
Philosophers of science have discussed some case studies of scientific unifica-
tion, 2 focusing on its various virtues and drawbacks. The notorious forerunner
to many unificatory attempts in string theory, the Kaluza-Klein theory, 3 is
barely mentioned as a peculiar case of unification in the philosophical litera-
ture. 4 I claim that this unification by “geometrization” of the physical fields
is a distinctive kind of unification 5 that offers insights into the relationship
between unification and explanation. More precisely, I want to answer the
following questions about unification in Kaluza and Klein:

I) What is specific to Kaluza-Klein unification and what does it teach us
about unification in general?

II) Are unificatory mathematical structures in Kaluza-Klein equipped with
explanatory power?

III) Where should we place Kaluza’s and Klein’s cases among other gauge
unifications?

IV) What kind of brute facts do Kaluza and Klein rely upon?
V) In what sense is Klein’s unification better than Kaluza’s?

VI) What are the limitations of the Kaluza-Klein unification?

In order to better understand where my case study stands in the literature,
in the first section I depict the philosophical approaches to scientific unifica-
tion relevant for my case study. In the second and third sections, I describe in
greater detail the steps toward unification taken by Kaluza and Klein respec-
tively. In the last two sections I will directly address the above questions. My
contribution is to clarify some aspects of unification in the Kaluza and Klein
approaches to unification.

2 The most comprehensive analysis of scientific unification is Morrison (2000) which
contains an impressive number of illustrations. In the last years, the practice of scien-
tific unification has been discussed in Plutynski (2005); Ducheyne (2005); Van Don-
gen (2002). My analysis is not a general approach to scientific unification, but a
case study from which a limited number of general claims can be drawn.
3 Kaluza-Klein arguably constitutes the starting point of a philosophical analysis
of string theory, given its major implications for the treatment of quantum fields
within N-dimensional manifolds and for its generalization to Yang-Mills fields. In
this paper I focus only on this “classical” and inchoate stage of the pre-history of
string theory.
4 Aitchison (1991); van Dongen (2002); Weingard (nd, 1984) are among the few
places where this mechanism of unification is raised.
5 See for example Weingard (nd) who explains why Kaluza-Klein is a special case
of unification.
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1 Puzzles of scientific unification

Unification is a major virtue of a theory, but at the same time it is too vague
and undetermined a philosophical concept. Philosophers and scientists like-
wise struggle to define it, to rank known cases or at least to describe or deal
with some of its aspects. Despite many efforts, scientific unification remains
a conundrum. 6 It is vague in the sense that there is no general definition
or criterion available; when defined, it is often vulnerable to charges of triv-
iality, spuriousness or adhocness. Examples of trivial or spurious unifications
are often provided in the literature: unification as mere conjunction of child
psychology and fluid dynamics is for Maudlin 7 trivial, whereas a conjunction
of Kepler’s law and Boyle’s law is for Kitcher spurious. 8 Feynman’s clever ex-
ample 9 in which all laws have the form Ai = 0 (for example (F −ma)2 = A1,(
F −Gm1m2

r2

)2
= A2 . . ., etc. and “the theory of everything” (sic) is

∑
i Ai = 0

is frequently quoted against hyperbolized attempts to unification. In these
mock cases, the new unificatory theory makes contribution (explanatory, con-
firmatory, interpretative on free parameters, etc.) in addition to the previ-
ous theories. A derivation of a law from the conjunction is a pointless “self-
explanation” or “self-confirmation”. A general criterion for what makes a uni-
fication a compelling one and what makes the other trivial or spurious is not
available. In the present analysis, I prefer a relative notion of spuriousness
and ad-hocness. Although I want to avoid the conclusion that Kaluza’s and
Klein’s theories are in any major sense trivial, spurious or ad-hoc, my main
target is to show that Klein improved significantly upon Kaluza’s theory.

Even when unification is not trivial, it may or may not be relevant or related to
major topics in philosophy of science such as the realism/antirealism debate,
confirmation, success, intertheoretical reductionism, causation, etc. As if this
were not enough, even if unification is not trivial and it is allegedly relevant to
some other more stringent commitments like realism or empirical confirmation,
the price to achieve it in some cases has turned out to be too high (the most
notable case discussed by philosophers is the electroweak unification). Here I
weasel out of providing a general answer to all these issues because I accept
that unification is too vague a concept to qualify for a comprehensive approach

6 Some would say that we have an “intuition” of it like “you know it when you
see it”. Looking at intuitively “borderline” cases surely helps but the this does not
suffice. P. Teller expresses this uncertainty in a concise way: “I agree that unifications
[and reductions] show something important about how our theories bear on the
world. But I take the worries to show that we are very far from understanding what
that ‘something’ is.”(Teller, 2004, 443).
7 (Maudlin, 1996, 131)
8 (Kitcher, 1981, 526)
9 (Feynman et al., 1993, 25-10-11)
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at a general level. I prefer a more “pluralistic” talk about degrees of unification,
stages or levels of unification or successful or unsuccessful unifications. Each
and every case of unification can reveal unexpected and relevant aspects and
a different mechanism of unification at work. 10 I plan to compare the relevant
aspects of unification in my case studies.

1.1 The strengths and weaknesses of unification qua explanation

A working definition, inspired by the D-N model, would look like this: a unifi-
catory theory (T0) describes a set of phenomena previously described by two
different theories (T1 and T2) using fewer sentences (or “covering” laws). In
the mid 20th century, the unity of science had been thought to operate in
a reductionistic way: a new theory T0, more general and more abstract, re-
duces the heretofore T1 and T2 theories. But even in the field of theoretical
physics unification cannot be confined to reduction, as anti-reductionism and
unification can coexist. 11 If not reduction, then what is the key concept of
unification? At the acme of the D-N model, it has been suggested that the
aim of explanation was unification i.e., “the comprehending of a maximum
of facts and regularities in terms of a minimum of theoretical concepts and
assumptions”. 12 In Friedman’s view, phenomena are represented by law-like
sentences by the means of explanation. “I claim that this is the crucial prop-
erty of scientific theories we are looking for; this is the essence of scientific
explanation— science increases our understanding of the world by reducing
the total number of independent phenomena that we have to accept as ulti-
mate or given.” 13 T0 proceeds by providing fewer types of brute facts than T1

and T2 do. Hence its brute facts are more fundamental than the brute facts
of T1 and T2 altogether. Consequently, unificatory theories are simpler (and
maybe more beautiful) by explaining the world with less brute facts.

10 Notwithstanding some approach to unification as a cognitive pattern present in
the scientific research, few philosophers have approached a general theory of unifi-
cation: for details see Maxwell (2004).
11 Crystallography and solid-state physics “emerged” from the quantum theory
without being reducible to it, but in both cases the unity of science remained a
desideratum. See for details (Cat, 1998, 273). M. Polanyi, Ph. Anderson and Max
Dresden have expressed various anti-reductionistic views during the last century, but
have remained sympathetic to the unity of science. Also, general relativity (GR)
provides a unification of spacetime and the Newtonian gravitational field is not a
reduction as neither of them survived “unscathed” in GR (Maudlin, 1996, 133).
12 Feigl (1970) quoted in (Kitcher, 1981, 508). William Kneale in Probability and
Induction (1949) and Hempel in Aspects of Scientific Explanation (1965) had ex-
pressed similar views (see (Friedman, 1974, 15). Kitcher juxtaposed this “unofficial
model of explanation” to the official D-N model.
13 (Friedman, 1974, 15)
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However, even if I rely on Friedman, I want to caveat his doctrine. Firstly,
positing in an a priori way brute facts or trying to reduce their number by
pseudo-explanations are both signs of weakness of a theory. What is important
for a theory is not the sheer number of brute facts, but to get the right sorts
of facts as brute. 14 Secondly, giving the difficulties of counting such brute
facts, 15 reducing the number of types of facts generally is a better choice:
“Science advances our understanding of nature by showing us how to derive
descriptions of many phenomena, using the same patterns of derivations again
and again and, in demonstrating this, it teaches us how to reduce the number
of types of facts we have to accept as ultimate (or brute)”. 16 Thirdly, as my
case study will illustrate, the unificatory theory T0 has to act as a “problem
solver” for T1 and T2 without generating it own baggage of troubles. This issue
has not been directly addressed in the literature on unification.

