases. If these two distortions
are refered to as D; and D,, then the procedure consists of
subjecting the polygon to D; and checking it for whether it
has any axis of symmetry. If it does, it is subjected to D2 and
by the above argument it will not have any axis of symmetry.
Note that all deformations are conducted in the plane of the
polygon so that the attitude is preserved under deformation.

B. Example

The technique developed above for attitude determination
using moment tensors was tested on real image data. The
test object was a model of the space shuttle shown in Fig.
8. Attitude determination results for various positions of the
shuttle are given in Table 1.

V. ERROR ANALYSIS

An error analysis for moment invariants and attitude results
is presented in the following subsections.

A. Moment Invariants

Theorem 7: Error sensitivity of moment invariants increases
with their order.

Proof: Let the function f(z,y) be expanded about a

point (g, yo), this point being chosen such that it lies within
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Fig. 8. Test object.

TABLE 1
ATTITUDE DETERMINATION RESULTS

Actual Attitude Computed Attitude Error
100 0.0 0.0 9.44 0.37 0.18 0.56 -037 -0.18
0.0 -30.0 0.0 035 -29.58 042  -035 -042 -042
0.0 00 200 -0.47 0.19 20.74 047 -019 -0.74
-100 0.0 -20.0 -9.61 076  -2024  -039 -0.76 0.24
-15.0 100 00 -1531 10.54 0.63 031 -054 -0.63
100 10.0 10.0 10.83 11.39 10.23 -0.83 -1.39 -0.23
10.0 -200 10.0 9.56  -20.65 10.18 0.44 065 -0.18
200 -10.0 -20.0 1969 -11.53  -20.02 031 153 0.02
140 -16.0 110 1458 -15.81 1065  -0.58 -0.19 0.35
-100 11.0 -18.0 -9.67 1139 -1859 -033 -0.39 0.9

a rigid planar patch, i.e., the function’s derivatives of all order
exist and are continuous at (zg, yo).
fl@y) =f(zo,0) + (= = z0) (¥ — o)l (=, ¥) 0.0

. [z — 560)2(!.1/ - w)l? F @ W eowe + -

(49)

Considering terms only up to first-order expansion and letting
the error be

(z,y) — (z + v,y + by) (50)
the error term in f(x,y) is
E=bz(y — yo) + 8y (z — o). (51)

Considering the Taylor series expansion of zPy? f(z,y), and

computing
Hpq ://l‘pyqf(ivy)

the error term comes out as

/ / Pyl 65(y — wo) + bule — ao)ldedy.  (53)

(52

So as (p + q) increases, the error term gets multiplied by a
larger factor. This means that error sensitivity increases with
(p+4q), i.e., with the order of moment invariants. In support of
this argument, Fig. 9 shows numerical results for relationship
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Fig. 10. Attitude determination error analysis.

between percent error in the wireframe vertex coordinates and
percent error in the moment invariant values for the first-,
second-, and fourth-order moment invariants. The third-order
moment invariants are unstable and hence not used. This fact
can be used to derive a representation of a polygon in terms
of a finite number of moment invariants. Assuming that the
algorithm has been designed to handle a 30% error in the
moment invariants, using the three invariants in Fig. 9, a
maximum of 20% error in input can be tolerated. If more
invariants were used, the maximum input error that could be
tolerated would decrease.

B. Attitude

Figs. 1013 show the relationship between percent error in
input and the tensors v1, A1, va, A2. The relationships are linear
for input errors up to 10% and then become nonlinear.

Solving (35) and (36) for the Q) parameters gives

UIAQ — /\1’1‘2

1 _
Q= TIA2Z — Y2AL° 4
For the linear region
- 1 y 2 _ 1 ) 2

%: (’U + a16z1)A = (At + by z1)Y (55)
where 2 = TIA? T2Al

Q~] _ VA2 = AIT? 4+ 6ry(agA? - b1Y?)

1 Q .
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Fig. 12. Attitude determination error analysis.
Therefore
3 1
1=Q; + bx1K,. 67
Similarly
5 1
Q3 =Q; + 6z1Kay (58)
3 2
Q?=Q7 + 671K; (59)
3 2
3=0Q5 + 6z1K,. (60)

As four of the rotational parameters are linearly related to
the Q’s, their error also increases linearly with input. For the
remaining five parameters also, only the linear terms remain
on expansion.

VI. CONCLUSIONS

The main contributions of this paper are:

1) Extension of the concept of moments and moment
invariants to n-dimensional polynomial functions.

2) Attitude determination using moments. While the idea
was originally presented in [6], it had the limitation
that it required the polyhedron under consideration to
have nonsymmetric faces. A technique to overcome this
limitation was presented in this paper.
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Fig. 13. Attitude determination error analysis.

3) Error analyses of moments and moment invariants, as re-
lated to object identification and attitude determination.

4) A common mathematical framework has been developed
for the integration of information from multiple sensors
in the same format. This is of importance in sensor
fusion where information from different sensors has to
be integrated together. In our representation scheme the
underlying mathematical model is common—different
sensor outputs correspond to different dimensions of the
model.
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