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Abstract

This article is intended to give a review of the history of the classical aspects of unified field
theories in the 20th century. It includes brief technical descriptions of the theories suggested,
short biographical notes concerning the scientists involved, and an extensive bibliography. The
present first installment covers the time span between 1914 and 1933, i.e., when Einstein was
living and working in Berlin – with occasional digressions into other periods. Thus, the main
theme is the unification of the electromagnetic and gravitational fields augmented by short-
lived attempts to include the matter field described by Schrödinger’s or Dirac’s equations.
While my focus lies on the conceptual development of the field, by also paying attention to
the interaction of various schools of mathematicians with the research done by physicists, some
prosopocraphical remarks are included.
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On the History of Unified Field Theories 5

1 Introduction

1.1 Preface

This historical review of classical unified field theories consists of two parts. In the first, the
development of unified field theory between 1914 and 1933, i.e., during the years Einstein1 lived
and worked in Berlin, will be covered. In the second, the very active period after 1933 until the
1960s to 1970s will be reviewed. In the first version of Part I presented here, in view of the immense
amount of material, neither all shades of unified field theory nor all the contributions from the
various scientific schools will be discussed with the same intensity ; I apologise for the shortcoming
and promise to improve on it with the next version. At least, even if I do not discuss them all in
detail, as many references as are necessary for a first acquaintance with the field are listed here;
completeness may be reached only (if at all) by later updates. Although I also tried to take into
account the published correspondence between the main figures, my presentation, again, is far
from exhaustive in this context. Eventually, unpublished correspondence will have to be worked
in, and this may change some of the conclusions. Purposely I included mathematicians and also
theoretical physicists of lesser rank than those who are known to be responsible for big advances.
My aim is to describe the field in its full variety as it presented itself to the reader at the time.

The review is written such that physicists should be able to follow the technical aspects of the
papers (cf. Section 2), while historians of science without prior knowledge of the mathematics of
general relativity at least might gain an insight into the development of concepts, methods, and
scientific communities involved. I should hope that readers find more than one opportunity for
further in-depth studies concerning the many questions left open.

I profited from earlier reviews of the field, or of parts of it, by Pauli2 ([242], Section V); Lud-
wig [211]; Whittaker ([415], pp. 188–196); Lichnerowicz [208]; Tonnelat ([356], pp. 1–14); Jordan
([175], Section III); Schmutzer ([289], Section X); Treder ([182], pp. 30–43); Bergmann ([12], pp. 62–
73); Straumann [334, 335]; Vizgin [384, 385]3; Bergia [11]; Goldstein and Ritter [146]; Straumann
and O’Raifeartaigh [239]; Scholz [291], and Stachel [330]. The section on Einstein’s unified field
theories in Pais’ otherwise superb book presents the matter neither with the needed historical cor-
rectness nor with enough technical precision [240]. A recent contribution of van Dongen, focussing
on Einstein’s methodology, was also helpful [371]. As will be seen, with regard to interpretations
and conclusions, my views are different in some instances. In Einstein biographies, the subject of
“unified field theories” – although keeping Einstein busy for the second half of his life – has been
dealt with only in passing, e.g., in the book of Jordan [176], and in an unsatisfying way in excellent
books by Fölsing [136] and by Hermann [159]. This situation is understandable; for to describe a
genius stubbornly clinging to a set of ideas, sterile for physics in comparison with quantum mechan-

1Albert Einstein (1879-1955). Born in Ulm, Württemberg (Germany). Studied physics and mathematics at the
Swiss Federal Polytechnic School (ETH) Zurich and received his doctor’s degree in 1905. Lecturer at the University
of Bern (Switzerland), Professor in Zurich, Prague (then belonging to Austria), Berlin (Germany) and Princeton
(U.S.A.). Nobel Prize 1921 for his work on the light-electric effect (photon concept). Best known for his special and
general relativity theories. Important results in Brownian motion and the statistical foundations of radiation as a
quantum phenomenon. Worked for more than 30 years on Unified Field Theory.

2Wolfgang Ernst Pauli (1900–1958). Born in Vienna, Austria. Studied at the University of Munich with A. Som-
merfeld who recognised his great gifts. Received his doctorate in 1921 for a thesis on the quantum theory of ionised
molecular hydrogen. From October 1921 assistant of Max Born in Göttingen. After a year with Bohr, Pauli, be-
came a lecturer at the University of Hamburg in 1923. In 1928 he was appointed professor of theoretical physics
at the Federal Institute of Technology in Zürich. From 1945–1950 guest professor at the Institute for Advanced
Study, Princeton. He then returned to Zürich. Did important work in quantum mechanics, quantum field theory
and elementary particle theory (fourth quantum number (spin), Pauli exclusion principle, prediction of neutrino).
Fellow of the Royal Society. Nobel Prize winner in 1954.

3Vizgin’s book is the only one that covers the gamut of approaches during the period considered. Fortunately,
he has made accessible contributions in the Russian language by scientists in the Soviet Union. Vizgin also presents
and discusses attempts at unification prior to 1914.
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ics, over a period of more than 30 years, is not very rewarding. For the short biographical notes,
various editions of J. C. Poggendorff’s Biographisch-Literarischem Handwörterbuch and internet
sources have been used (in particular [1]).

If not indicated otherwise, all non-English quotations have been translated by the author; the
original text of quotations is given in footnotes.

1.2 Introduction to part I

Past experience has shown that formerly unrelated parts of physics could be fused into one sin-
gle conceptual formalism by a new theoretical perspective: electricity and magnetism, optics and
electromagnetism, thermodynamics and statistical mechanics, inertial and gravitational forces. In
the second half of the 20th century, the electromagnetic and weak nuclear forces have been bound
together as an electroweak force; a powerful scheme was devised to also include the strong interac-
tion (chromodynamics), and led to the standard model of elementary particle physics. Unification
with the fourth fundamental interaction, gravitation, is in the focus of much present research in
classical general relativity, supergravity, superstring, and supermembrane theory but has not yet
met with success. These types of “unifications” have increased the explanatory power of present
day physical theories and must be considered as highlights of physical research.

In the historical development of the idea of unification, i.e., the joining of previously separated
areas of physical investigation within one conceptual and formal framework, two closely linked
yet conceptually somewhat different approaches may be recognised. In the first, the focus is on
unification of representations of physical fields. An example is given by special relativity which,
as a framework, must surround all phenomena dealing with velocities close to the velocity of
light in vacuum. The theory thus is said to provide “a synthesis of the laws of mechanics and of
electromagnetism” ([16], p. 132). Einstein’s attempts at the inclusion of the quantum area into
his classical field theories belongs to this path. Nowadays, quantum field theory is such a unifying
representation4. In the second approach, predominantly the unification of the dynamics of physical
fields is aimed at, i.e., a unification of the fundamental interactions. Maxwell’s theory might be
taken as an example, unifying the electrical and the magnetic field once believed to be dynamically
different. Most of the unified theories described in this review belong here: Gravitational and
electromagnetic fields are to be joined into a new field. Obviously, this second line of thought
cannot do without the first: A new representation of fields is always necessary.

In all the attempts at unification we encounter two distinct methodological approaches: a
deductive-hypothetical and an empirical-inductive method. As Dirac pointed out, however,

“The successful development of science requires a proper balance between the method
of building up from observations and the method of deducing by pure reasoning from
speculative assumptions, [...].” ([232], p. 1001)

In an unsuccessful hunt for progress with the deductive-hypothetical method alone, Einstein spent
decades of his life on the unification of the gravitational with the electromagnetic and, possibly,
other fields. Others joined him in such an endeavour, or even preceded him, including Mie, Hilbert,
Ishiwara, Nordström, and others5. At the time, another road was impossible because of the lack
of empirical basis due to the weakness of the gravitational interaction. A similar situation obtains
even today within the attempts for reaching a common representation of all four fundamental
interactions. Nevertheless, in terms of mathematical and physical concepts, a lot has been learned
even from failed attempts at unification, vid. the gauge idea, or dimensional reduction (Kaluza–
Klein), and much still might be learned in the future.

4The inclusion of the quantum corresponds to Vizgin’s maximal unification problem [385], p. 169.
5See Section 1 of Vizgin’s book [385] for a treatment of the history of pre-relativistic unified field theories and

an exposition of Mie’s, Ishiwara’s, and Nordström’s approaches.
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On the History of Unified Field Theories 7

In the following I shall sketch, more or less chronologically, and by trailing Einstein’s path, the
history of attempts at unifying what are now called the fundamental interactions during the period
from about 1914 to 1933. Until the end of the thirties, the only accepted fundamental interactions
were the electromagnetic and the gravitational, plus, tentatively, something like the “mesonic” or
“nuclear” interaction. The physical fields considered in the framework of “unified field theory”
including, after the advent of quantum (wave-) mechanics, the wave function satisfying either
Schrödinger’s or Dirac’s equation, were all assumed to be classical fields. The quantum mechanical
wave function was taken to represent the field of the electron, i.e., a matter field. In spite of this,
the construction of quantum field theory had begun already around 1927 [52, 173, 177, 174, 178].
For the early history and the conceptual development of quantum field theory, cf. Section 1 of
Schweber [321], or Section 7.2 of Cao [28]; for Dirac’s contributions, cf. [189]. Nowadays, it seems
mandatory to approach unification in the framework of quantum field theory.

General relativity’s doing away with forces in exchange for a richer (and more complicated)
geometry of space and time than the Euclidean remained the guiding principle throughout most of
the attempts at unification discussed here. In view of this geometrization, Einstein considered the
role of the stress-energy tensor T ik (the source-term of his field equations Gik = −κT ik) a weak
spot of the theory because it is a field devoid of any geometrical significance.

Therefore, the various proposals for a unified field theory, in the period considered here, included
two different aspects:

• An inclusion of matter in the sense of a desired replacement, in Einstein’s equations and their
generalisation, of the energy-momentum tensor of matter by intrinsic geometrical structures,
and, likewise, the removal of the electric current density vector as a non-geometrical source
term in Maxwell’s equations.

• The development of a unified field theory more geometrico for electromagnetism and gravi-
tation, and in addition, later, of the “field of the electron” as a classical field of “de Broglie-
waves” without explicitly taking into account further matter sources6.

In a very Cartesian spirit, Tonnelat (Tonnelat 1955 [356], p. 5) gives a definition of a unified field
theory as

“a theory joining the gravitational and the electromagnetic field into one single hyper-
field whose equations represent the conditions imposed on the geometrical structure of
the universe.”

No material source terms are taken into account7. If however, in this context, matter terms appear
in the field equations of unified field theory, they are treated in the same way as the stress-energy
tensor is in Einstein’s theory of gravitation: They remain alien elements.

For the theories discussed, the representation of matter oscillated between the point-particle
concept in which particles are considered as singularities of a field, to particles as everywhere
regular field configurations of a solitonic character. In a theory for continuous fields as in general
relativity, the concept of point-particle is somewhat amiss. Nevertheless, geodesics of the Rie-
mannian geometry underlying Einstein’s theory of gravitation are identified with the worldlines of
freely moving point-particles. The field at the location of a point-particle becomes unbounded, or
“singular”, such that the derivation of equations of motion from the field equations is a non-trivial
affair. The competing paradigm of a particle as a particular field configuration of the electromag-
netic and gravitational fields later has been pursued by J. A. Wheeler under the names “geon” and

6In present-day interpretation, the first two fields are fields mediating the interactions while the third, the electron
field, really is a matter field.

7This definition corresponds, in a geometrical framework, to Vizgin’s minimal unification problem ([385], p. 187).
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“geometrodynamics” in both the classical and the quantum realm [412]. In our time, gravitational
solitonic solutions also have been found [234, 26].

Even before the advent of quantum mechanics proper, in 1925–26, Einstein raised his expec-
tations with regard to unified field theory considerably; he wanted to bridge the gap between
classical field theory and quantum theory, preferably by deriving quantum theory as a consequence
of unified field theory. He even seemed to have believed that the quantum mechanical properties of
particles would follow as a fringe benefit from his unified field theory; in connection with his classi-
cal teleparallel theory it is reported that Einstein, in an address at the University of Nottingham,
said that he

“is in no way taking notice of the results of quantum calculation because he believes that
by dealing with microscopic phenomena these will come out by themselves. Otherwise
he would not support the theory.” ([91], p. 610)

However, in connection with one of his moves, i.e., the 5-vector version of Kaluza8’s theory (cf. Sec-
tions 4.2, 6.3), which for him provided “a logical unity of the gravitational and the electromagnetic
fields”, he regretfully acknowledged:

“But one hope did not get fulfilled. I thought that upon succeeding to find this law,
it would form a useful theory of quanta and of matter. But, this is not the case. It
seems that the problem of matter and quanta makes the construction fall apart.”9 ([96],
p. 442)

Thus, unfortunately, also the hopes of the eminent mathematician Schouten10, who knew some
physics, were unfulfilled:

“[...] collections of positive and negative electricity which we are finding in the positive
nuclei of hydrogen and in the negative electrons. The older Maxwell theory does not
explain these collections, but also by the newer endeavours it has not been possible to
recognise these collections as immediate consequences of the fundamental differential
equations studied. However, if such an explanation should be found, we may perhaps
also hope that new light is shed on the [...] mysterious quantum orbits.”11 ([301], p. 39)

In this context, through all the years, Einstein vainly tried to derive, from the field equations
of his successive unified field theories, the existence of elementary particles with opposite though
otherwise equal electric charge but unequal mass. In correspondence with the state of empirical
knowledge at the time (i.e., before the positron was found in 1932/33), but despite theoretical

8Theodor Franz Eduard Kaluza (1885–1954). Born in Ratibor, Germany (now Raciborz, Poland). Studied
mathematics at the University of Königsberg (now Kaliningrad, Russia) and became a lecturer there in 1910. In
1929 he received a professorship at the University of Kiel, and in 1935 was made full professor at the University
of Göttingen. He wrote only a handful of mathematical papers and a textbook on “Higher mathematics for the
practician” (cf. [423]).

9“Eine Hoffnung ist aber nicht in Erfüllung gegangen. Ich dachte, wenn es gelingt, dieses Gesetz aufzustellen, dass
es eine brauchbare Theorie der Quanten und Materie bilden würde. Aber das ist nicht der Fall. Die Konstruktion
scheint am Problem der Materie und der Quanten zu scheitern.”