In the last decade many have argued against this alleged connection between
unification and explanatory power of theories. Most notably, Margaret Morri-
son claimed that unification and explanation are “decoupled”. 17 Rather than
being a special case of explanatory power, unification is independent of expla-
nation such that “they have little to do with each other and in many cases
are actually at odds.” 18 Using examples of unified theories, Morrison argued
that “the mechanisms crucial to the unifying process often supply little or
no theoretical explanation of the physical dynamics of the unified theory.” 19

Many of her case studies against unification qua explanation are taken from
theoretical physics where unity is usually understood in terms of derivability
from a mathematical structure. 20 The mathematical structure, for example
the tensor calculus in special relativity (SR), most often bestows many the-
ories with a higher degree of generality making it applicable in a variety of
contexts and suited to unifying different domains. However, for Morrison this
unificatory mechanism of quantitative laws does not provide any explanation
of the “machinery” or the mechanism of the phenomena and she would an-
swer in negative question . 21 The mark of a truly unified theory is “a specific
mechanism or theoretical quantity/parameter that is not present in a sim-
ple conjunction, a parameter that represents the theory’s ability to reduce,

14 (Lange, 2002, 99).
15 Barnes (1994).
16 (Kitcher, 1989, 432).
17 See especially Morrison (2000) but also Morrison (1995, 1992).
18 (Morrison, 2000, 1-2) and (Morrison, 2000, 64).
19 (Morrison, 2000, 4).
20 Standard examples include Lagrangian formalism, Lorentz transformations and
the symmetry group of a theory.
21 “The machinery is what gives us the mechanism that explains why, but more
importantly how a certain process takes place.” (Morrison, 2000, 3). One example
of “machinery” quoted in Morrison (Morrison, 2000, ch. 3) is Maxwell’s explanation
of the electrodynamics in terms of ether.
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identify or synthesize two or more processes within the confines of a single
theoretical framework”. 22 Maxwell used a “substantial identification” of the
optical aether with the electric ether on the base of the numerical identifica-
tion of their velocity of transmission 23 , although the real unificatory element
in Maxwell was the “displacement current”.

Even if this factor is present, other troubles linger for unification. Weinberg’s
current in the electroweak unification is the parameter that unifies the pa-
rameters of the electromagnetic theory and those of the weak interaction, but
for Morrison it has no explanatory power (here the Higgs mechanism explains
the phenomena) and it is as arbitrary as the previous ones. 24 Morrison ar-
gues that in this case (as well as in SR and to some extent in the biological
synthesis) we have a suspect unity. Accordingly, many unification cases are
less exemplary than believed and the mathematical structure alone does not
imply true unification.

1.2 Unification in theoretical physics

Physics is replete with claimed instances of unification: in seeking new theories
not yet empirically confirmed, physicists often espouse a desire for theoretical
virtues like unification and strive to reach it for reasons ranging from aesthetic
considerations like simplicity and harmony, to more pragmatic reasons like
the paucity of language or computability restrictions. 25 Morrison’s conclusion
raises a question about unification in theoretical physics: how explanatory is
a physical theory? Philosophers of physics prefer to directly relate unification
not to explanation, but to the way in which different forces can be captured
within one and the same mathematical formalism. It is not uncommon to
relate unification in physics not to explanation, but to the gauge symmetries
and group of the unified theory T0. R. Weingard 26 proposed two major goals
of unification of classical fields: unifying different force fields and respectively
unifying a force field with its source. 27 In SR the first goal can be achieved
by identifying the electric and magnetic fields with components of the tensor
field Fµν such that a Lorentz transformation transforms the components of
one into the other. We will see that such a mechanism of unification is only
partially present in Kaluza-Klein theory.

22 (Morrison, 2000, 64).
23 (Morrison, 2000, 98).
24 (Morrison, 2000, 139).
25 The so-called GUT (Grand Unified Theories), the standard model and string
theory are examples of theories having unification as a primary motivation.
26 (Weingard, nd, 1)
27 As Kaluza-Klein is a vacuum theory, we will not discuss here the second goal.
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In an attempt to rank the varieties of unification in theoretical physics, Tim
Maudlin impose three conditions on any non-trivial unification of two theories
(T1 and T2): a) T1 and T2 have to be consistent, b) the field force in T1 has
to obey the same dynamics as the field force in T2 and c) there is a nomic
correlation among the forces described by T1 and T2. The necessary conditions
a)-c) constitute the lower limit of unification and I discuss in details whether
Kaluza and Klein theories obey a)-c) in section 2 and 3. At the other end of
the unification spectrum Maudlin situated two cases of “perfect unification”:
the unification of electric and magnetic field within relativistic electrodynam-
ics as well as the unification of inertial and gravitational masses in GR. For
example, the distinction between electric and magnetic fields disappears in rel-
ativistic electrodynamics: electric and magnetic fields are eliminated from the
ontology by being replaced by the field tensor which is frame-independent. 28

GR provides novel explanations to phenomena discovered only later. There-
fore, at the level of the perfect unification one can make a commitment to
realism by believing that the entities postulated by GR are real.

While this upper limit of unification cannot be surpassed, what lays below
the level of perfect unification? Maudlin accepts several discernible levels of
unification below the perfect cases. 29 We have to face the fact that many
gauge theories, praised as embodying unification, do not qualify as perfect.
For Maudlin there are three levels of unification of gauge theories: 30

• (Level I) Two gauge theories with their symmetry groups G1 and neutral
particle X1 and respectively G2 and neutral particle X2 are “pasted” into
a product group G1⊗G2 without any further ado. The “standard model”
was build up as the product group: SU(3) ⊗ SU(2) ⊗ U(1). It is barely
any sort of unification and echoes the trivial unification by simply taking
the conjunction of their dynamics.

• (Level II) The same procedure as in Level I is applied here, but the
product gives rise to observable forces created from mixing the groups G1

and G2. The particles are given by a “mixing angle” (a free parameter
of the new theory) between X1 and X2 . In the case of the electroweak
unification the group is SU(2)⊗U(1)). In this case we need to explicitly
impose the condition of observability of these particles upon the theory
and this reduces its explanatory power. This is dubbed by physicists “a
partial unification, at best” 31 and

• (Level III) is premised on the simple gauge group whose instances are
presumably the SU(5) of GUT. All the forces may be derived from this

28 It is debatable whether the inertial and gravitational masses are eliminated by
the structure of space-time, see (Maudlin, 1996, 135).
29 (Maudlin, 1996, 132).
30 (Maudlin, 1996, 139).
31 H. M. Georgi quoted in (Maudlin, 1996, 138) and (Moriyasu, 1983, 110).
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simple group. There is no product group and no mixing angle involved.

Even if neither Kaluza nor Klein are perfect unifications or ‘Level III’ uni-
fications, I intend to locate them on Maudlin’s schema. For this, I provide
more details about the Kaluza-Klein particles involved in the unification in
the following two sections.

2 Kaluza’s unification on a linear fifth dimension (1921)

Theodor Kaluza 32 thought purely geometrically about the electromagnetic
fields. The structure of spacetime should explain the EM equations, as it
does explain gravity. As a field theory, Kaluza’s formalism attempted to unify
structures of fields without sources by embedding them into the geometry of
spacetime. By this “geometrization”, the fields become aspects of the same
entity, the metric tensor, such that geometry and physics are no longer dis-
tinct ways of describing the world. 33 In its intention, Kaluza’s approach was
more metaphysical than computational or empirical as it aimed to remove the
duality of gravity and electricity,“while not lessening the theory’s [of gravity]
enthralling beauty” 34 by directly envisaging the simplicity and the beauty of
the theory.

Kaluza tried to provide the unification by “geometrization” by exploiting some
formal similarities between EM and GR which were apparent to Einstein, G.
Nördstrom and H. Weyl. 35 Both EM fields and gravitation are described
by Poisson equations. For a Newtonian potential Φ, the Poisson equation is:
∇2Φ = 4πGρ similar to the EM potential:∇2V = − ρ

ε0
. On one hand, Maxwell

equations successfully describe how electric and magnetic fields respond to
charges and currents (all captured by Jµ). The “field strength tensor”: 36

Fµν = ∂µAν − ∂νAµ (1)

where Aµ is the 4-vector potential, is used to derive all Maxwell equations
from the covariant equations:

32 (Kaluza, 1921, 860)
33 (Weingard, nd, 3)
34 (Kaluza, 1921, 865).
35 There are major differences between the two theories, too. For an excellent philo-
sophical discussion about the role of dissimilarities with EM in the genesis of GR
see Norton (1992).
36 Time is the zeroth component of a 4-vector and x1 . . . x3 are the Cartesian spatial
coordinates.
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inhomogeneous Maxwell equations: ∂νF
µν = µ0 Jµ (2)

homogeneous Maxwell equations: ∂µFνκ + ∂νFκµ + ∂κFµν = 0 (3)

On the other hand, Einstein field equations were intended to show how the
metric gµν responds to the presence of energy and momentum represented by
T :

Gµν = Rµν − 1

2
gµνR = κTµν (4)

where κ = 8πG
c4

is a constant related to Newton’s gravitational constant G, the
Ricci curvature:

Rµν = Rλ
µλν = ∂λΓ

λ
νµ − ∂νΓ

λ
λµ + Γρ

λσΓσ
νσ − Γρ

νσΓσ
λµ (5)

and the Ricci scalar (i.e., its contraction): R = gµνRµν are defined as first
derivatives of the “Christoffel symbols”:

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν) (6)

Notwithstanding the other difference in the nature of gravitation and of the
EM interaction, on the left hand side of both (2) and (4) we encounter second
order derivatives of fields depending on matter or charges codified in the right
hand terms. So there should be a generalization of these types of dependencies
which would encode g and A in the same mathematical structure. In the light
of these similarities, both fields could stem from one and the same universal
tensor. However, Einstein field equations (4) already have EM encoded in the
right hand term Tµν : gravity was geometrized while electromagnetic fields were
not. In the 20s, a physical field had been considered geometrized if its potential
was to be found exclusively as part of the metric. 37 All other fields, as well
as matter and charges, appeared only in the stress-energy tensor (Tµν). The
“geometrization” program was intended to move all the non-material fields to
G.

Partially inspired by Einstein’s “marble and wood” metaphor, 38 Kaluza thought
that the universe is, strictly speaking, empty of matter and the only real en-

37 (Pasini, 1988, 291).
38 Einstein contemplated the possibility to turn the “wood” of Tµν (the matter)
into the “marble” of Gµν (the spacetime) in (4). For him matter was a term that
‘infested’ the pure and clean structure of Gµν . By turning “wood” into “marble”,
Einstein intended to geometrize matter by providing its fully geometrical origin.
As Kaku remarks, this was impossible without more physical clues and without a
physical understanding of the “wood”: “By analogy, think of a magnificent, gnarled
tree growing in middle of a park. Architects have surrounded this grizzled tree with
a plaza made of beautiful pieces of the purest marble. The architects have carefully
assembled the marble pieces to resemble a dazzling floral pattern with vines and
roots emanating from the tree. To paraphrase Mach’s principle: The presence of the
tree determines the pattern of the marble surrounding it. But Einstein hated this
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tity is g. His starting point is the “vacuum hypothesis” (no matter, no charges
present):

VACUUM:Tµν = 0

The Einstein equation for vacuum is:

Gµν = Rµν − 1

2
gµνR = 0 (7)

which implies also that, for vacuum, both R and Rµν vanish:

Rµν = 0 and R = 0 (8)

and the vacuum Maxwell equation is:

∂νF
µν = 0 (9)

Giving VACUUM, where is the place for the EM field? The intuitive answer is:
somewhere in the expression of g itself. But even if both theories have their own
vacuum solutions, if one tries to describe gravitation and electromagnetism by
the same equations, the perturbation of gravitation due to electromagnetism
cannot be qualified anymore as “gravitational vacuum”. The attempt to unify
the two vacuum solutions fails for various reasons. One of them is that in
4-D there is no way to add the field tensor Fµν to the Christoffel symbols
Γλ

µν , to preserve their properties and to impose later on Rµν = 0. Christoffel
symbols are defined only up to the first derivatives of a single field and they
represent the “displacement” of a vector. 39 Therefore, the “geometrization”
of Fµν is not possible in a four-dimensional Riemannian manifold. Weyl’s
solution was to alter the Riemannian form of the metric: his geometry is
weaker than Riemann’s in the sense that it is only conformal (only the angle
between vectors is preserved by their parallel transport along a closed curve,
not their lengths, nor their orientation). In the Riemann geometry, angles and
lengths are conserved in a parallel transport of a vector. In Kaluza, the metric
stays pseudo-Riemannian: what is changed is the dimensionality of the g, R
and Γ tensors. 40

dichotomy between wood, which seemed to be ugly and complicated, and marble,
which was simple and pure. His dream was to turn the tree into marble; he would
have liked to have a plaza completely made of marble, with a beautiful, symmetrical
marble statue of a tree at its center.”(Kaku, 1994, 99).
39 If in a system of coordinate xν a vector Aν at a point P is displaced in a neighbor
point P’ with coordinates xν + dxν , then the value at P’ is Aν − Γν

αβAαdxβ. Γν
αβ

gives the amount by which the component ν of the original vector depends on its
own component α when it is displaced on the direction β with an infinite small
displacement dx.
40 Parenthetically, we need to mention that as early as 1914, G. Nördstrom expressed
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2.1 Field equation in 5-D

By “calling a fifth dimension to the rescue”, 41 Kaluza managed to express
the EM field as part of the metric g. There is room for EM within gmn and
only matter and electrical charges (if any) are present in Tmn. He added to
the Riemmanian gµν one row and one column: 42

ds2 = g(5)
mndxmdxn (10)

All the expressions of tensors and the relations between them, as well as the
Christoffel symbols, are simply generalized from four to five dimensions:

Second type: Γi
rs =

1

2
gil (∂sglr + ∂rgls − ∂lgrs) (11)

First type:
[
m n

r

]
= Γmnr = −1

2
(∂mgnr + ∂ngrm − ∂rgmn) (12)

Kaluza speculated a formal similarity between the above forms of Christoffel
symbols in 5-D (12) and the 4-D expression for gµν and Fµν . The 4× 4 part of
g(5)

mn can simply equate the gµν . So where is the Fµν to be placed? The simplest
way is to divide g(5) in three sectors as follows:

g(5)
mn =




gµν= ‘G’ sector g4ν=‘EM’ sector

gν4=‘EM’ sector g44 = φ =?


 (13)

which can accommodate the gµν tensor in the ‘G’ sector as well as the Aµ vector
in the ‘EM’ sector. More information about these sectors can be gathered from
the Christoffel symbols which are provided by (12):

−2Γ4µν = ∂4gµν + ∂µgν4 − ∂νg4µ (14)

−2Γµν4 = ∂µgν4 + ∂νg4µ − ∂4gµν (15)

the metric as a 5× 5 matrix. His paper, translated in (Appelquist et al., 1987, 50-
60), is less known than Kaluza’s and has had only a slight impact on the scientific
community. He added another spatial dimension to the four existing ones in order
to obtain an Abelian five-vector gauge field for which a Maxwell-like equation can
be written, including a conserved 5D current. He was the first to explicitly claim
that “we are entitled to regard the four-dimensional space-time as a surface in a
five-dimensional world.” The major difference between Nördstrom and Kaluza is
that the former found gravity by applying EM to the 5D world, whereas the latter
applied GR to it (Smolin, 2006, 47). From my point of view, Kaluza scores better
than Nördstrom in respect of unification.
41 (Kaluza, 1921, 967).
42 Latin indices are numbers from 0 to 4 and Greek indices are from 0 to 3; vectors
or tensors with Latin indices are 5-dimensional. Here x0 is the time coordinate.
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CYLINDER CONDITION: It is easy to see why there is a surplus structure in
the 5-D metric and much of this has to be stripped away. Here is Kaluza’s
suggestion: in order to take (1) in, one term out of three is always set to zero
in (14) and (15) such that Γ4µν and Γµν4 will contain only EM terms. The
best option is to hypothesize that ∂4gµν vanishes. This is formally the origin
of the so called “cylinder” condition, the core of the Kaluza-Klein unification:

CYL: ∂4gmn = 0 (16)

We experience three dimensions of space and one of time because there are
fields in these four ‘directions’ which are not constant. Small or null variations
of the fields on the fifth dimension means that the world is “cylindrical”:
every point P (x0, ...x4) can be identified with another point P’ having the
coordinates P (x0, ...x4 +δx4) if all fields and all derivatives are smooth on the
fifth direction. 43 P and P’ are still distinct, notwithstanding the values of all
possible physical fields being equal or have close values at these points.

After postulating CYL, Kaluza suggested that Fµν is a “degenerate” (verstümmelte)
form of the Christoffel symbols in (12) and proceeded to the following identi-
fication:

ID1 :

Γ4µν = αFµν (17)

Γµν4 = −α(∂νAµ + ∂µAν) (18)

Γ44µ = ∂µφ (19)

where Fµν and Aµ are the EM quantities defined in (1) and satisfying (2) and
(3), and φ is an arbitrary scalar field, not yet interpreted.

WEAK FIELD: In order to provide analytical solutions to the field equations, it
is commonly assumed the perturbation formulation GR in which the metric
differs only a little from its Euclidian value gµν = ηµν + hµν (where ηµν is a
Minkowskian metric and “the perturbation”h is taken such that |hµν | ¿ 1).
The linearized gravity can be expressed as: gmn ' ηmn. In order to conduct
his analysis, Kaluza assumed that the third and fourth terms in the Ricci
curvature in 5-D:

Rm
ijk = ∂jΓ

m
ik − ∂kΓ

m
ij + Γn

ikΓ
m
nj − Γn

ijΓ
m
nk (20)

are of the form Γ2, and since Γ is of first-order, these contribute only to second
order and can be discarded.

WEAK: Rm
ijk
∼= ∂jΓ

m
ik − ∂kΓ

m
ij (21)

43 This analogy is from Einstein and Bergmann (1938).
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It is easy to see that by contracting the Riemann tensor further, the Ricci
tensor has a simpler form, too:

Rµν = ∂λΓ
λ
µν (22)

R4ν = α∂λF
λ
ν (23)

R44 = −∂µ∂
µφ (24)

Kaluza employed another well-known relation between the Christoffel symbols
which can be particularized giving CYL to:

∂Γ4ln

∂n
+

∂Γ4mn

∂l
+

∂Γ4nl

∂m
= 0 (25)

Kaluza supposed that the 5-D world is empty, so both the Ricci scalar and
the curvature tensor vanish:

Rmn = 0 and R = 0 (26)

Then, what does the 5-D vacuum generate? The assumptions are not only
consistent, but they provide an unexpected number of direct results. One
wants to infer the vacuum solutions in 4-D from the 5-D vacuum solution. By
mimicking some of the GR techniques , Kaluza was able to infer equations:

• The 5D metric:

g(5)
mn =




gµν 2αAµ

2αAν 2φ


 (27)

• Homogeneous Maxwell equations (3) from (25), (17) and (18).
• Einstein field equations 4-D from (22).
• A Poisson-like equation for φ from (24).
• The components of the energy momentum tensor in 5-D. In the WEAK

approximation, the Ricci scalar is of higher order in h and the Einstein
equations in 5-D are:

Rmn = κ Tmn (28)

Again, from (23) and the inhomogeneous Maxwell equation (2), one can
identify the components of Tmn as:

ID2:Tµ4 = Jµ (29)

so Kaluza has bordered the 4-D energy momentum tensor Tµν with a
vector representing the currents and densities of charges. It is easy to
show that T55 = 0 and then Tµν is:

T (5)
mn =




matter and densities: Tµν Jµ

currents and charges: Jµ =
(

cρ j1 j2 j3

)
0


 (30)
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• Maxwell inhomogeneous equation (2) from WEAK, CYL, (17) and (23).