10Jan Arnoldus Schouten (1883–1971). Born near Amsterdam in the Netherlands. Studied electrical engineering
at the Technical University (Hogeschool) of Delft and then mathematics at the University of Leiden. His doctoral
thesis of 1914 was on tensor analysis, a topic he worked on during his entire academic career. From 1914 until 1943
he held a professorship in mathematics at the University of Delft, and from 1948 to 1953 he was director of the
Mathematical Research Centre at the University of Amsterdam. He was a prolific writer, applying tensor analysis
to Lie groups, general relativity, unified field theory, and differential equations.

11“[...] Anhäufungen von positiver und negativer Elektrizität, die wir in den positiven Wasserstoffkernen und
in den negativen Elektronen antreffen. Die ältere Maxwellsche Theorie erklärt diese Anhäufungen nicht, aber
auch den neueren Bestrebungen ist es bisher nicht gelungen, diese Anhäufungen als selbstverständliche Folgen der
zugrundeliegenden Differentialgleichungen zu erkennen. Sollte aber eine solche Erklärung gefunden werden, so darf
man vielleicht auch hoffen, dass die [...] mysteriösen Quantenbahnen in ein neues Licht gerückt werden.”
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On the History of Unified Field Theories 9

hints pointing into a different direction to be found in Dirac’s papers, he always paired electron
and proton12.

Of course, by quantum field theory the dichotomy between matter and fields in the sense
of a dualism is minimised as every field carries its particle-like quanta. Today’s unified field
theories appear in the form of gauge theories; matter is represented by operator valued spin-half
quantum fields (fermions) while the “forces” mediated by “exchange particles” are embodied in
gauge fields, i.e., quantum fields of integer spin (bosons). The space-time geometry used is rigidly
fixed, and usually taken to be Minkowski space or, within string and membrane theory, some
higher-dimensional manifold also loosely called “space-time”, although its signature might not be
Lorentzian and its dimension might be 10, 11, 26, or some other number larger than four. A
satisfactory inclusion of gravitation into the scheme of quantum field theory still remains to be
achieved.

In the period considered, mutual reservations may have existed between the followers of the new
quantum mechanics and those joining Einstein in the extension of his general relativity. The latter
might have been puzzled by the seeming relapse of quantum mechanics from general covariance
to a mere Galilei- or Lorentz-invariance, and by the statistical interpretation of the Schrödinger
wave function. Lanczos13, in 1929, was well aware of his being out of tune with those adherent to
quantum mechanics:

“I therefore believe that between the ‘reactionary point of view’ represented here, aim-
ing at a complete field-theoretic description based on the usual space-time structure and
the probabilistic (statistical) point of view, a compromise [...] no longer is possible.”14

([197], p. 486, footnote)

On the other hand, those working in quantum theory may have frowned upon the wealth of objects
within unified field theories uncorrelated to a convincing physical interpretation and thus, in prin-
ciple, unrelated to observation. In fact, until the 1930s, attempts still were made to “geometrize”
wave mechanics while, roughly at the same time, quantisation of the gravitational field had also
been tried [283]. Einstein belonged to those who regarded the idea of unification as more funda-
mental than the idea of field quantisation [95]. His thinking is reflected very well in a remark made
by Lanczos at the end of a paper in which he tried to combine Maxwell’s and Dirac’s equations:

“If the possibilities anticipated here prove to be viable, quantum mechanics would cease
to be an independent discipline. It would melt into a deepened ‘theory of matter’ which
would have to be built up from regular solutions of non-linear differential equations, –
in an ultimate relationship it would dissolve in the ‘world equations’ of the Universe.
Then, the dualism ‘matter-field’ would have been overcome as well as the dualism
‘corpuscle-wave’.”15 ([197], p. 493)

12It is true that Dirac, in his first paper, in contrast to what his “hole”-theory implied, had identified the positively
charged particle corresponding to the electron also with the proton [55]. However, after Weyl had pointed out that
Dirac’s hole theory led to equal masses [409], he changed his mind and gave the new particle the same mass as the
electron [56].

13Cornelius Lanczos (Kornél Löwy) (1893–1974). Born in Székesfehérvár (Hungary). Studied physics and mathe-
matics at the University of Budapest with Eötvös, Fejér, and Lax. Received his doctorate in 1921, became scientific
assistant at the University of Freiburg (Germany) and lecturer at the University of Frankfurt am Main (Germany).
Worked with Einstein in Berlin 1928–1929, then returned to Frankurt. Became a visiting professor at Purdue Uni-
versity in 1931 and came back on a professorship in 1932. Worked mainly in mathematical physics and numerical
analysis. After 1944 he held various posts in industry and in the National Bureau of Standards. Left the U.S.A.
during the McCarthy era and in 1952 followed an invitation by Schrödinger to become head of the Theoretical
Physics Department of the Dublin Institute for Advanced Study.

14“Ich glaube darum, dass zwischen dem hier vertretenen ‘reactionären Standpunkt’, der eine vollständige feldthe-
oretische Beschreibung auf Grund der normalen Raum-Zeit-Struktur erstrebt, und dem wahrscheinlichkeitstheoretis-
chen (statistischen) Standpunkt ein Kompromiss [...] nicht mehr möglich ist.”

15“Sollten sich die hier vorausgeahnten Möglichkeiten als wirklich lebensfähig erweisen, so würde die Quanten-
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Lanczos’ work shows that there has been also a smaller subprogram of unification as described
before, i.e., the view that somehow the electron and the photon might have to be treated together.
Therefore, a common representation of Maxwell’s equations and the Dirac equation was looked for
(cf. Section 7.1).

During the time span considered here, there also were those whose work did not help the idea
of unification, e.g., van Dantzig16 wrote a series of papers in the first of which he stated:

“It is remarkable that not only no fundamental tensor [first fundamental form] or tensor-
density, but also no connection, neither Riemannian nor projective, nor conformal, is
needed for writing down the [Maxwell] equations. Matter is characterised by a bivector-
density [...].” ([367], p. 422, and also [363, 364, 365, 366])

If one of the fields to be united asks for less “geometry”, why to mount all the effort needed
for generalising Riemannian geometry?

A methodological weak point in the process of the establishment of field equations for unified
field theory was the constructive weakness of alternate physical limits to be taken:

• no electromagnetic field → Einstein’s equations in empty space;

• no gravitational field → Maxwell’s equations;

• “weak” gravitational and electromagnetic fields → Einstein–Maxwell equations;

• no gravitational field but a “strong” electromagnetic field → some sort of non-linear electro-
dynamics.

A similar weakness occurred for the equations of motion; about the only limiting equation to be
reproduced was Newton’s equation augmented by the Lorentz force. Later, attempts were made to
replace the relationship “geodesics→ freely falling point particles” by more general assumptions for
charged or electrically neutral point particles – depending on the more general (non-Riemannian)
connections introduced17. A main hindrance for an eventual empirical check of unified field theory
was the persistent lack of a worked out example leading to a new gravito-electromagnetic effect.

In the following Section 2, a multitude of geometrical concepts (affine, conformal, projective
spaces, etc.) available for unified field theories, on the one side, and their use as tools for a descrip-
tion of the dynamics of the electromagnetic and gravitational field on the other will be sketched.
Then, we look at the very first steps towards a unified field theory taken by Reichenbächer18,

mechanik aufhören, eine selbständige Disziplin zu sein. Sie würde verschmelzen mit einer vertieften ‘Theorie der
Materie’, die auf reguläre Lösungen von nicht-linearen Differentialgleichungen aufzubauen hätte, – in letztem Zusam-
menhang also aufgehen in den ‘Weltgleichungen’ des Universums. Der Dualismus ‘Materie-Feld’ würde dann ebenso
überwunden sein, wie der Dualismus ‘Korpuskel-Welle’.”

16David van Dantzig (1900–1959). Born in Rotterdam, Netherlands. Studied mathematics at the University of
Amsterdam. Worked first on differential geometry, electrodynamics and unified field theory. Known as co-founder,
in 1946, of the Mathematical Centre in Amsterdam and by his role in establishing mathematical statistics as a
subdiscipline in the Netherlands.

17Thus, in a paper of 1934 really belonging to the 2nd part of this review, Schouten and Haantjes exchanged the
previously assigned “induced geodesic lines” for “auto-geodesical lines” [311].

18Ernst Reichenbächer (1881–1944). Studied mathematics and received his doctorate from the University of Halle
in 1903 under the guidance of Albert Wangerin (a student of Franz Neumann in Königsberg). At first, Reichenbächer
did not enter an academic career, but started teaching in a Gymnasium in Wilhelmshaven in North Germany, then
in Königsberg on the Baltic Sea. In 1929 he became a Privatdozent (lecturer) at the University of Königsberg (now
Kaliningrad, Russia). His courses covered special and general relativity, the physics of fixed stars and galaxies with
a touch on cosmology, and quantum mechanics. In the fifth year of World War II he finally received the title of
professor at the University Königsberg, but in the same year was killed during a bombing raid on the city.
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On the History of Unified Field Theories 11

Förster (alias Bach), Weyl19, Eddington20, and Einstein (see Section 3.1). In Section 4, the main
ideas are developed. They include Weyl’s generalization of Riemannian geometry by the addition
of a linear form (see Section 4.1) and the reaction to this approach. To this, Kaluza’s idea con-
cerning a geometrization of the electromagnetic and gravitational fields within a five-dimensional
space will be added (see Section 4.2) as well as the subsequent extensions of Riemannian to affine
geometry by Schouten, Eddington, Einstein, and others (see Section 4.3). After a short excursion
to the world of mathematicians working on differential geometry (see Section 5), the research of
Einstein and his assistants is studied (see Section 6). Kaluza’s theory received a great deal of
attention after O. Klein21 intervention and extension of Kaluza’s paper (see Section 6.3.2). Ein-
stein’s treatment of a special case of a metric-affine geometry, i.e., “distant parallelism”, set off an
avalanche of research papers (see Section 6.4.4), the more so as, at the same time, the covariant
formulation of Dirac’s equation was a hot topic. The appearance of spinors in a geometrical setting,
and endeavours to link quantum physics and geometry (in particular, the attempt to geometrize
wave mechanics) are also discussed (see Section 7). We have included this topic although, strictly
speaking, it only touches the fringes of unified field theory.

In Section 9, particular attention is given to the mutual influence exerted on each other by the
Princeton (Eisenhart22, Veblen23), French (Cartan24), and the Dutch (Schouten, Struik25) schools

19Hermann Klaus Hugo Weyl (1885–1955). Born in Elmshorn, Germany. Studied at the Universities of Munich
and Göttingen where he received his doctorate in 1908 (Hilbert was his supervisor). From 1913 he held the Chair
of Mathematics at the Federal Institute of Technology in Zürich, and from 1930 to 1933 a corresponding Chair at
the University of Göttingen. Then until retirement he worked at the Institute for Advanced Study in Princeton.
Weyl made important contributions in mathematics (integral equations, Riemannian surfaces, continuous groups,
analytic number theory) and theoretical physics (differential geometry, unified field theory, gauge theory). For his
papers, cf. also the Collected Works [411]

20Arthur Stanley Eddington (1882–1944). Born in Kendal, England. Studied mathematics at Owens College,
Manchester and Trinity College, Cambridge. After some work in physics, moved into astronomy in 1905 and was
appointed to the Royal Observatory at Greenwich. From 1914 director of the Cambridge Observatory. Fellow of
the Royal Society. As a Quaker he became a conscientious objector to military service during the First World War.
Eddington made important contributions to general relativity and astrophysics (internal structure of stars). In 1918,
he led an eclipse expedition from which the first indications resulted that Einstein’s general relativity theory was
correct. Wrote also on epistemology and the philosophy of science.

21Oskar Klein (1894–1977). Born in Mörby, Sweden. After work with Arrhenius in physical chemistry, he met
Kramers, then a student of Bohr, in 1917. Klein worked with Bohr in the field of molecular physics and received
his doctorate in 1921 at Stockholm Högskola. His first research position was at the University of Michigan in Ann
Arbor, where he worked on the Zeeman effect. Back in Europe from 1925, he taught at Lund University and tried to
connect Kaluza’s work with quantum theory. In 1930 he became professor for mathematical physics at Stockholm
Högskola until retirement. His later work included quantum theory (Klein–Nishina formula), superconductivity, and
cosmology.

22Luther Pfahler Eisenhart (1876–1965). Born in York, Pennsylvania, U.S.A. Studied mathematics at John
Hopkins University, Baltimore and received his doctorate in 1900. Eisenhart taught at the University of Princeton
from 1900, was promoted to professor in 1909 and remained there (as Dean of the mathematical Faculty and Dean
of the Graduate School) until his retirement in 1945. All his work is in differential geometry, including Riemannian
and non-Riemannian geometry and in group theory.

23Oswald Veblen (1880–1960). Born in Decorah, Iowa, U.S.A. Entered the University of Iowa in 1894, receiving
his B.A. in 1898. He obtained his doctorate from the University of Chicago on “a system of axioms in geometry”
in 1903. He taught mathematics at Princeton (1905–1932), at Oxford in 1928–1929, and became a professor at
the Institute for Advanced Study in Princeton in 1932. Veblen made important contribution to projective and
differential geometry, and to topology. He gave a new treatment of spin.

24Elie Joseph Cartan (1869–1951). Born in Dolomien near Chambéry, France. Student at l‘École Normale since
1888, he received his Ph.D. in 1894 with a thesis in which he completed Killing’s classification of semisimple algebras.
He lectured at Montpellier (1894–1903), Lyon (1896–1903), Nancy (1903–1909), and Paris (1909–1940). His following
work on the representation of semisimple Lie groups combines group theory, classical geometry, differential geometry,
and topology. From 1904 he worked on differential equations and differential geometry, and developed a theory of
moving frames (calculus of differential forms). He also contributed to the geometry of symmetric spaces and
published on general relativity and its geometric extensions as well as on the theory of spinors. For his Collected
Works, cf. [41].