Even if Kaluza accomplished the intended unification program, two major
aspects of GR—the geodesics and the definition of energy have to be explicitly
analyzed.

2.2 Geodesics in 5-D

The first important test of Kaluza’s new unified theory was the analysis of
geodesics in 5-D. In the vacuum theory, Tµν encodes the kinematic energy
of test particles. The ideal situation would be like this: a small, charged test
particle in 5-D falls on a geodesic in 5-D and its projection in 4-D is the
expected trajectory of a charged particle (typically not a geodesic). But com-
putation with relativistic test probes is almost impossible to carry, so Kaluza
assumed a “slow motion approximation” (commonly used in GR) in which

the 5-velocities Um = dxm

ds
are such that Um ∼=

(
1,~0, U4

)
and ds2 ∼= dτ 2, where

τ is the proper time. In this case:

Tmn = µ0U
mUn (31)

and in order to estimate the geodesics, terms U4 are needed. By generalizing
the 4-D geodesic equation parameterized by λ :

d2xµ

dλ2
+ Γµ

ρσ

xρ

dλ

xσ

dλ
= 0 (32)

and by employing (22)-(24) and

d2xm

dλ2
+ Γm

ab

dxa

dλ

dxb

dλ
= −

√
2κ Fm

n

dxn

dλ

dx4

dλ
− ∂mφ

dx4

dλ

dx4

dλ
(33)

Kaluza intended to infer the equation of a particle with mass M and charge
q in curved spacetime in which an electric field tensor Fµν is present:

d2xρ

dt2
+ Γρ

µν

dxµ

dt

dxν

dt
= − q

Mc
F ρ

µ

dxµ

dt
(34)

In order to identify the two equations, he chose the parametrization such that
λ = τ ∼= t and a vanishing term in φ in (33), such that he needed to assume
that:

φ = constant (35)

The third identification is:

ID3 : U4 =
dx4

dt
=

q

Mc
√

2κ
(36)
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The interpretation of (36) can raise difficulties but also it constitutes a power-
ful tool for explaining electromagnetism. Two particles in 4-D which have the
same mass and the same initial conditions and differ only in respect of their
charge will follow two trajectories which are both projections of a geodesic in
5-D. This is explained by the fact that their U4 is different. 44 Had we started
with the small velocity approximation, we would want U4 to be close to zero.
The formalism applies only to relatively small velocities and to charges of
ρ0/µ0 ¿ 1, which seems kosher for all practical purposes. But this second
approximation is unsatisfactory for atomic dimensions where U4 is not at all
small for a given density of charge of electron or proton. In this case, the slow
motion is no longer met and the motion of an electron is not a geodesics in R5

as U4 is enormously large. This means that Kaluza’s theory would not work
for subatomic particles.

3 Oskar Klein’s compactification of x4 (1926)

Five years after Kaluza’s paper was published, Oskar Klein wrote a paper 45

and a note in Nature 46 in which he dealt with the idea of unification of EM
and GR by analyzing not only the g(5) field, but also the wavefunction on a
5-D manifold. 47 The first part of Klein’s 1926 paper is inspired by Kaluza and
his treatment of the g(5) field, although the legend has it that Klein carefully
read Kaluza only after he had finished writing it. 48 He himself started from
the aforementioned similarities between GR and EM, 49 and postulated in
5-D the Riemannian metric (10), the forms of Ricci tensors and Christoffel

44 I’ll offer a more comprehensive discussion of this issue in section 4.
45 Klein (1926a).
46 Klein (1926b).
47 In Klein (1928) he came back to the problem of the unification and restated the
main idea of compactification in direct relation to conservation laws.
48 In his autobiographical note Klein recalls: “When Pauli came to Copenhagen [in
1925], I showed him my manuscript on five-dimensional theory and after reading it
he told me that Kaluza some years before had published a similar idea in a paper I
had missed. So I looked it up [. . . ] I read it rather carelessly but quoted, of course, in
the paper I then wrote in a spirit of resignation. [. . . ] In the paper I tried, however,
to rescue what I could from the shipwreck.”(Ekspong, 1991, 111)
49 Witness Klein’s confession again: “The similarity struck me between the ways
the electromagnetic potentials and the Einstein gravitational potentials enter the
[relativistic Hamilton-Jacobi equation for an electric particle], the electric charge in
appropriate units appearing as the analogue to a [fifth] momentum component, the
whole looking like a wave front equation in a space of [five] dimensions. This led
me into a whirlpool of speculation, from which I did not detach myself for several
years and which still has a certain attraction for me.”. (Klein recollecting in 1989
the early 20s)(Ekspong, 1991, 108).
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symbols from GR. Klein assumed that the 15 quantities of the symmetric
tensor gmn would accommodate the 12 components of both gµν and Aµν . In
order to fit these into gmn and by echoing Kaluza’s CYL (16) Klein imposed
some conditions on the coordinate system of the 5-D space:

• The first four coordinates are identical to the ordinary spacetime coordi-
nates;

• The cylinder condition (CYL): the fields do not depend on x4;
• g44 = a where a is a constant.

These are all present under various guises in Kaluza (Kaluza imposed g44 only
in order to derive the geodesics). In Klein, this condition becomes central. It
is very important to mention here that CYL is just a working hypothesis: in
the note to Nature, Klein would replace it with the compactification (COMP). 50

It can be proven that the only infinitesimal coordinate transformation which
satisfies these conditions is: 51

xµ → xµ + ξµ(xν) (37)

x4 → x4 + ξ4(xν) (38)

where ξ are smooth functions of only the first four coordinates x0 . . . x3. For
such a transformation, the only metric tensor that preserves the line element
ds2 (see (10)) needs to have the form:

g(5)
mn =




gµν + A(5)
µ A(5)

ν A(5)
µ

A(5)
ν 1


 (39)

where A(5) is a 5-vector of which all first four components transform 52 like
the covariant components of the EM field and A

(5)
5 = 1. The simplest way is

to identify again the four components of this 5-D vector with the EM vector
potential Aµ:

ID4 : A(5)
µ = Aµ (40)

50 I will come back on this issue later (p. 23sqq.)
51 See (Klein, 1926a, 896), but the hereby terminology is from Bergmann (1942).
52 The vector A is a vector field employed in projective geometry, see (Bergmann,
1942, 274).
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The constant field φ is plugged into the expression of the metric in order to
replace the g55 = 1: 53

g(5)
mn =




gµν + φAµAν φAµ

φAν φ


 (41)

3.1 Klein’s metric

Despite these similarities, there are some important differences between Klein’s
and Kaluza’s assumptions regarding the topology of the fifth dimension. Klein’s
metric is:

ds2 =
(
gµν + κ2φ2AµAν

)
dxµdxν + 2κφAµdxµdx4 + φ2dx4dx4 (42)

In order to show that ID4 is not arbitrary, Klein inferred (4) and (3) from
a variational principle (instead of guessing an expression for the Ricci tensor
like Kaluza did) by requiring the minimization of the Hilbert action under the
variation of the metric δg(5)

mn and of its first derivative ∂lg
(5)
mn:

SH =
∫
L1d

5x (43)

where L1 = R(5)
√
−g(5) is a Lagrange density of fields and R(5) is a Ricci-like

invariant scalar defined by:

R(5) = gmnRmn = gik
(
∂kΓ

iµ
µ − ∂µΓik

µ + Γiµ
ν Γkµ

µ − Γik
µ Γµν

ν

)
(44)

similar to (5). By accepting Kaluza’s WEAK, Klein disregarded the contribution

of the last two terms and proceeded by applying the CYL. As R(5)
√
−g(5) does

not depend on x4, the integral in ((43)) splits into two integrals like:

∫
dx4

∫
R(5)

√
−|g(5)|dµx

The action is an integral in 4-D only:

S = −
∫

d4x
√−g

(
R

κ2
+

1

4
φFµνF

µν +
1

6κ2

∂µφ ∂µφ

φ2

)
(45)

53 Klein did not provide a matrix form of the metric. I do not adopt the exponentia-
tion of φ from Duff (1994). In the “projective geometry” formulation of Veblen and
Hoffman the metric suffers an extra coordinate transformation x4 → ex4

. The im-
portance of the scalar field φ will be discussed later. See for details (O’Raifeartaigh
and Straumann, 2000, 9), (Bergmann, 1942, 269). For a form similar to mine, see
(van Dongen, 2002, 4). Witness the presence of the A(5) in the 4× 4 part of g(5).
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The first integral in (45) is simply the action for gravity in 4-D, 54 while the
second is an action of the electromagnetic field of a stress-energy tensor given
by Maxwell equations and the third is the Klein-Gordon equation of the scalar
field φ. 55 By minimizing the action δSH = 0, the result is a system of two
equations:

Rµν − 1

2
gµνR = κT µν (46)

∂m

√
−|g|F µm = 0 (47)

where Rµν is the contravariant component of the Ricci tensor and T µν the
contravariant component of electromagnetic energy-momentum tensor. This
result is strikingly close to Kaluza’s. Through a minimization of the action
of the g(5) field in 5-D, Klein recovered the gravitation field of Einstein field
equations (4) and both Maxwell equations for vacuum.

3.2 Charges and matter on geodesics

The first good news for Klein was that the metric (41) provides the form of
the geodesics in 5-D. 56 Indeed, Klein added to the action (43) a Lagrange
density for the motion of n free charged particles. The total Lagrange density
in the presence of fields and n probe particles is:

L = L1 +
√
−g(5)κ

n∑

i=1

gmn dxm
i

dλ

dxn
i

dλ

Similar to Kaluza’s ID3, in order to derive the geodesics in 5-D, Klein in-
terpreted the velocity on the fifth axis as proportional to the charge of the
particle:

U4 =
e

c

1
dτ
dλ

(48)

where as usual dτ = 1
c

√−ds2 is the proper time in 5-D, λ is a parameter of the
geodesics and e is the electrical charge of the electron. By taking the divergence
of the field equations (46), one can prove that charged particles follow the

54 (O’Raifeartaigh and Straumann, 2000, 9).
55 (Overduin and Wesson, 1998, 15).
56 “I became immediately very eager... to find out whether the Maxwell equations
for the electromagnetic field together with Einstein’s gravitational equations would
fit into a formalism of five-dimensional Riemann geometry (corresponding to four
space dimensions plus time) like the four-dimensional formalism of Einstein. It did
not take me a long time to prove this in the linear approximation, assuming a
five-equation, according to which an electric particle describes a five-dimensional
geodesic.”(Ekspong, 1991, 109-110)
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geodesics in 5-D. 57 On such geodesics, the Lagrange function L = 1
2

(
ds
dτ

)2

provides the definition of the 5-D momentum:

pi =
∂L

∂
(

dxi

dλ

) (49)

As there is no explicit dependence of L on x4, we will always have a constant
momentum on the fifth axis. The calculations render for an electron:

p4 =
e
√

a

c
√

2κ
(50)

where a is the constant value of the scalar field φ, so p4 has the same value at
any point of spacetime if the field φ is kept constant.

3.3 The 5-D wavefunction

The second part of the 1926 paper and the note in Nature are directly con-
nected with two major developments of both relativity and quantum mechan-
ics. Here Klein inferred for the first time the form of the relativistic wavefunc-
tion for a spinless particle. 58 Klein endeavored to connect quantum results
with the analysis of geodesics in 5-D. Instead of describing only particles on
the manifold, Klein explicitly relayed to de Broglie’s treatment of quantum
phenomena by analogy with mechanics. 59 Klein studied the differential form

57 See (Klein, 1926a, 899).
58 This equation was published in the same year by Klein, V. Fock and Gordon
(allegedly Schrödinger had first discovered and immediately rejected it in 1925 be-
cause it could not explain spin). Klein’s manuscript was submitted to the editors of
Zeitschrift für Physik in April 1926, whereas Fock’s and Gordon in July, respectively
in September. Fock (1926) also used a 5-D formalism, very similar to Klein’s. Not
much attention has been paid to the fact that the Klein-Gordon equation originated
in an explicit 5-D formalism.
59 “[I tried] to learn as much as possible from Schrödinger and also from de Broglie,
whose beautiful group velocity consideration impressed me very much even if by and
by I saw that it did not essentially differ from my own way by means of the Hamilton-
Jacobi equation. From Schrödinger I learnt in the first place his definition of the
non-relativistic expressions for the current-density vector, which it was then easy to
generalize to that belonging to the general relativistic wave equation. In this, after
Schrödinger’s success with the hydrogen atom, I definitely made up my mind to drop
the possible non-linear terms, although I was still far from certain that this was more
than a linear approximation. Also I derived the energy-momentum components,
which in the five-dimensional formalism belonged to the current-density vector.
These I published much later, due to the appearance in the meantime of a paper by
Schrödinger containing the corresponding non-relativistic expressions.”(Ekspong,
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of a “ray” of a wave and then tried to identify it with the equation of the
trajectory of a charged particle. The central point of the wave-particle anal-
ogy of de Broglie is the definition of the momentum operator by the operator
“nabla” p̂ = −i~∇: 60

P̂m =
∂

∂xm
(51)

Klein took a generalized form of a wave in 5-D:

¤gψ = aij

(
∂2

∂xi∂xj
− Γk

ij

∂

∂xk

)
ψ = 0 (52)

where ¤g is a wave operator in 5D and aij are some functions of the coordinates
only. He started with a harmonic wave in 5-D (very similar to that used in
geometrical optics): 61

Ψ = Ψ0e
iωΦ(xm) (53)

and after replacing (53) into (52), he analyzed its behavior in two cases. 62 For
ω large enough, the wave operator will have terms only in ω2. The remainder
is an equation of the phase φ:

aik

(
∂φ

∂xi

∂φ

∂xj

)
= 0 (54)

The Hamiltonian of the propagation of the wave can be written as:

H =
1

2
aikPiPj = 0 (55)

which is similar to the one in the Hamilton-Jacobi formalism. Rays are geodesics
of the differential form:

aikdxidxk = 0 (56)

The equation of motion of a charged particles in the Lagrange formalism is:

L =
1

2

dθ

dλ
+

ds

dλ
(57)

and in accordance to the duality postulated by de Broglie, the particle is
represented by the wave so the rays coincide with the particle’s trajectory. 63

The results are:

1991, 111-112)
60 (van Dongen, 2002, 5).
61 (Klein, 1926a, 900).
62 I do not discuss here the case of small ω in which the Klein-Gordon equation
originated.
63 In 1924 de Broglie’s associated to each bit of energy with mass m0 a periodic wave
with a wavelength: ν0 = m0c

2/h(de Broglie, 1924, 11). The group velocity of this
wave is the same as the velocity of the mass. Sommerfeld’s condition for stability on
hydrogen orbit can be inferred as conservation of phase. Schrödinger had anticipated
in 1922 de Broglie’s result that Weyl’s scale factor (the exponential factor φ that
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pi =
∂L
∂ dxi

dλ

(58)

and: p4 = β
(
±e

c

)
(59)

where β is a constant. Because of Φ = −x4 + S(x0, x1, x2, x3), (53) can be
separated into:

Ψ = exp (iωx4)Ψ(xµ) (60)

The conservation of phase along a closed trajectory in the fifth dimension is:

ω
∮

p4dx4 = 2πn (61)

and as the Hamiltonian of this wave is zero, the phase is conserved.

3.4 Compactification on x4 and the new argument restated

In Nature, Klein proposed a major turnover. “The charge q, so far as our knowl-
edge goes, is always a multiple of the electronic charge e, so that we may write
p4 = n e

k
with n ∈ Z. This formula suggests that the atomicity of electricity

may be interpreted as a quantum theory law.” 64 He hinted toward the idea
that the momenta on the x4 is always quantized. Wave mechanics provided
Klein with a clear form of a momentum on the fifth axis. But moving along
x4 is not simply a mechanical change of coordinates. This can be troublesome
because it was for the first time when momentum had a non-dynamical in-
terpretation. Though it is not a “quantity of motion”, it has some properties
of a momentum (always associated to moving particles or to waves). In an
hydrogen atom for example, the momentum has a discrete spectrum, i.e. it is
quantized. Because p4 in (50) depends linearly on e, which is quantized, one
may ask whether it is quantized, too. In polar coordinates, φ̇ or θ̇ are velocity-
like quantities (they are actually angular velocities and there is an “angular
momentum”), whereas p4 is different. The analogy used by Klein has a pure
heuristic role, as he has been inspired by early quantum results on closed or-
bits. The mathematical structure in both cases is of a periodic function: ergo
the idea of a Fourier expansion. However, while the hydrogen atom can be
represented in a coordinates in which φ = φ + 2nπ, the atom itself does not
live in a compactified space. The analysis of the wave in 5-D provided the idea

relates the lengths of a rod parallel transported from P to P’: lP ′ = lP exp
∫

φidxi)
for closed orbits was an integral power of some universal constant. See Schrödinger
(1923), (Vizgin, 1994, 99). Klein took inspiration from de Broglie’s thesis.
64 Klein (1926b).
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of compactification. By taking into account de Broglie’s hypothesis, one can
infer:

p4 = ne/c
√

2κ = n~/λ4 (62)

where λ4 is the radius of the closed circle on x4. If one knows the quanta of
electrical charge, from (62) one can deduce the compactification factor λ4 =
0.8 · 10−30cm. Klein identified geometrically the points P and P’ separated by
2πλ4 and rejected the linear topology of x4 by the compactification hypothesis:

COMP: The x4 axis is closed with a period of λ4.

The new form of Klein’s argument, the one usually cited, is obtained by re-
placing CYL with COMP. Instead of postulating the same values of fields on x4,
Klein took a topological stance: he supposed that the axis is curled with a
very small radius. The consequence of the initial argument (COMP) was pro-
moted to a hypothesis of the new argument and the hypothesis of the old
argument (the quantization of charge) became a consequence of the new one.
The new hypothesis COMP is then used to infer the quantization of charge and
the new symmetry group of the theory. The smallness of λ4, which is less than
the Planck length, is the only reason as to why extensions on x4 cannot be
observed by macroscopic observers. Klein realizes that the discreteness of the
charge spectrum, via the de Broglie relation, leads to a discrete wavelength in
the fifth direction. So now in the new argument, given the value of λ4, COMP
explains CYL.