25Dirk J. Struik (1894–2000). Born in Rotterdam in the Netherlands. Studied mathematics and physics at the
University of Leiden with Lorentz and de Sitter. Received his doctorate in 1922. Then worked with Schouten at
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12 Hubert F. M. Goenner

of mathematicians, and the work of physicists such as Eddington, Einstein, their collaborators,
and others. In section 10, the reception of unified field theory at the time is briefly discussed.

the University of Delft and, with a Rockefeller International Education Fellowship, moved to Rome and Göttingen.
After a collaboration with Wiener, in 1926 he received a lectureship at the Massachusetts Institute of Technology
(MIT) in Cambridge, Ma. where he became full professor in 1940. He stayed on the MIT mathematics faculty
until 1960. As a professed Marxist he was suspended from teaching duties during the McCarthy period but was
reinstated in 1956. In 1972, he became an honorary research associate in the History of Science Department of
Harvard University.
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On the History of Unified Field Theories 13

2 The Possibilities of Generalizing General Relativity: A
Brief Overview

As a rule, the point of departure for unified field theory was general relativity. The additional task
then was to “geometrize” the electromagnetic field. In this review, we will encounter essentially
five different ways to include the electromagnetic field into a geometric setting:

• by connecting an additional linear form to the metric through the concept of “gauging”
(Weyl);

• by introducing an additional space dimension (Kaluza);

• by choosing an asymmetric Ricci tensor (Eddington);

• by adding an antisymmetric tensor to the metric (Bach, Einstein);

• by replacing the metric by a 4-bein field (Einstein).

In order to bring some order into the wealth of these attempts towards “unified field theory,” I
shall distinguish four main avenues extending general relativity, according to their mathematical
direction: generalisation of

• geometry,

• dynamics (Lagrangians, field equations),

• number field, and

• dimension of space,

as well as their possible combinations. In the period considered, all four directions were followed
as well as combinations between them like e.g., five-dimensional theories with quadratic curvature
terms in the Lagrangian. Nevertheless, we will almost exclusively be dealing with the extension of
geometry and of the number of space dimensions.

2.1 Geometry

It is very easy to get lost in the many constructive possibilities underlying the geometry of unified
field theories. We briefly describe the mathematical objects occurring in an order that goes from
the less structured to the more structured cases. In the following, only local differential geometry
is taken into account26.

The space of physical events will be described by a real, smooth manifold MD of dimension
D coordinatised by local coordinates xi, and provided with smooth vector fields X,Y, . . . with
components Xi, Y i, . . . and linear forms ω, ν, . . ., (ωi, νi) in the local coordinate system, as well
as further geometrical objects such as tensors, spinors, connections27. At each point, D linearly
independent vectors (linear forms) form a linear space, the tangent space (cotangent space) of
MD. We will assume that the manifold MD is space- and time-orientable. On it, two independent
fundamental structural objects will now be introduced.

26For the following, it is assumed that readers have some prior knowledge of the mathematics underlying General
Relativity.

27For the precise definition of “geometrical object”, cf. Yano’s book [425].
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14 Hubert F. M. Goenner

2.1.1 Metrical structure

The first is a prescription for the definition of the distance ds between two infinitesimally close
points on MD, eventually corresponding to temporal and spatial distances in the external world.
For ds, we need positivity, symmetry in the two points, and the validity of the triangle equation.
We know that ds must be homogeneous of degree one in the coordinate differentials dxi connecting
the points. This condition is not very restrictive; it still includes Finsler geometry [280, 126, 223]
to be briefly touched, below.

In the following, ds is linked to a non-degenerate bilinear form g(X,Y ), called the first funda-
mental form; the corresponding quadratic form defines a tensor field, the metrical tensor, with D2

components gij such that

ds =
√
gijdxidxj , (1)

where the neighbouring points are labeled by xi and xi + dxi, respectively28. Besides the norm
of a vector |X| :=

√
gijXiXj , the “angle” between directions X, Y can be defined by help of the

metric:

cos(6 (X,Y )) :=
gijX

iY j

|X||Y |
.

From this we note that an antisymmetric part of the metrical tensor does not influence distances
and norms but angles.

With the metric tensor having full rank, its inverse gik is defined through29

gmig
mj = δji (2)

We are used to g being a symmetric tensor field, i.e., with gik = g(ik) and with only D(D+1)/2
components; in this case the metric is called Riemannian if its eigenvalues are positive (negative)
definite and Lorentzian if its signature is ±(D − 2)30. In the following this need not hold, so that
the decomposition obtains31:

gik = γ(ik) + φ[ik]. (3)

An asymmetric metric was considered in one of the first attempts at unifying gravitation and
electromagnetism after the advent of general relativity.

For an asymmetric metric, the inverse

gik = h(ik) + f [ik] = hik + f ik (4)

is determined by the relations

γijγ
ik = δkj , φijφ

ik = δkj , hijh
ik = δkj , fijf

ik = δkj , (5)

and turns out to be [356]

h(ik) =
γ

g
γik +

φ

g
φimφknγmn, (6)

f (ik) =
φ

g
φik +

γ

g
γimγknφmn, (7)

28The second fundamental form comes into play when local isometric embedding is considered, i.e., when MD is
taken as a submanifold of a larger space such that the metrical relationships are conserved. In the following, all
geometrical objects are supposed to be differentiable as often as is needed.

29Here, the Kronecker-symbol δi
k with value +1 for i = k, and value 0 for i 6= k is used. δi

k keeps its components
unchanged under arbitrary coordinate transformations.

30Latin indices i, j, k, . . . run from 1 to D, or from 0 to D − 1 to point to the single timelike direction. We have
used the symmetrisation bracket defined by A(ij) := 1/2 (Aij +Aji).

31In physical applications, special conditions for γ and φ might be needed in order to guarantee that g is a Lorentz
metric.
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On the History of Unified Field Theories 15

where g, φ, and γ are the determinants of the corresponding tensors gik, φik, and γik. We also
note that

g = γ + φ+
γ

2
γklγmnφkmφln, (8)

where g := det gik, φ := det φik, γ := det γik. The results (6,7,8) were obtained already by
Reichenbächer ([272], pp. 223–224)32 and also by Schrödinger [319]. Eddington also calculated
Equation (8); in his expression the term ∼ φik

?φik is missing (cf. [59], p. 233).
The manifold is called space-time if D = 4 and the metric is symmetric and Lorentzian, i.e.,

symmetric and with signature sig g = ±2. Nevertheless, sloppy contemporaneaous usage of the
term “space-time” includes arbitrary dimension, and sometimes is applied even to metrics with
arbitrary signature.

In a manifold with Lorentzian metric, a non-trivial real conformal structure always exists; from
the equation

g(X,X) = 0 (9)

results an equivalence class of metrics {λg} with λ being an arbitrary smooth function. In view
of the physical interpretation of the light cone as the locus of light signals, a causal structure is
provided by the equivalence class of metrics [67]. For an asymmetric metric, this structure can
exist as well; it then is determined by the symmetric part γik = γ(ik) of the metric alone taken to
be Lorentzian.

A special case of a space with a Lorentzian metric is Minkowski space, whose metrical compo-
nents, in Cartesian coordinates, are given by

ηik = δ 0
i δ

0
i − δ 1

i δ
1
i − δ 2

i δ
2
i − δ 3

i δ
3
i . (10)

A geometrical characterization of Minkowski space as an uncurved, flat space is given below. Let
LX be the Lie derivative with respect to the tangent vector X33; then LXpηik = 0 holds for the
Lorentz group of generators Xp.

The metric tensor g may also be defined indirectly through D vector fields forming an orthonor-
mal D-leg (-bein) hkı̂ with

glm = hl̂hmk̂η
̂k̂, (11)

where the hatted indices (“bein-indices”) count the number of legs spanning the tangent space at
each point (̂ = 1, 2, . . . , D) and are moved with the Minkowski metric34. From the geometrical
point of view, this can always be done (cf. theories with distant parallelism). By introducing
1-forms θk̂ := hk̂l dx

l, Equation (11) may be brought into the form ds2 = θı̂θk̂ηı̂k̂.
A new physical aspect will come in if the hkı̂ are considered to be the basic geometric variables

satisfying field equations, not the metric. Such tetrad-theories (for the case D = 4) are described
well by the concept of fibre bundle. The fibre at each point of the manifold contains, in the case of
an orthonormal D-bein (tetrad), all D-beins (tetrads) related to each other by transformations of
the group O(D), or the Lorentz group, and so on.

In Finsler geometry, the line element depends not only on the coordinates xi of a point on the
manifold, but also on the infinitesimal elements of direction between neighbouring points dxi:

ds2 = gij(xn, dxm)dxidxj . (12)

Again, gij is required to be homogeneous of rank 1.

32Reichenbächer’s results agree with Schrödinger’s, but, as they are in a different form than that given by Ton-
nelat [356], I have not checked whether they agree with Equations (6, 7). Neither Schrödinger nor Tonnelat give
credit to Reichenbächer.

33We have (LXY )k := ([X,Y ])k = Xi∂iY
k − Y i∂iX

k.
34Eisenhart called his object “ennuple” instead of n-bein [119]. In French, the expressions “n-pode”, “n-èdre”,

and “polyaxe à n dimensions” were also used.
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2.1.2 Affine structure

The second structure to be introduced is a linear connection L with D3 components L k
ij ; it is a

geometrical object but not a tensor field and its components change inhomogeneously under local
coordinate transformations35. The connection is a device introduced for establishing a comparison
of vectors in different points of the manifold. By its help, a tensorial derivative ∇, called covariant
derivative is constructed. For each vector field and each tangent vector it provides another unique
vector field. On the components of vector fields X and linear forms ω it is defined by

+

∇k Xi =
∂Xi

∂xk
+ L i

kjX
j ,

+

∇k ωi =
∂ωi
∂xk

− Lki
jωj . (13)

The expressions
+

∇k Xi and ∂Xi

∂xk are abbreviated by Xi
‖k and Xi

,k, respectively, while for a scalar
f covariant and partial derivative coincide: ∇if = ∂f

∂xi
≡ ∂if ≡ f,i.

We have adopted the notational convention used by Schouten [300, 310, 389]. Eisenhart and
others [121, 233] change the order of indices of the components of the connection:

−
∇k Xi =

∂Xi

∂xk
+ Ljk

iXj ,
−
∇k ωi =

∂ωi
∂xk

− L j
ik ωj . (14)

As long as the connection is symmetric, this does not make any difference as
+

∇k Xi−
−
∇k Xi = 2L[kj]

iXj . For both kinds of derivatives we have:

+

∇k (vlwl) =
∂(vlwl)
∂xk

,
−
∇k (vlwl) =

∂(vlwl)
∂xk

(15)

Both derivatives are used in versions of unified field theory by Einstein and others36.
A manifold provided with only a linear connection L is called affine space. From the point of

view of group theory, the affine group (linear inhomogeneous coordinate transformations) plays a
special role: With regard to it the connection transforms as a tensor (cf. Section 2.1.5).

For a vector density (cf. Section 2.1.5), the covariant derivative of X̂ contains one more term:

+

∇k X̂i =
∂X̂i

∂xk
+ Lkj

iX̂j − Lkr
rX̂i,

−
∇k X̂i =

∂Xi

∂xk
+ Ljk

iX̂j − Lrk
rX̂i. (16)

A smooth vector field Y is said to be parallely transported along a parametrised curve λ(u) with
tangent vector X if for its components Y i‖kXk(u) = 0 holds along the curve. A curve is called an
autoparallel if its tangent vector is parallely transported along it at each point37:

Xi
‖kX

k(u) = σ(u)Xi. (17)

By a particular choice of the curve’s parameter, σ = 0 may be imposed.
A transformation mapping autoparallels to autoparallels is given by:

L j
ik → Lik

j + δj(iωk). (18)

The equivalence class of autoparallels defined by Equation (18) defines a projective structure on
MD [404, 403].

35In an arbitrary basis for the differential forms (cotangent space), the connection may be represented by a 1-form.
36In the literature, different notations and conventions are used. Tonnelat [356] writes Ak

+
;j := Ak,j − Lkj

lAl,

and Ak
−

;j := Ak,j − Ljk
lAl.

37Many authors replace “autoparallel” by “geodesic”. We will reserve the name geodesic for curves of extreme
length; cf. Riemannian geometry.
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The particular set of connections

(p)Lij
k := Lij

k − 2
D + 1

δk(iLj) (19)

with Lj := L m
im is mapped into itself by the transformation (18) [348].

In Part II of this article, we shall find the set of transformations Likj → L j
ik + δji

∂ω
∂xk playing

a role in versions of Einstein’s unified field theory.
From the connection L k

ij further connections may be constructed by adding an arbitrary tensor
field T to its symmetrised part38:

L̄ij
k = L(ij)

k + Tij
k = Γijk + Tij

k. (20)

By special choice of T we can regain all connections used in work on unified field theories. We will
encounter examples in later sections. The antisymmetric part of the connection, i.e.,

Sij
k = L[ij]

k = T[ij]
k (21)

is called torsion; it is a tensor field. The trace of the torsion tensor Si := S l
il is called torsion vector ;

it connects to the two traces of the affine connection Li := Lil
l; L̃j := Llj

l, as Si = 1
2 (Li − L̃i).

2.1.3 Different types of geometry

2.1.3.1 Affine geometry Various subcases of affine spaces will occur, dependent on whether
the connection is asymmetric or symmetric, i.e., with Lij

k = Γijk. In physical applications, a
metric always seems to be needed; hence in affine geometry it must be derived solely by help of
the connection or, rather, by tensorial objects constructed from it. This is in stark contrast to
Riemannian geometry where, vice versa, the connection is derived from the metric. Such tensorial
objects are the two affine curvature tensors defined by39

+

K
i
jkl = ∂kL

i
lj − ∂lL

i
kj + L i

kmL
m

lj − L i
lm L m

kj , (22)
−
K

i
jkl = ∂kL

i
jl − ∂lL

i
jk + L i

mkL
m

jl − L i
ml L

m
jk , (23)

respectively. In a geometry with symmetric affine connection both tensors coincide because of

1
2
(

+

K
i
jkl−

−
K

i
jkl) = ∂[kS

i
]lj + 2S m

j[k S i
l]m + L i

m[kS
m

l]j − L m
j[k S

i
l]m . (24)

In particular, in Riemannian geometry, both affine curvature tensors reduce to the one and only
Riemann curvature tensor.