What are the transformation allowed by COMP? Two points P and P’ are iden-
tical iff x′4 = x4 + 2πλ4. The new manifold is invariant under the group
GL(4)

⊗
S(1), where S(1) is the group of the translation (38). COMP is a topo-

logical invariant and not a coordinate variant of the theory. The new topology
is not a mere coordinate system of representation, but it reflects the structure
of x4. The main reason to argue for this more realistic interpretation of topol-
ogy is the fact that unlike for example the case of polar coordinates (which
is nothing more than an alternative to Cartesian coordinates), there are no
transformations that remove the symmetry S(1) and linearize x4.

If two particles have the same initial condition in 4-D xµ
0 but different ra-

tios q/M , they will fall under the same geometrical shape in 5-D by follow-
ing the geodesics. Obviously, this is an improvement over Kaluza’s geodesics.
Klein’s metric rules out the small velocity approximation needed by Kaluza
and solves the problem of geodesics. From this we can infer the quantization
of the charged particle as being imposed by (61). This means that if the fifth
dimension is compactified with a period of 2πλ4, then the electrical charge
appears quantized in 4-D.

Only the first mode of Fourier expansion of fields is relevant. In Klein’s days
the fields gµν(x), Aµ(x) and φ(x) were thought to be mathematical objects
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which transform under four-dimensional general coordinate transformations.
What Klein did not notice, but was used by Einstein in 1927, is that if the
fifth axis is compactified, then all fields are periodical on x4 and consequently
they can be Fourier expanded having all other 4-D fields as coefficients. 65

This means that there is a ambiguity between the “real” 5-D tensor (or vector
or scalar) and its 4-d “representation” (g(xµ)). The value of the 4-D field is
reducible to an infinite number of values such that the first one is independent
of the fifth coordinate:

gµν =
n=∞∑

n=0

g(n)
µν (x0, xµ)einx4/λ4 = (63)

g(0)
µν (xµ) + g(1)

µν (xµ)eix4/λ4 + g(2)
µν (xµ)ei2x4/λ4 + . . . (64)

Decades later, the expectation values of these fields:〈gµν〉, 〈Aµ〉, 〈φ〉, given by
the first terms in the Fourier series, were interpreted as masses of particles.
As Duff remarks, in today’s parlance, the Fourier coefficient of order zero
describes a graviton (spin 2), a photon (spin 1) and a dilaton (spin 0). Indeed,
the masslessness of graviton 〈gµν〉 = 0 is due to the general covariance of GR
(which can be interpreted as a gauge invariance); the masslessness of photon
〈Aµν〉 = 0 is due to the gauge invariance; the masslessness of the dilaton
〈φ〉 = 0 is due to it being a Goldstone boson. 66

4 Kaluza’s unification: its limits and its promises

I intend to address the questions asked at the beginning of the paper and to
link the Kaluza agenda to the literature on scientific unification.

Kaluza’s identifications and explanations. There is no “real unificatory ele-
ment” or “machinery” (such as the “displacement current” in Maxwell) in
Kaluza. Instead of a “theoretical parameter”, Kaluza depicts a mathematical
operation that unifies. Similar to Maxwell’s case, Kaluza used ID1-ID3 to ex-
plain why we have the illusion of EM and GR as disparate realms. Under
some approximations, the IDs have helped Kaluza to represent the EM and
GR interaction under one and the same formalism and to infer a geodesic
equation. By using ID1 he inferred the form of the metric tensor gmn and by
using ID2, the geodesic equation. ID3 helped him to give an interpretation
for p4. Kaluza’s IDs provide answers to “why” questions such as: Why is it
apparent that EM phenomena are independent of gravitational phenomena?

65 It can be shown that Klein’s wavefield in 5-D is equivalent to the Fourier expan-
sion. See (van Dongen, 2002, 190).
66 (Duff, 1994, 6).
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Why do macroscopic charged particles not move on geodesics in 4-D? Why
do GR and EM obey Poisson equations? I conclude that question II) can
be answered in affirmative because Kaluza provides explanatory power along
unification, pace Morrison’s claim.

Lack of coupling. One would like to have a SR-type of unification where the
“electric field” by itself and the “magnetic field” by itself were doomed to fade
away. This is not the case with Kaluza. He intended to provide that sort of
unification but his formalism is not powerful enough to provide a correlation
between EM and GR. Without it, his formalism is a conjunction of GR and
EM without mutual interactions between them. In fact, by this decoupling,
the strength tensor does not affect the metric in four dimensions, which is
a drawback of the theory. His metric does not meet Mauldin’s condition c),
i.e. the coupling terms between the unified interactions or an explanation
of their mutual effects as a law-like correlation between the two. We shall
see that interaction terms do appear in Klein’s metric, so for Klein, EM
does add something to GR, and condition c) is met. Question III) can’t be
answered satisfactorily for Kaluza: his theory does not rank high on Maudlin’s
list as it does not meet condition c), i.e it is not a unification à la Maudlin.
The mathematical operation that brings in unification does not come with a
coupling term.

Adhocness of identifications. A common counterargument against Kaluza would
be to suspect that the IDs are ad-hoc because they are designed to produce
the sought after unification. What if the IDs and the dynamics on x4 are con-
cocted in order to reflect EM? Both GR and EM are represented by second
order PDEs and they are both high-range forces. Apparently, Kaluza’s method
would work for any pairs of forces satisfying such formal conditions. In the
prototypical case of unification of electric and magnetic forces within SR, the
theory proves that they are descriptions of one and the same physical entity.

Another complaint came from Einstein. As Kaluza’s theory minimally ex-
tended gravity from 4-D to 5-D, the new dimension seems to have been added
to 4-D in the “letter and spirit” of relativity and thus unification is obvious.
Einstein complained about this extension in a paper he wrote with Grom-
mer in 1923. 67 In GR, the covariance of ds2 was associated with the direct
measurability of a 4-D distance. However, there are no measures of length or
duration in 5-D because “length” here does not have the same meaning. Why
should one preserve the covariance of ds2 in 5-D? In one sense x4, is special
because all fields have the same values along it (which is not the case with
x0 . . . x3). There are ways to dismiss Einstein’s “suspect asymmetry” objec-
tion. Firstly, SR, a very successful theory, is based on the asymmetry between
x1 . . . x3 and x0. So there are no logical reasons to refute the fifth dimension

67 Einstein and Grommer (1923)
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on the basis of an asymmetry of the 5-D manifold, as the 4-D manifold is
already asymmetric in this sense. Time is already a non-spatial dimension, as
the metric along the fourth axis is not a “distance” with a ‘+’ signature. 68

Secondly, the very fact that there is a “measurement operation” associated to
four axes does not constitute a necessary condition to be imposed upon other
axes. The fifth axis simply acts as a theoretical parameter which has major
mathematical significance but which is difficult to measure (physics abounds
with such theoretical entities).

The cylinder condition as a ‘physical’ brute fact. By imposing CYL, Kaluza
tried to include in his formalism the fact that we do not experience the fifth
direction of spacetime. According to SR, we have only an illusion of the “flow
of time”. Here things seem similar: the universe has a hidden dimension and
the illusion or the indication of its existence is the whole spectra of electro-
magnetic phenomena. Being aware of this outlandish new “extra-world param-
eter”, Kaluza imposed the CYL in order to account for its un-observability. 69

By CYL the topology of the fifth direction is not affected, it is still the linear
topology of R and the external symmetries of spacetime are the same with
those of GR+EM 70 CYL as a brute fact is difficult to tolerate and naturally
seems ad-hoc. C. Callender proposes a way to see which facts are brute and
which are not: “What we do not want to do is posit substantive truths about
the world a priori to meet some unmotivated explanatory demand — as Hegel
did when he notoriously said there must be six planets in the solar system.” 71

CYL is an unexplained explainer, but a very uncomfortable one. For the sake
of the beauty and simplicity of his theory, Kaluza committed the same kinf of
fiat that Hegel did.

Predictions and consequences of Kaluza’s unification. One has to acknowl-
edge that Kaluza’s theory is a conjunction of GR and EM only if φ and its
density R44 are left uninterpreted. In fact, he explicitly refrained from any
predictive desideratum when he speculated that his theory did not surpass
“mere capricious accident”. However, he took the liberty to say more about
φ. Four years before Schrödinger would discover the wave function, Kaluza
speculated that, in the future, φ could act as a statistical quantity that can
explain quantum fluctuations. 72 and it could get to predictions in the future.
Likewise, in that case, φ would provide explanations to a plethora of phenom-
ena such as the apparent indeterminacy of quantum facts in 4-D. The aim

68 (Overduin and Wesson, 1998, 3)
69 “One then has to take into account the fact that we are only aware of the space
time variation of quantities, by making their derivatives with respect to the new
parameter vanish or by considering them to be small as they are of a higher or-
der.”(Kaluza, 1921, 968)
70 For other details see (Duff, 1994, 3).
71 (Callender, 2004, 206).
72 (Kaluza, 1921, 865).
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of explaining quantum indeterminism as the appearance of fields existing in
extra-dimensions was the Grail of many unified field theories: even Bohr and
Einstein coquetted with this idea. But this was mere speculation. What is
the scalar φ: surplus structure or would-be explanadum? For the time being,
aside from the approximations of Kaluza’s theory, φ can be taken as an arbi-
trary parameter without empirical consequences whatsoever and as a sign of
ad-hocness which cannot be excluded at this stage of the theory. This entails
another problem related to the reality of its new elements: the fifth dimen-
sion and the field φ. Notwithstanding any interpretation of φ, Kaluza’s theory
seems to be a notation variant of the GR and EM, acting more as a formalism
than as a theory. Although at the beginning of the paper Kaluza exhorted us
“[...] to consider our space-time to be a four-dimensional part of a R5” 73 , at
the end of the paper he became less convincing, downgrading his formalism
to a mere computational trickery 74

Other than his hope for a future quantum role of φ, Kaluza lacks a robust
commitment to realism. So one may ask if we do need the fifth dimension
more than we need phase space. By analogy, even if phase space is helpful in
analytical mechanics, nobody has ever claimed that we really live in a (q, q̇)
space or (q, p) space. Phase space and configuration space are purely represen-
tational spaces that do not produce extra structures such as φ. However, x4 is
similar to such “useful fictions” unless the scalar field φ signals the existence
of a particle, or it is related to the quantum fluctuations or it is related to the
cosmological constant. Einstein and Bergmann claimed in 1938 that Kaluza’s
theory was equivalent to a “projective geometry” in which the 4-D manifold
was enough and x4 was projected back to 4-D to which they added “vectorial
fields” by a “Four-Transformation”. Alternatively, one may ask why we do
not get rid of the third spatial dimension and just use two dimensions plus a
vectorial ”height” field. Even if equivalent from a formal point of view to its
3-D counterpart, such a theory may have hard time in describing everything
in 3D. 75

Novel predictions and observations were at that time the sole respected virtues
of a scientific theory and Kaluza simply did not provide any. Unlike Weyl’s the-
ory, whose unrealistic predictions had scared away Einstein and Pauli, Kaluza’s
theory did not have blatantly bad predictions. Actually, we will see that the
new element brought in, φ, has predictive and explanatory virtues. In short,

73 (Kaluza, 1921, 859, my emphasis)
74 “[...] it is difficult to think that the derived relations, which could scarcely be
rejected at the level of theory, represent something more than the enticing game of
a capricious chance. If one can establish that the presupposed connections are more
than an empty theory, this would be nothing else than a new triumph for Einstein’s
General Theory of Relativity whose appropriate application to five dimensions has
been our concern here.”(Kaluza, 1921, 865)
75 Thanks to reference removed for this suggestion.
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Kaluza’s theory illustrates a weak form of unification because it is trivial and
ad-hoc and because it does not provide a coupling term between EM and
GR.

5 Extrinsic element of unification and novel explanations in Klein

Klein’s new argument and the unification he achieved were more powerful
than those of Kaluza. Klein employed IDs as Kaluza did, but he surpassed
this procedure. In addressing question I), I claim that there are two aspects
specific to Klein’s unification: A) the extrinsic element of unification and B) the
reduction of types of symmetries of the theory. Both are crucial to understand
the improvements upon Kaluza.

A. The wavefunction as the unification element. Klein’s unification element
is the behavior of the wavefunction in 5-D which is an extrinsic element to
both GR and EM. It plays the role of the displacement current in Maxwell
and it is associated to a mathematical structure, i.e. the Sommerfeld condi-
tion of stationarity on a closed orbit. This mathematical condition afterward
plays the heuristic role for the discovery of compactification which, as a topo-
logical condition, is compatible with GR and EM. I want to stress that the
wavefunction in 5-D, undoubtedly inspired by de Broglie’s Ansatz, is not an
electromagnetic wave or a gravitational wave per se. As the hypothesis of the
new argument, COMP is the unificatory structure equipped with explanatory
powers. It comes from wave mechanics or, in a modern parlance, from the
formalism of quantum mechanics in de Broglie’s interpretation.

In Klein’s case, the unificatory element is part of neither T1 nor T2. In trying
to answer the second part of question I), one may ask whether the “extrinsic
element of unification” is specific only to Klein’s unification. It is worth know-
ing in general whether the element that generates the theory T0 is intrinsic to
T1 or to T2. A more general question can be asked: can the operation of uni-
fication always be performed completely within two theories? I have in mind
a related case of unification. Without further details, I suggest here that in
string theory “string” and “brane” are extrinsic elements to both the standard
model and to the theory of gravity, although they play a major unificatory
role. 76

B. Klein’s reduction of internal symmetries. Klein was able to explain inter-
nal symmetries of EM as external symmetries of 5-D. Because of COMP, the
symmetry of the EM theory is recovered from the symmetry of spacetime

76 I do not claim that an “extrinsic element” of unification characterizes any case
of unification.
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manifold R4 ⊗
S1 and the theory needs only “external symmetries”. On one

hand, EM theory has its internal symmetry of gauge invariance in 4-D called
U(1). On the other hand, a wave-function invariance solely demands “geomet-
rical” transformations associated to the coordinates in 5-D (37) and (38). The
metric transforms like this:

g′mn → gmn − ∂µλν − ∂νξµ (65)

and given (41), this corresponds to the gauge invariance symmetry of EM:

A′µ → Aµ − ∂ξµ

∂xµ
(66)

What is exciting is that U(1) coincides with the invariance on a compactified
topology. The internal symmetry of EM is reduced to the external symmetry
of a one-dimensional manifold S(1) (a geometrical consequence of the trans-
lation with a multiple of 2π on x4) which reflects in letter and in spirit the
creed of the “geometrization” program. The number of types of symmetry is
then reduced, and not the sheer number of symmetries. Aspect B) of Klein’s
theory nicely echoes Kitcher’s critique to Friedman’s account of unification
qua explanation. 77 The preference for external symmetries and the reduction
or elimination of internal symmetries are manifest in the generalization of
Kaluza-Klein to Yang-Mills field as well as in string theory: “our spacetime
may have extra dimensions and spacetime symmetries in those dimensions are
seen as internal (gauge) symmetries from the 4-D point of view. All symmetries
could then be unified.” 78

Brute facts and explanations. In answering questions II) and IV), I claim
that the power of explanation in Klein is greatly improved when compared
to Kaluza. Klein’s reversed argument, in which COMP becomes a brute fact
that explains CYL, provided Klein with a powerful unificatory mechanism able
to provide novel and unintended explanations. Klein’s original intention had
been to unify EM and GR by assuming COMP and he succeeded. The result
surpassed his original expectation by explaining in addition the quantization
of the electrical charge, the internal symmetry of EM as external symmetry of
S(1) and eventually the existence of particles. In addition, there was another
“intended”, albeit less successful, explanation in Klein’s theory. Klein showed
how Schrödinger’s equation can be derived from the wave equation in 5-D in
which “~ does not originally appear, but is introduced in connection with the
periodicity in x4.” 79 Does the Planck’s constant originate in the periodicity of
the fifth dimension? Unfortunately, this is only a partial outcome, at best. One
can infer some quantum numbers, especially the quanta of charge, from the

77 Kitcher (1976).
78 This is the so called “KK symmetry principle” (Ort́ın, 2004, 291). Among other
meanings, string theorists use unification as reduction of the types of symmetries.
79 Klein (1926b).
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symmetries of x4, but not all of them. How much of quantum theory can be
explained by this geometrization program? Not much. Quantum theory in its
Hilbert space formulation is not captured by the topology of the fifth dimen-
sion, 80 so one should have serious doubts about whether the whole quantum
theory can be derived from topological assumptions in extra dimensions. In
the eyes of modern physicists, the meaning of Klein’s deduction is flawed: the
classical theory of fields, even in 5-D, is not able to provide a description of
quantum phenomena.

Usually, the major criticism raised against Kaluza-Klein theory consists in its
lack of predictions. For many physicists, a unification is successful only when
making new predictions that are confirmed by experiment. 81 The charge quan-
tization, the external symmetry of EM and the existence of some particles
were brute facts for Kaluza as well as for EM or GR, whereas in Klein’s
theory they become explananda. Once one has accepted COMP, one hits the
ground of explanation and no explanation is needed any longer. The “unex-
plained explainer” is that the fifth dimension is curled and this for Klein the
finale, no other explanans is necessary for this brute fact. As part of its uni-
ficatory virtues, COMP, a topological brute fact, explains and predicts physical
facts. Klein aimed higher when he envisaged to explain particles. However,
can a vacuum theory predict the existence of particles? Another unexpected
explanation of Klein’s theory: the photon and, albeit Klein was not aware of
it, the graviton and the “dilaton” can be deduced from COMP as expectation
values of 〈Aµ〉, 〈gµν〉, 〈φ〉 by assuming a first-order approximation in which
massive states are disregarded. 82 Even if the interpretation of zero modes as
masses was too bold for the 1920s, Klein correctly inferred the photon from
〈Aµν〉. For him, as for de Broglie, material particles are solutions to fields
and their motion reflects the propagation of waves: “the observed motion as
a kind of projection onto space-time of a wave propagation taking place in a
space of five dimensions.” 83 The scalar field φ as well as g itself signal the
presence of an unobservable particle. However, the 5-D wavefunction comes
with its own troubles. A tower of massive, charged and spin particles with
mode n > 1 having the mass mn = |n|m pops into existence. It is easy to
see whyt in its original formulation Klein’s theory was not renormalizable. 84

80 The question whether a 5-D theory can capture the description of other inter-
pretations of quantum mechanics (Bohmian mechanics, for example) is way beyond
the scope of the present paper.
81 For example, see (Smolin, 2006, 47, 125) for quotes from Richard Feynman and
Sheldon Glashow on superstring theory. Smolin rightly emphasizes that what used
to be critiques against Kaluza-Klein is in the present times directed against string
theory.
82 This is similar to the “dimensional reduction” used in modern Kaluza-Klein the-
ories with D=11 by Scherk, Julia and Cremmer (1978), see Appelquist et al. (1987).
83 (Klein, 1926a, 905).
84 One can associate these massive multiplets with the symmetry group of the theory.
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Klein’s world with a curled x4 is operationally indistinguishable from a 4-D
world with an infinite mass spectrum. The “dimension reduction” is necessary
precisely to avoid embarrassing predictions. But in order to explain massive
particles one needs non-geometrical fields “coupled” with the metric which
indicates that the geometrical reduction is not fundamental. Despite Klein’s
attempts, “matter fields” must remain on the brute facts side and cannot be
explicated away.