The curvature tensors arise because the covariant derivative is not commutative and obeys the
Ricci identity :

+

∇[j

+

∇k] Ai =
1
2

+

K
i
rjkA

r − S r
jk

+

∇r Ai (25)

−
∇[j

−
∇k] Ai =

1
2

−
K

i
rjkA

r + S r
jk

−
∇r Ai (26)

For a vector density, the identity is given by

+

∇[j

+

∇k] Âi =
1
2

+

K
i
rjkÂ

r − S r
jk

+

∇r Âi +
1
2
VjkÂ

i, (27)

38In the following we will note a symmetrical connection by Γij
k = L(ij)

k.
39Schouten denotes the curvature tensor by Kjkl

i.
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with the homothetic curvature Vjk to be defined below in Equation (31).
The curvature tensor (22) satisfies two algebraic identities:

+

K
i
j[kl] = 0, (28)

+

K
i
{jkl} = 2∇{jS

i
kl} + 4S i

m{j S
m

kl} , (29)

where the curly bracket denotes cyclic permutation:

Ki
{jkl} := Ki

jkl +Ki
ljk +Ki

klj .

These identities can be found in Schouten’s book of 1924 ([300], p. 88, 91) as well as the additional
single integrability condition, called Bianchi identity :

+

K
i
j{kl‖m} = 2Ki

r{klS
r

m}j . (30)

A corresponding condition obtains for the curvature tensor
−
K from Equation (23).

From both affine curvature tensors we may form two different tensorial traces each. In the first
case Vkl := Ki

ikl = V[kl], and Kjk := Ki
jki. Vkl is called homothetic curvature, while Kjk is the

first of the two affine generalisations from
+

K and
−
K of the Ricci tensor in Riemannian geometry.

We get40

Vkl = ∂kLl − ∂lLk, (31)

and the following identities hold:

Vkl + 2K[kl] = 4∇[kSl] + 8S m
kl Sm + 2∇mS m

kl , (32)
−
V kl +2

−
K [kl] = −4

−
∇[k Sl] + 8S m

kl Sm + 2∇mS m
kl , (33)

where Sk := S l
kl . While Vkl is antisymmetric, Kjk has both tensorial symmetric and antisymmetric

parts:

K[kl] = −∂[kL̃l] +∇mS m
kl + LmS

m
kl + 2L m

[l|r S r
m|k], (34)

K(kl) = ∂(kL̃l) − ∂mL
m

(kl) − L̃mL
m

(kl) + L n
(k|m|L

m
l)n . (35)

We use the notation A(i|k|l) in order to exclude the index k from the symmetrisation bracket41.
In order to shorten the presentation of affine geometry, we refrain from listing the corresponding

set of equations for the other affine curvature tensor (cf., however, [356]).
For a symmetric affine connection, the preceding results reduce considerably due to S m

kl = 0.
From Equations (29,30,32) we obtain the identities:

Ki
{jkl} = 0, (36)

Ki
j{kl‖m} = 0, (37)

Vkl + 2K[kl] = 0, (38)

40Again, we have two kinds of homothetic curvatures deriving from
+
K and

−
K. In the following, we will mostly

use the
+
X-quantities and drop the + sign.

41For a three-index-tensor the symmetrisation bracket is defined by

A(ikl) :=
1

3!
(Aikl +Alik +Akli +Akil +Alki +Ailk).
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i.e., only one independent trace tensor of the affine curvature tensor exists. For the antisymmetric
part of the Ricci tensor K[kl] = −∂[kL̃l] holds. This equation will be important for the physical
interpretation of affine geometry.

In affine geometry, the simplest way to define a fundamental tensor is to set gij := αK(ij), or

gij := α
−
K(ij). It may be desirable to derive the metric from a Lagrangian; then the simplest

scalar density that could be used as such is given by det (Kij)42.
As a final result in this section, we give the curvature tensor calculated from the connection

L̄ k
ij = Γ k

ij +T k
ij (cf. Equation (20)), expressed by the curvature tensor of Γ k

ij and by the tensor
T k
ij :

Ki
jkl(L̄) = Ki

jkl(Γ) + 2 (Γ)∇[kT
i

l]j − 2T m
[k|j| T i

l]m + 2S m
kl T i

mj , (39)

where (Γ)∇ is the covariant derivative formed with the connection Γ k
ij (cf. also [310], p. 141).

2.1.3.2 Mixed geometry A manifold carrying both structural elements, i.e., metric and con-
nection, is called a metric-affine space. If the first fundamental form is taken to be asymmetric,
i.e., to contain an antisymmetric part g[ik] := 1

2 (gij − gji), we speak of a mixed geometry. In prin-
ciple, both metric-affine space and mixed geometry may always be re-interpreted as Riemannian
geometry with additional geometric objects: the 2-form field φ(f) (symplectic form), the torsion
S, and the non-metricity Q (cf. Equation 41). It depends on the physical interpretation, i.e., the
assumed relation between mathematical objects and physical observables, which geometry is the
most suitable.

From the symmetric part of the first fundamental form hij = g(ij), a connection may be
constructed, often called after Levi-Civita43 [203],

{kij} :=
1
2
γkl(γli,j + γlj,i − hij,), (40)

and from it the Riemannian curvature tensor defined as in Equation (22) with L k
ij = {kij} (cf.

Section 2.1.3); {kij} is called the Christoffel symbol. Thus, in metric-affine and in mixed geometry,
two different connections arise in a natural way. In the remaining part of this section we will deal
with a symmetric fundamental form γij only, and denote it by gij .

With the help of the symmetric affine connection, we may define the tensor of non-metricity
Q k
ij by44

Q k
ij := gkl∇lgij . (41)

Then the following identity holds:

Γ k
ij = {kij}+K k

ij +
1
2
(Qk ij +Q k

ji −Q k
j i), (42)

where the contorsion tensor K k
ij , a linear combination of torsion S k

ij , is defined by45

K k
ij := Skji + Skij − S k

ij = −K k
i j . (43)

42This scalar density was used by Einstein [77] (cf. Section 6.4.4).
43Tullio Levi-Civita (1873–1941). Born in Padua, Italy. Studied mathematics and received his doctorate at the

University of Padua. Was given the Chair of Mechanics there and, in 1918, went to the University of Rome in
the same position. Together with Ricci, he developed tensor calculus and introduced covariant differentiation. He
worked also in the mechanical many-body problem, in hydrodynamics, general relativity theory, and unified field
theory. Strongly opposed to Fascism in Italy and dismissed from his professorship in 1938.

44This definition differs from Schouten’s by an overall minus sign.
45See [157]; his sign conventions are different, though.
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The inner product of two tangent vectors Ai, Bk is not conserved under parallel transport of
the vectors along X l if the non-metricity tensor does not vanish:

Xk
+

∇k (AnBmgnm) = QnmlA
nBmX l 6= 0. (44)

A connection for which the non-metricity tensor vanishes, i.e.,

+

∇k gij = 0 (45)

holds, is called metric-compatible46.

J. M. Thomas47 introduced a combination of the terms appearing in
+

∇ and
−
∇ to define a

covariant derivative for the metric ([346], p. 188),

gik/l := gik,l − grkΓ r
il − girΓ r

lk , (46)

and extended it for tensors of arbitrary rank ≥ 3.
Einstein later used as a constraint on the metrical tensor

0 = gik‖l

+−
:= gik,l − grkΓ r

il − girΓ r
lk , (47)

a condition that cannot easily be interpreted geometrically [97]. We will have to deal with Equa-
tion (47) in Section 6.1 and, more intensively, in Part II of this review.

Connections that are not metric-compatible have been used in unified field theory right from
the beginning. Thus, in Weyl’s theory [397, 395] we have

Qijk = Qk gij . (48)

In case of such a relationship, the geometry is called semi-metrical [300, 310]. According to
Equation (44), in Weyl’s theory the inner product multiplies by a scalar factor under parallel
transport:

Xk
+

∇k (AnBmgnm) = (QlX l)AnBmgnm. (49)

This means that the light cone is preserved by parallel transport.
We may also abbreviate the last term in the identity (42) by introducing

X k
ij := Qk ij +Q k

ji −Q k
j i. (50)

Then, from Equation (39), the curvature tensor of a torsionless affine space is given by

Ki
jkl(Γ̄) = Ki

jkl({ rnm}) + 2 ({i
jk})∇[kX

i
l]j − 2X m

[k|j| X
i

l]m , (51)

where ({i
jk})∇ is the covariant derivative formed with the Christoffel symbol.

Riemann–Cartan geometry is the subcase of a metric-affine geometry in which the metric-
compatible connection contains torsion, i.e., an antisymmetric part L k

[ij] ; torsion is a tensor field

46In the case of an asymmetric metric, this relation must be satisfied separately by the symmetric and antisym-
metric parts of g:

∇khij = 0, ∇kφij = 0.

47Joseph Miller Thomas (1898–1979). Studied mathematics in Philadelphia at the University of Pennsylvania.
Received his doctorate in 1923. From 1927 assistant professor at the University of Pennsylvania, from 1930 assistant
and in 1935 full professor of mathematics at the Duke University in Durham, North Carolina. His fields were
differential geometry and partial differential equations. He was the principle founder of Duke Mathematical Journal.
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to be linked to physical observables. A linear connection whose antisymmetric part S k
ij has the

form
S k
ij = S[iδ

k
j] (52)

is called semi-symmetric [300].
Riemannian geometry is the further subcase with vanishing torsion of a metric-affine geometry

with metric-compatible connection. In this case, the connection is derived from the metric: Γ k
ij =

{kij}, where {kij} is the usual Christoffel symbol (40). The covariant derivative of A with respect to

the Levi-Civita connection
{k

ij}
∇ is abbreviated by A;k. The Riemann curvature tensor is denoted

by
Rijkl = ∂k{ilj} − ∂l{ikj}+ { ikm}{mlj } − { ilm}{mkj}. (53)

An especially simple case of a Riemanian space is Minkowski space, the curvature of which
vanishes:

Rijkl(η) = 0. (54)

This is an invariant characterisation irrespective of whether the Minkowski metric η is given in
Cartesian coordinates as in Equation (10), or in an arbitrary coordinate system. We also have
LXRijkl = 0 where L is the Lie-derivative (see below under “symmetries”), and X stands for the
generators of the Lorentz group.

In Riemanian geometry, the so-called geodesic equation,

Xi
;kX

k(u) = σ(u)Xi, (55)

determines the shortest and the straightest curve between two infinitesimally close points. How-
ever, in metric affine and in mixed geometry geodesic and autoparallel curves will have to be
distinguished.

A conformal transformation of the metric,

gik → g′ik = λgik, (56)

with a smooth function λ changes the components of the non-metricity tensor,

Q k
ij → Q k

ij + gij g
kl∂lσ, (57)

as well as the Levi-Civita connection,

{kij} → {kij}+
1
2
(σiδkj − σjδ

k
i + gijg

klσl), (58)

with σi := λ−1∂iλ. As a consequence, the Riemann curvature tensor Rijkl is also changed; if,
however, R′i

jkl = 0 can be reached by a conformal transformation, then the corresponding space-
time is called conformally flat. In MD, for D > 3, the vanishing of the Weyl curvature tensor

Cijkl := Rijkl +
2

D − 2
(δi[kRl]j + gj[lR

i
k]) +

2R
(D − 1)(D − 2)

δi[lgk]j (59)

is a necessary and sufficient condition for MD to be conformally flat ([397], p. 404, [300], p. 170).
Even before Weyl, the question had been asked (and answered) as to what extent the conformal

and the projective structures were determining the geometry: According to Kretschmann (and then
to Weyl) they fix the metric up to a constant factor ([195]; see also [401], Appendix 1; for a modern
approach, cf. [67]).

The geometry needed for the pre- and non-relativistic approaches to unified field theory will
have to be dealt with separately. There, the metric tensor of space is Euclidean and not of full
rank; time is described by help of a linear form (Newton–Cartan geometry, cf. [65, 66]). In the
following we shall deal only with relativistic unified field theories.
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2.1.3.3 Projective geometry Projective geometry is a generalisation of Riemannian geome-
try in the following sense: Instead of tangent spaces with the light cone ηikdxidxk = 0, where η
is the Minkowski metric, in each event now a tangent space with a general, non-degenerate sur-
face of second order γ will be introduced. This leads to a tangential cone gikdxidxk = 0 in the
origin (cf. Equation (9)), and to a hyperplane, the polar plane, formed by the contact points of
the tangential cone and the surface γ. In place of the D inhomogeneous coordinates xi of MD,
D + 1 homogeneous coordinates Xα (α = 0, 1, 2, . . . , D) are defined48 such that they transform as
homogeneous functions of first degree:

Xα ∂X
′ν

∂Xµ
= X ′ν . (60)

The connection to the inhomogeneous coordinates xi is given by homogeneous functions of degree
zero, e.g., by xi = Xi

φαXα
49. Thus, the Xα themselves form the components of a tangent vector.

Furthermore, the quadratic form gαβX
αXβ = ε = ±1 is adopted with gαβ being a homogeneous

function of degree −2. A tensor field Tm1
n1

m2
n2

m3
n3

...

... (cf. Section 2.1.5) depending on the homogeneous
coordinates Xµ with u contravariant (upper) and l covariant (lower) indices is required to be a
homogeneous function of degree r := u− l.

If we define γ i
µ := ∂xi

∂Xµ , with γ i
µX

µ = 0, then γ i
µ transforms like a tangent vector under point

transformations of the xi, and as a covariant vector under homogeneous transformations of the Xα.
The γ i

µ may be used to relate covariant vectors ai and Aµ by Aµ = γ i
µ ai. Thus, the metric tensor

in the space of homogeneous coordinates gαβ and the metric tensor gik of MD are related by gik =
γ α
i γ β

k gαβ with γ i
µ γ

µ
k = δik. The inverse relationship is given by gαβ = γ i

α γ
k
β gik + εXαXβ with

Xα = gαβX
β . The covariant derivative for tensor fields in the space of homogeneous coordinates

is defined as before (cf. Section 2.1.2):

∇αAβ(X) =
∂Aβ(X)
∂Xα

+ Γ β
αν (X)Aν(X). (61)

The covariant derivative of the quantity γ µ
k interconnecting both spaces is given by

∇ργ µ
k =

∂γ µ
k

∂xρ
+ Γ µ

ρσ γ
σ
k − {mkl}γ l

ρ γ
µ
m . (62)

2.1.4 Cartan’s method

In this section, we briefly present Cartan’s one-form formalism in order to make understandable
part of the literature. Cartan introduces one-forms θâ (â = 1, . . . , 4) by θâ := hâl dx

l. The reciprocal
basis in tangent space is given by ê = hl̂

∂
∂xl . Thus, θâ(ê) = δâ̂ . The metric is then given by

ηı̂k̂θ
ı̂ ⊗ θk̂. The covariant derivative of a tangent vector with bein-components X k̂ is defined via

Cartan’s first structure equations,

Θi := Dθı̂ = dθı̂ + ωı̂
l̂
∧ θl̂, (63)

where ωı̂
k̂

is the connection-1-form, and Θı̂ is the torsion-2-form, Θı̂ = −S ı̂
l̂m̂

θl̂ ∧ θm̂. We
have ωı̂k̂ = −ωk̂ı̂. The link to the components L k

[ij] of the affine connection is given by ωı̂
k̂

=

hı̂
lh
m
k̂
L l
r̂m θ

r̂50. The covariant derivative of a tangent vector with bein-components X k̂ then is

DX k̂ := dX k̂ + ωk̂
l̂
X l̂. (64)

48The index 0 does not refer to a time-coordinate.
49Note that Xα and λXα correspond to the same point of MD; Veblen uses λ = exp(Nx0) (see [379], Section II).
50For an asymmetric connection, this corresponds to the + derivative.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


On the History of Unified Field Theories 23

By further external derivation51 on Θ we arrive at the second structure relation of Cartan,

DΘk̂ = Ωk̂
l̂
∧ θl̂. (65)

In Equation (65) the curvature-2-form Ωk̂
l̂
= 1

2R
k̂
l̂m̂n̂

θm̂ ∧ θn̂ appears, which is given by

Ωk̂
l̂
= dωk̂

l̂
+ ωk̂

l̂
∧ ωk̂

l̂
. (66)

Ωk̂
k̂

is the homothetic curvature.

2.1.5 Tensors, spinors, symmetries

2.1.5.1 Tensors Up to here, no definitions of a tensor and a tensor field were given: A tensor
Tp(MD) of type (r, s) at a point p on the manifold MD is a multi-linear function on the Cartesian
product of r cotangent- and s tangent spaces in p. A tensor field is the assignment of a tensor to
each point of MD. Usually, this definition is stated as a linear, homogeneous transformation law
for the tensor components in local coordinates:

T
k′1
l′1

k′2
l′2

k′3
l′3

...

... = Tm1
n1

m2
n2

m3
n3

...

...

∂xn1

∂xl
′
1

∂xn2

∂xl
′
2

∂xn3

∂xl
′
3

∂xk
′
1

∂xm1

∂xk
′
2

∂xm2

∂xk
′
3

∂xm3
· · · (67)

where xk
′

= xk
′
(xi) with smooth functions on the r.h.s. are taken from the set (“group”) of

coordinate transformations (diffeomorphisms). Strictly speaking, tensors are representations of
the abstract group at a point on the manifold52.

A relative tensor Tp(MD) of type (r, s) and of weight ω at a point p on the manifold MD

transforms like

T
k′1 k′2, k

′
3..

l′1 l′2 l′3..
=
[
det
(
∂xs

∂x′r

)]ω
Tm1 m2 m3...

n1 n2 n3...

∂xn1

∂xl
′
1

∂xn2

∂xl
′
2

∂xn3

∂xl
′
3

∂xk
′
1

∂xm1

∂xk
′
2

∂xm2

∂xk
′
3

∂xm3
· · · (68)

An example is given by the totally antisymmetric object εijkl with εijkl = ±1, or εijkl = 0 depending
on whether (ijkl) is an even or odd permutation of (0123), or whether two indices are alike. ω = −1
for εijkl; in this case, the relative tensor is called tensor density. We can form a tensor from εijkl
by introducing ηijkl :=

√
−g εijkl, where gik is a Lorentz-metric. Note that ηijkl := 1√

−g ε
ijkl. The

dual to a 2-form (skew-symmetric tensor) then is defined by ∗F ij = 1
2η
ijklFkl.

In connection with conformal transformations g → λg, the concept of the gauge-weight of a
tensor is introduced. A tensor T ...... is said to be of gauge weight q if it transforms by Equation (56)
as

T ′...
... = λqT ....... (69)

Objects that transform as in Equation (67) but with respect to a subgroup, e.g., the linear
group, affine group G(D), orthonormal group O(D), or the Lorentz group L, are tensors in a re-
stricted sense; sometimes they are named affine or Cartesian tensors. All the subgroups mentioned
are Lie-groups, i.e., continuous groups with a finite number of parameters. In general relativity,

51The external derivative d of linear forms ω, µ satisfies the following rules:

(1) d(aω + bµ) = adω + bdµ,

(2) d(ω ∧ µ) = dω ∧ µ− ω ∧ dµ,

(3) ddω = 0.

52A representation of a group is defined as a map to the vectors of a linear space that is homomorphic in the
group operation.
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both the “group” of general coordinate transformations and the Lorentz group are present. The
concept of tensors used in Special Relativity is restricted to a representation of the Lorentz group;
however, as soon as the theory is to be given a coordinate-independent (“generally covariant”)
form, then the full tensor concept comes into play.

2.1.5.2 Spinors Spinors are representations of the Lorentz group only; as such they are related
strictly to the tangent space of the space-time manifold. To see how spinor representations can be
obtained, we must use the 2–1 homomorphism of the group SL (2,C) and the proper orthochronous
Lorentz group, a subgroup of the full Lorentz group53. Let A ∈ SL (2,C); then A is a complex
(2-by-2)-matrix with det A = 1. By picking the special Hermitian matrix

S = x01 +
∑
p

σpx
p, (70)

where 1 is the (2 by 2)-unit matrix and σp are the Pauli matrices satisfying

σiσk + σkσi = 2δik. (71)

Then, by a transformation A from SL (2,C),

S′ = ASA+, (72)

where A+ is the Hermitian conjugate matrix54. Moreover, det S = det S′ which, according to
Equation (70), expresses the invariance of the space-time distance to the origin:

(x 0′)2 − (x 1′)2 − (x 2′)2 − (x 3′)2 = (x 0)2 − (x 1)2 − (x 2)2 − (x 3)2. (73)

The link between the representation of a Lorentz transformation Lik in space-time and the uni-
modular matrix A mapping spin space (cf. below) is given by

L(A)ik =
1
2
tr (σiAσkA+). (74)

Thus, the map is two to one: +A and −A give the same Lik.
Now, contravariant 2-spinors ξA (A = 1, 2) are the elements of a complex linear space, spinor

space, on which the matrices A are acting55. The spinor is called elementary if it transforms under
a Lorentz-transformation as

ξA
′
= ±AA

C ξC . (75)

Likewise, contravariant dotted spinors ζȦ are those transforming with the complex-conjugate ma-
trix Ā:

ζḂ
′
= ±ĀḂ

Ḋ
ζĊ . (76)

Covariant and covariant dotted 2-spinors correspondingly transform with the inverse matrices,

ξB′ = ±(A−1)CB ξC , (77)

and
ξḂ′ = ±(Ā−1)Ċ

Ḃ
ξĊ . (78)

The space of 2-spinors can be used as a representation space for the (proper, orthochronous)
Lorentz group, with the 2-spinors being the elements of the most simple representation D(1/2,0).

53The full Lorentz group contains as further elements the temporal and spatial reflections.
54X+

AB = XBA;A,B = 1, 2.
552-component spinors are also called Weyl-spinors.
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Higher-order spinors with dotted and undotted indices SA...Ḃ...
C...Ḋ...

transform correspondingly.
For the raising and lowering of indices now a real, antisymmetric (2×2)-matrix ε with components
εAB = δA1 δ

2
B − δA2 δ

1
B = εAB is needed, such that

ξA = εABξB , ξA = ξBεBA. (79)

Next to a spinor, bispinors of the form ζAB , ξAḂ , etc. are the simplest quantities (spinors of
2nd order). A vector Xk can be represented by a bispinor XAḂ ,

XAḂ = σAḂk Xk, (80)

where σAḂk (k = 0, . . . , 3) is a quantity linking the tangent space of space-time and spinor space.
If k numerates the matrices and A, Ḃ designate rows and columns, then we can chose σAḂ0 to be
the unit matrix while for the other three indices σAḂj are taken to be the Pauli matrices. Often
the quantity sAḂk = 1√

2
σAḂk is introduced. The reciprocal matrix sk

AḂ
is defined by

sAḂj sk
AḂ

= δkj , (81)

whereas
sAḂj sj CḊ = εACεḂḊ. (82)

In order to write down spinorial field equations, we need a spinorial derivative,

∂AḂ = sk
AḂ

∂k (83)

with ∂AḂ∂
AḂ = ∂k∂

k. The simplest spinorial equation is the Weyl equation:

∂AḂ ψA = 0, Ḃ = 1, 2. (84)

The next simplest spinor equation for two spinors χḂ , ψA would be

∂AĊχ
Ċ = − 2π√

2 h
mψA; ∂CḂψC =

2π√
2 h

mχḂ , (85)

where m is a mass. Equation (85) is the 2-spinor version of Dirac’s equation.
Dirac- or 4-spinors with 4 components ψk, k = 1, . . . , 4, may be constructed from 2-spinors as

a direct sum of contravariant undotted and covariant dotted spinors ψ and φ: For k = 1, 2, we
enter ψ1 and ψ2; for k = 3, 4, we enter φ1̇ and φ2̇. In connection with Dirac spinors, instead of the
Pauli-matrices the Dirac γ-matrices (4× 4-matrices) appear; they satisfy

γiγk + γkγi = 2ηik1. (86)

The Dirac equation is in 4-spinor formalism [53, 54]:(
iγl

∂

∂xl
+ κ

)
χ = 0, (87)

with the 4-component Dirac spinor χ. In the first version of Dirac’s equation, α- and β-matrices
were used, related to the γ’s by

γ0 = β, γm = βαm, m = 1, 2, 3, (88)

where the matrices β and αm are given by
(

0 −σi
σi 0

)
,
(

0 −1
1 0

)
.
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The generally-covariant formulation of spinor equations necessitates the use of n-beins hkı̂ ,
whose internal “rotation” group, operating on the “hatted” indices, is the Lorentz group. The
group of coordinate transformations acts on the Latin indices. In Cartan’s one-form formalism (cf.
Section 2.1.4), the covariant derivative of a 4-spinor is defined by

Dψ = dψ +
1
4
ωı̂k̂σ

ı̂k̂ψ, (89)

where σı̂k̂ := 1
2 [γ ı̂γk̂].

Equation (89) is a special case of the general formula for the covariant derivative of a tensorial
form ψ, i.e., a vector in some vector space V , whose components are differential forms,

Dψ = dψ + ωı̂k̂ρı̂k̂(eα)ψ, (90)

where ρ(eα) is a particular representation of the corresponding Lie algebra in V with basis vectors
eα. For the example of the Dirac spinor, the adjoint representation of the Lorentz group must be
used56.

2.1.5.3 Symmetries In Section 2.1.1 we briefly met the Lie derivative of a vector field LX
with respect to the tangent vector X defined by (LXY )k := ([X,Y ])k = Xi∂iY

k − Y i∂iX
k. With

its help we may formulate the concept of isometries of a manifold, i.e., special mappings, also
called “motions”, locally generated by vector fields X satisfying

LX gik := ∂k(gij)Xk + glj∂iX
l + gil∂jX

l = 0. (91)

The generators X solving Equation (91) given some metric, form a Lie group Gr, the group of
motions of MD. If a group Gr is prescribed, e.g., the group of spatial rotations O(3), then from
Equation (91) the functional form of the metric tensor having O(3) as a symmetry group follows.

A Riemannian space is called (locally) stationary if it admits a timelike Killing vector; it
is called (locally) static if this Killing vector is hypersurface orthogonal. Thus if, in a special
coordinate system, we take Xi = δi0 then from Equation (91) we conclude that stationarity reduces
to the condition ∂0gik = 0. If we take X to be the tangent vector field to the congruence of
curves xi = xi(u), i.e., if Xk = dxk

du , then a necessary and sufficient condition for hypersurface-
orthogonality is εijklXjX[k,l] = 0.

A generalisation of Killing vectors are conformal Killing vectors for which LX gik = Φgik with
an arbitrary smooth function Φ holds. In purely affine spaces, another type of symmetry may be
defined: LX Γ l

ik = 0; they are called affine motions [425].

2.2 Dynamics

Within a particular geometry, usually various options for the dynamics of the fields (field equa-
tions, in particular as following from a Lagrangian) exist as well as different possibilities for the
identification of physical observables with the mathematical objects of the formalism. Thus, in
general relativity, the field equations are derived from the Lagrangian

L =
√
−g (R+ 2Λ− 2κLM),

where R(gik) is the Ricci scalar, g := det gik,Λ the cosmological constant, and LM the matter
Lagrangian depending on the metric, its first derivatives, and the matter variables. This Lagrangian
leads to the well-known field equations of general relativity,

Rik − 1
2
Rgik = −κT ik, (92)

56For a contemporary exposition of the use of spinors in space-time, see the book of Penrose and Rindler [256].
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with the energy-momentum(-stress) tensor of matter

T ik :=
2√
−g

δ(
√
−gLM)
δgik

(93)

and κ = 8πG
c4 , where G is Newton’s gravitational constant. Gik := Rik − 1

2Rg
ik is called the

Einstein tensor. In empty space, i.e., for T ik = 0, Equation (92) reduces to

Rik = 0. (94)

If only an electromagnetic field Fik = ∂Ak

∂xi − ∂Ai

∂xk derived from the 4-vector potential Ak is present
in the energy-momentum tensor, then the Einstein–Maxwell equations follow:

Rik − 1
2
Rgik = −κ

(
FilF

l
k +

1
4
gikFlmF

lm

)
, ∇lF il = 0. (95)

The components of the metrical tensor are identified with gravitational potentials. Conse-
quently, the components of the (Levi-Civita) connection correspond to the gravitational “field
strength”, and the components of the curvature tensor to the gradients of the gravitational field.
The equations of motion of material particles should follow, in principle, from Equation (92)
through the relation

∇lT il = 0 (96)

implied by it57. For point particles, due to the singularities appearing, in general this is a tricky
task, up to now solved only approximately. However, the world lines for point particles falling
freely in the gravitational field are, by definition, the geodesics of the Riemannian metric. This
definition is consistent with the rigourous derivation of the geodesic equation for non-interacting
dust particles in a fluid matter description. It is also consistent with all observations.