Notwithstanding these shortcomings, when Klein modified the original formu-
lation following Kaluza, he was clearly motivated to develop a theory with
explanations, with fewer types of brute facts and more capable of solving
problems. Klein’s case study comes to odds with Morisson’s decoupling gen-
eral claim: while the wavefunction plays the role of the “theoretical element
of unification”, Klein’s COMP is a mechanism crucial for unification with novel
and unexpected explanations, beyond the scope of the original approach (oth-
erwise similar enough to Kaluza). But some unintended results came out from
his very theory. 85

Last but not least, Klein is a contrast case to Morrison’s analysis in another
respect, too. Morrison tried to show that in Maxwell’s unification of EM, the
theory’s commitment to the existence of ether gradually lessened. 86 Kaluza-
Klein illustrates the opposite trend of an increasingly realist commitments to
the existence of an extra dimension and to its topology as the theory boosted
its explanatory store. In Einstein’s and Pauli’s approaches to extra dimensions,
but especially in the later stage of the theory, the realism commitment became
more transparent. At the renaissance of the extradimension theory, Cremmer
& Scherk (1976) and Witten (1981) have approached Kaluza-Klein with an
explicit realist stance in which the “mechanism” of compactification was based
on spontaneous symmetry breaking 87 . From an unexplained explainer, COMP
became an explanandum of the Kaluza-Klein type of cosmology.

Klein’s place in Maudlin’s ranking. In Klein, gravity and electromagnetism
are coupled. In Klein’s “line element” (42) there is no longer a pure gravita-
tional “piece of metric”. The interaction term AµAν represents the coupling
between gravitation and electromagnetism (on which Kaluza remained silent)
which affects the 4-D gravitational metric. Unlike Kaluza, Klein’s theory meets
Maudlin’s three conditions a)-c). Klein qualifies as a non-trivial unification
which is not a mere conjunction of GR and EM. Klein’s theory is not decom-

According to Salam (1982), the non-compact symmetries are spontaneously broken
and are nothing more than spectrum generating terms.
85 Similarly, Maxwell had intended to unify electric and magnetic fields, but what he
accomplished at the end of the day was the unification of light with electromagnetic
waves as well.
86 (Morrison, 2000, 84)
87 (Appelquist et al., 1987, 278sqq)

31



posable in a simple group, so it does not constitute a Level III unification à
la Maudlin. I situate Klein’s unification as an intermediate position between
Level I and textitLevel II in Maudlin’s schema. Although there are observable
particles generated by the unification procedure: the photon and, although
not directly, the graviton and dilation, there are no particles generated by the
mixing angle similar to those in the electroweak unification.

Both the Kaluza and Klein cases reveal two amendments to Maudlin. Although
GR is not, strictly speaking, a gauge theory (it can be interpreted as a gauge
theory, but this was not available to Klein), its very presence complicates
Maudlin’s hierarchy of gauge unifications. 88 Secondly, Kaluza’s case in which
condition c) is not met, albeit it has the symmetry of a simple group (GL(5)),
reveals that there are missing pieces in the puzzle of unification of gauge
theories at least at Level III, where further conditions are needed. The same
can be said about the condition of the mixing angle at Level II. Therefore, it
would not be fair to downgrade Klein’s unification well below the electroweak
one. Klein’s theory is not worse (or better) than electroweak theory in another
respect: they both postulate a scalar field in order to achieve unification. I
conclude that Klein’s unification is at least as powerful as the electroweak
one, even if one must admit plenty of structural differences between them.
This suggested that for gauge theories unified with gravity Mauldin’s hierarchy
should be based on more than one criterion or at least to be more precise in
the conditions impose at Level III.

Klein’s unification: a problem solver and a problem maker. I want to finally
address question V) and VI). Besides the aforementioned explanatory and
unificatory boost, COMP acted like a “problem solver” for Kaluza’s theory:
Klein substantially relaxed the approximation of weak fields, took out the
slow motion constraint and showed that electrons move on geodesics. This
takes his theory to a higher level of unification. Klein also assumed that only
the first term (n=0) in the Fourier expansion on x4 counts in our everyday
observations. Given the smallness of λ4, the modes n > 0 are taken to be large
enough to not be visible from our 4-D world and consequently the field values
in 5-D do not depend on x4.

What are the major limitations of the Kaluza-Klein theory? In the fourth
decade of the last century, physicists were preoccupied with the new nuclear
forces discovered. Quantum physics swamped the research in Kaluza-Klein
which seemed unable to render a description of these new, quantized inter-
actions. 89 Because of these historical reasons, the Kaluza-Klein program has

88 The author acknowledges this (Maudlin, 1996, 143)
89 In the meantime, speculations about curled-up extra dimensions seemed “as crazy
and unproductive as studying UFOs. There were no implications for experiment,
no new predictions, so, in a period when theory developed hand in hand with ex-
periment, no reason to pay attention.”(Smolin, 2006, 52)
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been stalemated for about half of a century. 90 Notwithstanding the history of
classical field theories, one should always recall that the original Kaluza-Klein
theory is strictly speaking a false theory. 91 Besides the tower of massive par-
ticles mentioned above, there are two difficulties generated by COMP. Firstly,
the λ4 as a parameter is instable, almost chaotical: when perturbed, either it
collapses to a singularity or it becomes visible. 92 Secondly, as directly linked
to the elementary charge of the electron, λ4 is not a dynamic parameter, but
a “frozen” parameter of the manifold. This undermines the essence of Ein-
stein’s GR for which geometry is dynamical. 93 Klein’s theory is dependent
then on a background manifold with a fixed topology. Last but not least, from
a methodological point of view, the generalization of the Kaluza-Klein theory
shows that there are always too many ways to achieve unification. Whenever
there are more than one hidden dimensions, there are infinite ways to curl
them up, so there are an infinite number of possible versions of the theory. 94

6 Conclusion

The evolution of this theory from Kaluza to Klein brought about an increased
unificatory and explanatory power, a reduction of types of brute facts while
solving previous problems and removing triviality and ad-hocness. Although
the commitment to realism is not transparent in either of these stages, one
can see how Klein opened the road to a more realistic interpretation of the
higher dimensions. Its potential to be generalized as well as the paradigmatic
mechanism of unification in which internal symmetries are reduces is worthy
of further philosophical analysis. The main conclusion to be drawn from my
analysis is that in this case unification was not possible from within two theo-
ries. The external factor exploited by Klein, the wavefunction behavior on x4,
reveals that GR and EM do not have enough internal resources to be unified

90 The theory eventually resurfaced due to its generalization to Yang-Mills fields
by adding extra dimensions with more and more sophisticated topologies and by
including quantum effects.
91 (Wesson, 2006, 5).
92 (Smolin, 2006, 48).
93 (Smolin, 2006, 48).
94 “The more dimensions, the more degrees of freedom — and the more freedom
is accorded to the geometry of the extra dimensions to wander away from the
rigid geometry needed to reproduce the forces known in our three-dimensional
world.”(Smolin, 2006, 51). This inflation of models chases nowadays’ string the-
ory, too. The supersymmetric theories are so rich that they can explain almost any
imaginable universe. And this affects Kaluza-Klein generalizations which seem to be
nothing more than a mathematical tool of representation and not a physical theory
that reflects reality.
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in 5-D. Wave mechanics, or at least a primitive notion of quantum mechanics,
was the external element of unification also endowed with explanatory power.
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Birkhäuser, Basel, translated by Julian B. Barbour (original title: ‘Edinye
teorii polya v perevoi treti XX veka’ Nauka, Moskow, 1985).

Weingard, R., 1984. Grand unified gauge theories and the number of elemen-
tary particles. Philosophy of Science 51 (1), 150–155.

Weingard, R., nd. On two goals of unification in physics, not dated typescript.
Wesson, P. W., 2006. Five-dimensional Physics: Classical And Quantum Con-

sequences of Kaluza-Klein Cosmology. World Scientific, New Jersey.

36