For most of the unified field theories to be discussed in the following, such identifications were
made on internal, structural reasons, as no link-up to empirical data was possible. Due to the
inherent wealth of constructive possibilities, unified field theory never would have come off the
ground proper as a physical theory even if all the necessary formal requirements could have been
satisfied. As an example, we take the identification of the electromagnetic field tensor with either
the skew part of the metric, in a “mixed geometry” with metric compatible connection, or the
skew part of the Ricci tensor in metric-affine theory, to list only two possibilities. The latter choice
obtains likewise in a purely affine theory in which the metric is a derived secondary concept. In
this case, among the many possible choices for the metric, one may take it proportional to the
variational derivative of the Lagrangian with respect to the symmetric part of the Ricci tensor. This
does neither guarantee the proper signature of the metric nor its full rank. Several identifications
for the electromagnetic 4-potential and the electric current vector density have also been suggested
(cf. below and [143]).

2.3 Number field

Complex fields may also be introduced on a real manifold. Such fields have also been used for
the construction of unified field theories, although mostly after the period dealt with here (cf.
Part II, in preparation). In particular, manifolds with a complex fundamental form were studied,
e.g., with gik = sik + iaik, where i =

√
−1 [97]. Also, geometries based on Hermitian forms were

57In the early papers on general relativity, Equation (96) was called a “conservation law” because, in Minkowski
space, it implies the conservation laws for energy and linear momentum. For an arbitrary Riemannian manifold this
no longer holds true.
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studied [313]. In later periods, hypercomplex numbers, quaternions, and octonions also were used
as basic number fields for gravitational or unified theories (cf. Part II, forthcoming).

In place of the real numbers, by which the concept of manifold has been defined so far, we
could take other number fields and thus arrive, e.g., at complex manifolds and so on. In this part
of the article we do not need to take into account this generalisation.

2.4 Dimension

Since the suggestions by Nordström and Kaluza [237, 180], manifolds with D > 4 have been used
for unified field theories. In most of the cases, the additional dimensions were taken to be spacelike;
nevertheless, manifolds with more than one direction of time also have been studied.
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3 Early Attempts at a Unified Field Theory

3.1 First steps in the development of unified field theories

Even before (or simultaneously with) the introduction and generalisation of the concept of par-
allel transport and covariant derivative by Hessenberg (1916/17) [160], Levi-Civita (1917), [203],
Schouten (1918) [294], Weyl (1918) [397], and König (1919) [192], the introduction of an asym-
metric metric was suggested by Rudolf Förster58 in 1917. In his letter to Einstein of 11 November
1917, he writes ([320], Doc. 398, p. 552):

“Perhaps, there exists a covariant 6-vector by which the appearance of electricity is ex-
plained and which springs lightly from the gµν , not forced into it as an alien element.”59

Einstein replied:

“The aim of dealing with gravitation and electricity on the same footing by reducing
both groups of phenomena to gµν has already caused me many disappointments. Per-
haps, you are luckier in the search. I am totally convinced that in the end all field
quantities will look alike in essence. But it is easier to suspect something than to
discover it.”60 (16 November 1917 [320], Vol. 8A, Doc. 400, p. 557)

In his next letter, Förster gave results of his calculations with an asymmetric gµν = sµν + aµν ,
introduced an asymmetric “three-index-symbol” and a possible generalisation of the Riemannian
curvature tensor as well as tentative Maxwell’s equations and interpretations for the 4-potential
Aµ, and special solutions (28 December 1917) ([320], Volume 8A, Document 420, pp. 581–587).
Einstein’s next letter of 17 January 1918 is skeptical:

“Since long, I also was busy by starting from a non-symmetric gµν ; however, I lost hope
to get behind the secret of unity (gravitation, electromagnetism) in this way. Various
reasons instilled in me strong reservations: [...] your other remarks are interesting in
themselves and new to me.”61 ([320], Volume 8B, Document 439, pp. 610–611)

Einstein’s remarks concerning his previous efforts must be seen under the aspect of some at-
tempts at formulating a unified field theory of matter by G. Mie [228, 229, 230]62, J. Ishiwara,
and G. Nordström, and in view of the unified field theory of gravitation and electromagnetism
proposed by David Hilbert.

“According to a general mathematical theorem, the electromagnetic equations (gener-
alized Maxwell equations) appear as a consequence of the gravitational equations, such
that gravitation and electrodynamics are not really different.”63 (letter of Hilbert to
Einstein of 13 November 1915 [100])

58Förster published under a nom de plume “R. Bach” because his employer Krupp did not like his employees
using their free time on something as academical as research in gravitation and unified field theory. Bach wrote also
about Weyl’s theory (Bach 1921) [4].

59“Vielleicht findet sich ein kovarianter Sechservektor der das Auftreten der Elektrizität erklärt und ungezwungen
aus den gµν herauskommt, nicht als fremdes Element herangetragen wird.”

60“Das Ziel, Gravitation und Elektromagnetismus einheitlich zu behandeln, indem man beide Phänomengruppen
auf die gµν zurückführt, hat mir schon viele erfolglose Bemühungen gekostet. Vielleicht sind Sie glücklicher im
Suchen. Ich bin fest überzeugt, dass letzten Endes alle Feldgrössen sich als wesensgleich herausstellen werden. Aber
leichter ist ahnen als finden.”

61“Das Ausgehen von einem nichtsymmetrischen gµν hat mich auch schon lange beschäftigt; ich habe aber die
Hoffnung aufgegeben, auf diese Weise hinter das Geheimnis der Einheit (Gravitation–Elektromagnetismus) zu kom-
men. Verschiedene Gründe flössen da schwere Bedenken ein: [...] Ihre übrigen Bemerkungen sind ebenfalls an sich
interessant und mir neu.”

62In his textbook, M. von Laue presented and discussed Mie’s theory [387].
63“In Folge eines allgem. math. Satzes erscheinen die elektrody. Gl. (verallgemeinerte Maxwellsche) als math.

Folge der Gravitationsgl., so dass Gravitation und Elektrodynamik eigentlich garnicht verschiedenes sind.”
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The result is contained in (Hilbert 1915, p. 397)64.
Einstein’s answer to Hilbert on 15 November 1915 shows that he had also been busy along such

lines:

“Your investigation is of great interest to me because I have often tortured my mind in
order to bridge the gap between gravitation and electromagnetism. The hints dropped
by you on your postcards bring me to expect the greatest.”65 [101]

Even before Förster alias Bach corresponded with Einstein, a very early bird in the attempt at
unifying gravitation and electromagnetism had published two papers in 1917, Reichenbächer [269,
268]. His paper amounts to a scalar theory of gravitation with field equation R = 0 instead of
Einstein’s Rab = 0 outside the electrons. The electron is considered as an extended body in the
sense of Lorentz–Poincaré, and described by a metric joined continuously to the outside metric66:

ds2 = dr2 + r2 dφ2 + r2 cos2 φdψ2 +
(
1− α

r

)2

dx2
0. (97)

Reichenbächer, at this point, seems to have had a limited understanding of general relativity: He
thinks in terms of a variable velocity of light; he equates coordinate systems and reference systems,
and apparently considers the transition from the Minkowskian to a non-flat metric as achieved
by a coordinate rotation, a “Drehung gegen den Normalzustand” (“rotation with respect to the
normal state”) ([269], p. 137). According to him, the deviation from the Minkowski metric is due
to the electromagnetic field tensor:

“The disturbance, which is generated by the electrons and which forces us to adopt a
coordinate system different from the usual one, is interpreted as the electromagnetic
six-vector, as is known.”67 ([269], p. 136)

By his “coordinate rotation”, or, as he calls it in ([268], p. 174), “electromagnetic rotation”, he
tries to geometrize the electromagnetic field. As Weyl’s remark in Raum–Zeit–Materie ([398],
p. 267, footnote 30) shows, he did not grasp Reichenbächer’s reasoning; I have not yet understood
it either. Apparently, for Reichenbächer the metric deviation from Minkowski space is due solely
to the electromagnetic field, whereas gravitation comes in by a single scalar potential connected
to the velocity of light. He claims to obtain the same value for the perihelion shift of Mercury as
Einstein ([268], p. 177). Reichenbächer was slow to fully accept general relativity; as late as in
1920 he had an exchange with Einstein on the foundations of general relativity [270, 71].

After Reichenbächer had submitted his paper to Annalen der Physik and seemingly referred to
Einstein,

“Planck was uncertain to which of Einstein’s papers Reichenbächer appealed. He urged
that Reichenbächer speak with Einstein and so dissolve their differences. The meeting
was amicable. Reichenbächer’s paper appeared in 1917 as the first attempt at a unified
field theory in the wake of Einstein’s covariant field equations.” ([261], p. 208)

64See also the Diploma thesis by König [190]. In it it is shown that from the divergence relation Tµν ;ν = 0 and
the most general Lagrangian L(u, v) with u = FµνFµνandv = ∗FµνFµν , the field equations follow only for the
generic case of full rank of the electromagnetic field tensor Fµν .

65“Ihre Untersuchung interessiert mich gewaltig, zumal ich mir oft schon das Gehirn zermartert habe, um eine
Brücke zwischen Gravitation und Elektromagnetik zu schlagen. Die Andeutungen, welche Sie auf Ihren Karten
geben, lassen das Grösste erwarten.”

66Reichenbächer’s solution is a special case of a huge number of spherically symmetric solutions of R = 0 given
in Goenner and Havas 1980 [144]. Reichenbächer published 29 papers between 1917 and 1930.

67“Die Störung, die durch die Elektronen erzeugt wird und uns also zur Annahme eines von dem gewöhnlichen
abweichenden Weltkoordinatensystem zwingt, wird nun bekanntlich als der elektromagnetische Sechservektor aufge-
fasst.”
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In this context, we must also keep in mind that the generalisation of the metric tensor toward
asymmetry or complex values was more or less synchronous with the development of Finsler ge-
ometry [126]. Although Finsler himself did not apply his geometry to physics it soon became used
in attempts at the unification of gravitation and electromagnetism [273].

3.2 Early disagreement about how to explain elementary particles by
field theory

In his book on Einstein’s relativity, Max Born, in 1920, had asked about the forces hindering “an
electron or an atom” to disintegrate.

“Now, these objects are tremendous concentrations of energy in the smallest place;
therefore, they will house huge curvatures of space or, in other words, gravitational
fields. The idea that they keep together the dispersing electrical charges lies close at
hand.”68 ([19], p. 235)

Thus, the idea of a program for building the extended constituents of matter from the fields the
source of which they are, was very much alive around 1920. However, Pauli’s remark after Weyl’s
lecture in Bad Nauheim (86. Naturforscherversammlung, 19–25 September 1920) [245] showed
that not everybody was a believer in it. He claimed that in bodies smaller than those carrying
the elementary charge (electrons), an electric field could not be measured. There was no point of
creating the “interior” of such bodies with the help of an electric field. Pauli:

“None of the present theories of the electron, also not Einstein’s (Einstein 1919 [70]),
up to now did achieve solving satisfactorily the problem of the electrical elementary
quanta; it seems obvious to look for a deeper reason for this failure. I wish to see this
reason in the fact that it is altogether not permitted to describe the electromagnetic
field in the interior of an electron as a continuous space function. The electrical field is
defined as the force on a charged test particle, and if no smaller test particles exist than
the electron (vice versa the nucleus), the concept of electrical field at a certain point in
the interior of the electron – with which all continuum theories are working – seems to
be an empty fiction, because there are no arbitrarily small measures. Therefore, I’d like
to ask Mr. Einstein whether he approves of the opinion that a solution of the problem
of matter may be expected only from a modification of our perception of space (perhaps
also of time) and of electricity in the sense of atomism, or whether he thinks that the
mentioned reservations are unconvincing and is of the opinion that the fundaments of
continuum theory must be upheld.”69

68“Nun sind diese Gebilde ungeheure Anhäufungen von Energie auf kleinsten Räumen; daher werden sie gewaltige
Raumkrümmungen, oder mit anderen Worten, Gravitationsfelder, in sich bergen. Der Gedanke liegt nahe, dass diese
es sind, die die auseinanderstrebenden elektrischen Ladungen zusammenhalten.”

69“Keiner der bisherigen Theorien des Elektrons, auch nicht der Einsteinschen (Einstein 1919 [70]) ist es bisher
gelungen, das Problem der elektrischen Elementarquante befriedigend zu lösen, und es liegt nahe, nach einem tieferen
Grund für diesen Mißerfolg zu suchen. Ich möchte nun diesen Grund darin suchen, daß es überhaupt unstatthaft
ist, das elektrische Feld im Innern des Elektrons als stetige Raumfunktion zu beschreiben. Die elektrische Feldstärke
ist definiert als die Kraft auf einen geladenen Probekörper und, wenn es keine kleineren Probekörper gibt als das
Elektron (bzw den N-Kern), scheint der Begriff der elektrischen Feldstärke in einem bestimmten Punkt im Innern
des Elektrons, mit welchem alle Kontinuumstheorien operieren, eine leere, inhaltslose Fiktion zu sein, da es keine
beliebig kleinen Maßstäbe gibt. Ich möchte deshalb Herrn Einstein fragen, ob er der Auffassung zustimmt, daß
man die Lösung des Problems der Materie nur von einer Modifikation unserer Vorstellungen vom Raum (vielleicht
auch von der Zeit) und vom elektrischen Felde im Sinne des Atomismus erwarten darf, oder ob er die angeführten
Bedenken nicht für stichhaltig hält und die Ansicht vertritt, daß man an den Grundlagen der Kontinuumstheorie
festhalten muß.”
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Pauli referred to Einstein’s paper about elementary particles and field theory in which he had
exchanged his famous field equations for traceless equations with the electromagnetic field tensor
as a source. Einstein’s answer is tentative and evasive: We just don’t know yet70.

“With the progressing refinement of scientific concepts, the manner by which concepts
are related to (physical) events becomes ever more complicated. If, in a certain stage
of scientific investigation, it is seen that a concept can no longer be linked with a
certain event, there is a choice to let the concept go, or to keep it; in the latter case,
we are forced to replace the system of relations among concepts and events by a more
complicated one. The same alternative obtains with respect to the concepts of time-
and space-distances. In my opinion, an answer can be given only under the aspect of
feasibility; the outcome appears dubious to me.”71

In the same discussion Gustav Mie came back to Förster’s idea of an asymmetric metric but did
not like it

“[...] that an antisymmetric tensor was added to the symmetric tensor of the gravi-
tational potential, which represented the six-vector of the electromagnetic field. But
a more precise reasoning shows that in this way no reasonable world function is ob-
tained.”72

It is to be noted that Weyl, at the end of 1920, already had given up on a possible field theory
of matter:

“Finally I cut loose firmly from Mie’s theory and arrived at another position with regard
to the problem of matter. To me, field physics no longer appears as the key to reality;
in contrary, the field, the ether, for me simply is the totally powerless transmitter of
causations, yet matter is a reality beyond the field and causes its states.”73 (letter of
Weyl to F. Klein on 28 December 1920, see [292], p. 83)

In the next year, Einstein had partially absorbed Pauli’s view but still thought it to be useful
to apply field theory to the constituents of matter:

“The physical interpretation of geometry (theory of the continuum) presented here,
fails in its direct application to spaces of submolecular scale. Yet it retains part of
its meaning also with regard to questions concerning the constitution of elementary
particles. Because one may try to ascribe to these field concepts [...] a physical meaning
even if a description of the electrical elementary particles which constitute matter is

70For the evolution of Einstein’s position vis-a-vis continuum theory and short-comings of it, cf. J. Stachel [329].
71“Mit fortschreitender Verfeinerung des wissenschaftlichen Begriffssystems wird die Art und Weise der Zuordnung

der Begriffe von den Erlebnissen immer komplizierter. Hat man in einem gewissen Studium der Wissenschaft
gesehen, daß einem Begriff ein bestimmtes Erlebnis nicht mehr zugeordnet werden kann, so hat man die Wahl, ob
man den Begriff fallen lassen oder ihn beibehalten will; in letzterem Fall ist man aber gezwungen, das System der
Zuordnung der Begriffe zu den Erlebnissen durch ein komplizierteres zu ersetzen. Vor dieser Alternative sind wir
auch hinsichtlich der Begriffe der zeitlichen und räumlichen Entfernung gestellt. Die Antwort kann nach meiner
Ansicht nur nach Zweckmäßigkeitsgründen gegeben werden; wie sie ausfallen wird, erscheint mir zweifelhaft.”

72“[...] dass man dem symmetrischen Tensor des Gravitationspotentials einen antisymmetrischen Tensor
hinzufügte, der den Sechservektor des elektromagnetischen Feldes repräsentierte. Aber eine genauere Überlegung
zeigt, dass man so zu keiner vernünftigen Weltfunktion kommt.”

73“Endlich habe ich mich gründlich von der Mieschen Theorie losgemacht und bin zu einer anderen Stellung zum
Problem der Materie gelangt. Die Feldphysik erscheint mir keineswegs mehr als der Schlüssel zu der Wirklichkeit;
sondern das Feld, der Äther, ist mir nur noch der in sich selbst völlig kraftlose Übermittler der Wirkungen, die
Materie aber eine jenseits des Feldes liegende und dessen Zustände verursachende Realität.”
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to be made. Only success can decide whether such a procedure finds its justification
[...].”74 [72]

During the twenties Einstein changed his mind and looked for solutions of his field equations
which were everywhere regular to represent matter particles:

“In the program, Mr. Einstein expressed during his two talks given in November 1929
at the Institut Henri Poincaré, he wished to search for the physical laws in solutions
of his equations without singularities – with matter and the electromagnetic field thus
being continuous. Let us move into the field chosen by him without too much surprise
to see him apparently follow a road opposed to the one successfully walked by the
contemporary physicists.”75 ([36], p. 17 (1178))

74“Die hier vertretene physikalische Interpretation der Geometrie (Kontinuumstheorie) versagt zwar bei ihrer
unmittelbaren Anwendung auf Räume von submolekularer Grössenordnung. Einen Teil ihrer Bedeutung behält
sie indessen auch noch den Fragen der Konstitution der Elementarteilchen gegenüber. Denn man kann versuchen,
denjenigen Feldbegriffen [...] auch dann physikalische Bedeutung zuzuschreiben, wenn es sich um die Beschreibung
der elektrischen Elementarteilchen handelt, die die Materie konstituieren. Nur der Erfolg kann über die Berechtigung
eines solchen Verfahrens entscheiden [...].”

75“Dans le programme qu’a esquissé M. Einstein dans ses deux conférences faites en novembre 1929 à l’institut
Henri Poncaré, il voulait chercher les lois physiques dans les solutions sans singularité de ses equations, la matière
et l’electricité n’existant donc qu’à l’état continu. Placons-nous sur le terrain choisi par lui, sans trop nous étonner
de le voir suivre en apparence une voie opposée à celle suivi avec succès par les physiciens contemporains.”
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4 The Main Ideas for Unification between about 1918 and
1923

After 1915, Einstein first was busy with extracting mathematical and physical consequences from
general relativity (Hamiltonian, exact solutions, the energy conservation law, cosmology, grav-
itational waves). Although he kept thinking about how to find elementary particles in a field
theory [70] and looked closer into Weyl’s theory [72], at first he only reacted to the new ideas con-
cerning unified field theory as advanced by others. The first such idea after Förster’s, of course, was
Hermann Weyl’s gauge approach to gravitation and electromagnetism, unacceptable to Einstein
and to Pauli for physical reasons [242, 291].

Next came Kaluza’s five-dimensional unification of gravitation and electromagnetism, and Ed-
dington’s affine geometry.

4.1 Weyl’s theory

4.1.1 The geometry

Weyl’s fundamental idea for generalising Riemannian geometry was to note that, unlike for the
comparison of vectors at different points of the manifold, for the comparison of scalars the existence
of a connection is not required. Thus, while lengths of vectors at different points can be compared
without a connection, directions cannot. This seemed too special an assumption to Weyl for a
genuine infinitesimal geometry:

“If we make no further assumption, the points of a manifold remain totally isolated
from each other with regard to metrical structure. A metrical relationship from point
to point will only then be infused into [the manifold] if a principle for carrying the unit
of length from one point to its infinitesimal neighbours is given.”76

In contrast to this, Riemann made the much stronger assumption that line elements may be
compared not only at the same place but also at two arbitrary places at a finite distance.

“However, the possibility of such a comparison ‘at a distance’ in no way can be admitted
in a pure infinitesimal geometry.”77 ([397], p. 397)

In order to invent a purely “infinitesimal” geometry, Weyl introduced the 1-dimensional, Abelian
group of gauge transformations,

g → ḡ := λg, (98)

besides the diffeomorphism group (coordinate transformations). At a point, Equation (98) induces
a local recalibration of lengths l while preserving angles, i.e., δl = λl. If the non-metricity tensor
is assumed to have the special form Qijk = Qkgij , with an arbitrary vector field Qk, then as we
know from Equation (57), with regard to these gauge transformations

Qk → Qk + ∂kσ. (99)

We see a striking resemblance with the electromagnetic gauge transformations for the vector po-
tential in Maxwell’s theory. If, as Weyl does, the connection is assumed to be symmetric (i.e., with

76“Machen wir keine weitere Voraussetzung, so bleiben die einzelnen Punkte der Mannigfaltigkeit in metrischer
Hinsicht vollständig gegeneinander isoliert. Ein metrischer Zusammenhang von Punkt zu Punkt wird erst dann in
sie hineingetragen, wenn ein Prinzip der Übertragung der Längeneinheit von einem Punkte P zu seinem unendlich
benachbarten vorliegt.”

77“Die Möglichkeit einer solchen ‘ferngeometrischen’ Vergleichung kann aber in einer reinen Infinitesimalgeome-
trie durchaus nicht zugestanden werden.”
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vanishing torsion), then from Equation (42) we get

Γ k
ij = {kij}+

1
2
(δki Qj + δkjQi − gijg

klQl). (100)

Thus, unlike in Riemannian geometry, the connection is not fully determined by the metric but
depends also on the arbitrary vector function Qi, which Weyl wrote as a linear form dQ = Qidx

i.
With regard to the gauge transformations (98), Γ k

ij remains invariant. From the 1-form dQ, by
exterior derivation a gauge-invariant 2-form F = Fijdx

i ∧ dxj with Fij = Qi,j − Qj,i follows.
It is named “Streckenkrümmung” (“line curvature”) by Weyl, and, by identifying Q with the
electromagnetic 4-potential, he arrived at the electromagnetic field tensor F .

Let us now look at what happens to parallel transport of a length, e.g., the norm |X| of a
tangent vector along a particular curve C with parameter u to a different (but infinitesimally
neighbouring) point:

d|X|
du

= |X|‖kXk = (σ − 1
2
QkX

k)|X|. (101)

By a proper choice of the curve’s parameter, we may write (101) in the form d|X| = −QkXk|X| du
and integrate along C to obtain |X| =

∫
exp(−QkXkdu). If X is taken to be tangent to C, i.e.,

Xk = dxk

du , then ∣∣∣∣dxkdu
∣∣∣∣ = ∫ exp

(
−Qk(x)dxk

)
, (102)

i.e., the length of a vector is not integrable; its value generally depends on the curve along which it
is parallely transported. The same holds for the angle between two tangent vectors in a point (cf.
Equation (44)). For a vanishing electromagnetic field, the 4-potential becomes a gradient (“pure
gauge”), such that Qkdxk = ∂ω

∂xk dx
k = dω, and the integral becomes independent of the curve.

Thus, in Weyl’s connection (100), both the gravitational and the electromagnetic fields, rep-
resented by the metrical field g and the vector field Q, are intertwined. Perhaps, having in mind
Mie’s ideas of an electromagnetic world view and Hilbert’s approach to unification, in the first
edition of his book, Weyl remained reserved:

“Again physics, now the physics of fields, is on the way to reduce the whole of natural
phenomena to one single law of nature, a goal to which physics already once seemed
close when the mechanics of mass-points based on Newton’s Principia did triumph.
Yet, also today, the circumstances are such that our trees do not grow into the sky.”78

([396], p. 170; preface dated “Easter 1918”)

However, a little later, in his paper accepted on 8 June 1918, Weyl boldly claimed:

“I am bold enough to believe that the whole of physical phenomena may be derived from
one single universal world-law of greatest mathematical simplicity.”79 ([397], p. 385,
footnote 4)

The adverse circumstances alluded to in the first quotation might be linked to the difficulties of
finding a satisfactory Lagrangian from which the field equations of Weyl’s theory can be derived.
Due to the additional group of gauge transformations, it is useful to introduce the new concept

78“Wieder ist die Physik, heute die Feldphysik, auf dem Wege, die Gesamtheit der Naturerscheinungen auf ein
einziges Naturgesetz zurückzuführen, ein Ziel, dem sie schon einmal, als die durch Newtons Principia begründete
mechanische Massenpunkt-Physik ihre Triumphe feierte, nahe zu sein. Doch ist auch heute dafür gesorgt, dass
unsere Bäume nicht in den Himmel wachsen.”

79“Ich bin verwegen genug, zu glauben, dass die Gesamtheit der physikalischen Erscheinungen sich aus einem
einzigen universellen Weltgesetz von höchster mathematischer Einfachheit herleiten lässt.”
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of gauge-weight within tensor calculus as in Section 2.1.580. As the Lagrangian L =
√
−g L must

have gauge-weight w = 0, we are looking for a scalar L of gauge-weight −2. Weitzenböck81 has
shown that the only possibilities quadratic in the curvature tensor and the line curvature are given
by the four expressions [391]

(Kij g
ij)2, KijKklg

ikgjl, Ki
jklK

j
imng

kmgln, FijFklg
ikgjl. (103)

While the last invariant would lead to Maxwell’s equations, from the invariants quadratic in cur-
vature, in general field equations of fourth order result.

Weyl did calculate the curvature tensor formed from his connection (100) but did not get the
correct result82; it is given by Schouten ([310], p. 142) and follows from Equation (51):

Ki
jkl = Rijkl +Qj;[kδ

i
l] + δ ij Q[l;k] −Qi;[kgl]j +

1
2

(
−δ i[lQk]Qj +Q[kgl]jQ

i − δ i[kgl]jQrQ
r
)
. (104)

If the metric field g and the 4-potential Qi ≡ Ai are varied independently, from each of the
curvature-dependent scalar invariants we do get contributions to Maxwell’s equations.

Perhaps Bach (alias Förster) was also dissatisfied with Weyl’s calculations: He went through
the entire mathematics of Weyl’s theory, curvature tensor, quadratic Lagrangian field equations
and all; he even discussed exact solutions. His Lagrangian is given by L =

√
g (3W4− 6W3 +W2),

where the invariants are defined by

W4 := SpqikS
pqik, W3 := gikglmF pikqF

q
lmp, W2 := gikF pikp

with

S[pq][ik] :=
1
4
(Fpqik − Fqpik + Fikpq − Fkipq),

Fpqik = Rpqik +
1
2
(gpqfki + gpkfq;i + gqifp;k − gpifq;k − gqkfp;i)

+
1
2
(fqgp;[kfi] + fpgq;[kfi] + gp[igk]qfrf

r),

where Rpqik is the Riemannian curvature tensor, fik = fi,k − fk,i, and fi is the electromagnetic
4-potential [4].

4.1.2 Physics

While Weyl’s unification of electromagnetism and gravitation looked splendid from the mathemat-
ical point of view, its physical consequences were dire: In general relativity, the line element ds
had been identified with space- and time intervals measurable by real clocks and real measuring
rods. Now, only the equivalence class {λgik|λ arbitrary} was supposed to have a physical meaning:
It was as if clocks and rulers could be arbitrarily “regauged” in each event, whereas in Einstein’s
theory the same clocks and rulers had to be used everywhere. Einstein, being the first expert who
could keep an eye on Weyl’s theory, immediately objected, as we infer from his correspondence
with Weyl.

80In order to distinguish it from the “coordinate-weight” connected with relative tensors [27]. In his book, Weyl
just uses the expression “weight”.

81Roland Weitzenböck (1885–1955). Studied mathematics at the University of Vienna where he obtained his
doctoral degree in 1910. Became a professional officer during the First World War. He obtained professorships in
Graz and Vienna and, in 1921, at the University of Amsterdam. He specialised in the theory of invariants (cf. [156]).

82See Section IV, pp. 403–404 in [397]. Weyl’s expression violates Equation (38): His curvature tensor allows for
a trace Vkl 6= 0. In fact Vkl = α Q[l;k] is proportional to the electromagnetic field tensor.
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In spring 1918, the first edition of Weyl’s famous book on differential geometry, special and
general relativity Raum–Zeit–Materie appeared, based on his course in Zürich during the summer
term of 1917 [396]. Weyl had arranged that the page proofs be sent to Einstein. In communicating
this on 1 March 1918, he also stated that

“As I believe, during these days I succeeded in deriving electricity and gravitation
from the same source. There is a fully determined action principle, which, in the case
of vanishing electricity, leads to your gravitational equations while, without gravity,
it coincides with Maxwell’s equations in first order. In the most general case, the
equations will be of 4th order, though.”83

He then asked whether Einstein would be willing to communicate a paper on this new unified
theory to the Berlin Academy ([320], Volume 8B, Document 472, pp. 663–664). At the end of
March, Weyl visited Einstein in Berlin, and finally, on 5 April 1918, he mailed his note to him for
the Berlin Academy. Einstein was impressed: In April 1918, he wrote four letters and two postcards
to Weyl on his new unified field theory – with a tone varying between praise and criticism. His
first response of 6 April 1918 on a postcard was enthusiastic:

“Your note has arrived. It is a stroke of genious of first rank. Nevertheless, up to now I
was not able to do away with my objection concerning the scale.”84 ([320], Volume 8B,
Document 498, 710)

Einstein’s “objection” is formulated in his “Addendum” (“Nachtrag”) to Weyl’s paper in the
reports of the Academy, because Nernst had insisted on such a postscript. There, Einstein argued
that if light rays would be the only available means for the determination of metrical relations
near a point, then Weyl’s gauge would make sense. However, as long as measurements are made
with (infinitesimally small) rigid rulers and clocks, there is no indeterminacy in the metric (as
Weyl would have it): Proper time can be measured. As a consequence follows: If in nature length
and time would depend on the pre-history of the measuring instrument, then no uniquely defined
frequencies of the spectral lines of a chemical element could exist, i.e., the frequencies would depend
on the location of the emitter. He concluded with the words

“Regrettably, the basic hypothesis of the theory seems unacceptable to me, [of a theory]
the depth and audacity of which must fill every reader with admiration.”85 ([395],
Addendum, p. 478)

Einstein’s remark concerning the path-dependence of the frequencies of spectral lines stems
from the path-dependency of the integral (102) given above. Only for a vanishing electromagnetic
field does this objection not hold.

Weyl answered Einstein’s comment to his paper in a “reply of the author” affixed to it. He
doubted that it had been shown that a clock, if violently moved around, measures proper time∫
ds. Only in a static gravitational field, and in the absence of electromagnetic fields, does this

hold:

“The most plausible assumption that can be made for a clock resting in a static field
is this: that it measure the integral of the ds normed in this way [i.e., as in Einstein’s

83“Diese Tage ist es mir, wie ich glaube, gelungen, Elektrizität und Gravitation aus einer gemeinsamen Quelle
herzuleiten. Es ergibt sich ein völlig bestimmtes Wirkungsprinzip, das im elektrizitätsfreien Fall auf Ihre Gravitation-
sgleichungen führt, im gravitationsfreien dagegen Gleichungen ergibt, die in erster Näherung mit den Maxwellschen
übereinstimmen. Im allgemeinsten Fall werden die Gleichungen allerdings 4. Ordnung.”

84“Ihre Abhandlung ist gekommen. Es ist ein Genie-Streich ersten Ranges. Allerdings war ich nicht imstande,
meinen Massstab-Einwand zu erledigen.”

85“[...] scheint mir die Grundhypothese der Theorie leider nicht annehmbar, deren Tiefe und Kühnheit aber jeden
Leser mit Bewunderung erfüllen muss.”
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theory]; the task remains, in my theory as well as in Einstein’s, to derive this fact by
a dynamics carried through explicitly.”86 ([395], p. 479)

Einstein saw the problem, then unsolved within his general relativity, that Weyl alluded to, i.e.,
to give a theory of clocks and rulers within general relativity. Presumably, such a theory would
have to include microphysics. In a letter to his former student Walter Dällenbach, he wrote (after
15 June 1918):

“[Weyl] would say that clocks and rulers must appear as solutions; they do not occur
in the foundation of the theory. But I find: If the ds, as measured by a clock (or a
ruler), is something independent of pre-history, construction and the material, then
this invariant as such must also play a fundamental role in theory. Yet, if the manner
in which nature really behaves would be otherwise, then spectral lines and well-defined
chemical elements would not exist. [...] In any case, I am as convinced as Weyl that
gravitation and electricity must let themselves be bound together to one and the same;
I only believe that the right union has not yet been found.”87 ([320], Volume 8B,
Document 565, 803)

Another famous theoretician who could not side with Weyl was H. A. Lorentz; in a paper
on the measurement of lengths and time intervals in general relativity and its generalisations, he
contradicted Weyl’s statement that the world-lines of light-signals would suffice to determine the
gravitational potentials [210].

However, Weyl still believed in the physical value of his theory. As further “extraordinarily
strong support for our hypothesis of the essence of electricity” he considered the fact that he had
obtained the conservation of electric charge from gauge-invariance in the same way as he had linked
with coordinate-invariance earlier, what at the time was considered to be “conservation of energy
and momentum”, where a non-tensorial object stood in for the energy-momentum density of the
gravitational field ([398], pp. 252–253).

Moreover, Weyl had some doubts about the general validity of Einstein’s theory which he
derived from the discrepancy in value by 20 orders of magniture of the classical electron radius
and the gravitational radius corresponding to the electron’s mass ([397], p. 476; [152]).

4.1.3 Reactions to Weyl’s theory I: Einstein and Weyl

There exists an intensive correspondence between Einstein and Weyl, now completely available in
volume 8 of the Collected Papers of Einstein [320]. We subsume some of the relevant discussions.
Even before Weyl’s note was published by the Berlin Academy on 6 June 1918, many exchanges
had taken place between him and Einstein.

On a postcard to Weyl on 8 April 1918, Einstein reaffirmed his admiration for Weyl’s theory,
but remained firm in denying its applicability to nature. Weyl had given an argument for dimension
4 of space-time that Einstein liked: As the Lagrangian for the electromagnetic field FikF

ik is of
gauge-weight −2 and

√
−g has gauge-weight D/2 in an MD, the integrand in the Hamiltonian

principle
√
−gFikF ik can have weight zero only for D = 4: “Apart from the [lacking] agreement

86“Die plausibelste Annahme, die man über ein im statischen Feld ruhende Uhr machen kann, ist die, dass sie
das Integral des so normierten [d. h. so wie in der Einsteinschen Theorie] ds misst; es bleibt in meiner wie in der
Einsteinschen Theorie die Aufgabe1, diese Tatsache aus einer explizit durchgeführten Dynamik abzuleiten.”

87“[Weyl] würde sagen, Uhren und Massstäbe müssten erst als Lösungen auftreten; im Fundament der Theorie
kommen sie nicht vor. Aber ich finde: Wenn das mit einer Uhr (bzw. einem Massstab) gemessene ds ein von der
Vorgeschichte, dem Bau und dem Material Unabhängiges ist, so muss diese Invariante als solche auch in der Theorie
eine ganz fundamentale Rolle spielen. Wenn aber die Art des wirklichen Naturgeschehens nicht so wäre, so gäbe
es keine Spektrallinien und keine wohldefinierten chemischen Elemente. [...] Jedenfalls bin ich mit Weyl überzeugt,
dass Gravitation und Elektrizität zu einem Einheitlichen sich verbinden lassen müssen, nur glaube ich, dass die
richtige Verbindung noch nicht gefunden ist.”
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with reality it is in any case a grandiose intellectual performance”88 ([320], Vol. 8B, Doc. 499,
711). Weyl did not give in:

“Your rejection of the theory for me is weighty; [...] But my own brain still keeps
believing in it. And as a mathematician I must by all means hold to [the fact] that
my geometry is the true geometry ‘in the near’, that Riemann happened to come to
the special case Fik = 0 is due only to historical reasons (its origin is the theory of
surfaces), not to such that matter.”89 ([320], Volume 8B, Document 544, 767)

After Weyl’s next paper on “pure infinitesimal geometry” had been submitted, Einstein put
forward further arguments against Weyl’s theory. The first was that Weyl’s theory preserves the
similarity of geometric figures under parallel transport, and that this would not be the most general
situation (cf. Equation (49)). Einstein then suggested the affine group as the more general setting
for a generalisation of Riemannian geometry ([320], Vol. 8B, Doc. 551, 777). He repeated this
argument in a letter to his friend Michele Besso from his vacations at the Baltic Sea on 20 August
1918, in which he summed up his position with regard to Weyl’s theory:

“[Weyl’s] theoretical attempt does not fit to the fact that two originally congruent
rigid bodies remain congruent independent of their respective histories. In particular,
it is unimportant which value of the integral

∫
φνdxν is assigned to their world line.

Otherwise, sodium atoms and electrons of all sizes would exist. But if the relative size
of rigid bodies does not depend on past history, then a measurable distance between two
(neighbouring) world-points exists. Then, Weyl’s fundamental hypothesis is incorrect
on the molecular level, anyway. As far as I can see, there is not a single physical reason
for it being valid for the gravitational field. The gravitational field equations will be of
fourth order, against which speaks all experience until now [...].”90 ([327], p. 133)

Einstein’s remark concerning “affine geometry” is referring to the affine geometry in the sense it
was introduced by Weyl in the 1st and 2nd edition of his book [396], i.e., through the affine group
and not as a suggestion of an affine connexion.

From Einstein’s viewpoint, in Weyl’s theory the line element ds is no longer a measurable
quantity – the electromagnetical 4-potential never had been one. Writing from his vacations on 18
September 1918, Weyl presented a new argument in order to circumvent Einstein’s objections. The
quadratic form Rgikdx

idxk is an absolute invariant, i.e., also with regard to gauge transformations
(gauge weight 0). If this expression would be taken as the measurable distance in place of ds, then

“[...] by the prefixing of this factor, so to speak, the absolute norming of the unit of
length is accomplished after all”91 ([320], Volume 8B, Document 619, 877–879)

88“Abgesehen von der Übereinstimmung mit der Wirklichkeit ist es jedenfalls eine grandiose Leistung des
Gedanken.”

89“Ihre Ablehnung der Theorie fällt für mich schwer ins Gewicht; [...] Aber mein eigenes Hirn bewahrt noch
den Glauben an sie. Und daran muss ich als Mathematiker durchaus festhalten: Meine Geometrie ist die wahre
Nahegeometrie, dass Riemann nur auf den Spezialfall Fik = 0 geriet, hat lediglich historische Gründe (Entstehung
aus der Flächentheorie), keine sachlichen.”

90“[Weyl’s] theoretischer Versuch, passt nicht zu der Thatsache, dass zwei ursprünglich kongruente feste Körper
auch kongruent bleiben, unabhängig davon, welche Schicksale sie durchmachen. Insbesondere hat es keine Bedeu-
tung, welcher Wert des Integrals

∫
φνdxν ihrer Weltlinie zukommt. Sonst würde es Natrium-Atome und Elektronen

in allen Grössen geben müssen. Wenn aber die relative Grösse starrer Körper von der Vorgeschichte unabhängig ist,
dann gibt es einen messbaren Abstand zweier (benachbarter) Weltpunkte. Dann ist die Weylsche Grundannahme
jedenfalls nicht richtig für das molekulare. Dafür, dass sie für das Gravitationsfeld zutreffe, spricht, soweit ich sehe,
kein einziger physikalischer Grund. Dagegen aber spricht, dass die Feldgleichungen der Gravitation von vierter
Ordnung werden, wofür die bisherige Erfahrung keinerlei Anhalts bietet [...].”

91“[...] durch Vorsetzen dieses Faktors wird dann doch sozusagen die absolute Normierung der Längeneinheit
vollzogen.”
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Einstein was unimpressed:

“But the expression Rgikdx
idxk for the measured length is not at all acceptable in

my opinion because R is very dependent on the matter density. A very small change
of the measuring path would strongly influence the integral of the square root of this
quantity.”92

Einstein’s argument is not very convincing: gik itself is influenced by matter through his field
equations; it is only that now R is algebraically connected to the matter tensor. In view of the
more general quadratic Lagrangian needed in Weyl’s theory, the connection between R and the
matter tensor again might become less direct. Einstein added:

“Of course I know that the state of the theory as I presented it is not satisfactory, not
to speak of the fact that matter remains unexplained. The unconnected juxtaposition
of the gravitational terms, the electromagnetic terms, and the λ-terms undeniably is a
result of resignation.[...] In the end, things must arrange themselves such that action-
densities need not be glued together additively.”93 ([320], Volume 8B, Document 626,
893–894)

The last remarks are interesting for the way in which Einstein imagined a successful unified field
theory.

4.1.4 Reactions to Weyl’s theory II: Schouten, Pauli, Eddington, and others

Sommerfeld seems to have been convinced by Weyl’s theory, as his letter to Weyl on 3 June 1918
shows:

“What you say here is really marvelous. In the same way in which Mie glued to
his consequential electrodynamics a gravitation which was not organically linked to
it, Einstein glued to his consequential gravitation an electrodynamics (i.e., the usual
electrodynamics) which had not much to do with it. You establish a real unity.”94 [326]

Schouten, in his attempt in 1919 to replace the presentation of the geometrical objects used
in general relativity in local coordinates by a “direct analysis”, also had noticed Weyl’s theory.
In his “addendum concerning the newest theory of Weyl”, he came as far as to show that Weyl’s
connection is gauge invariant, and to point to the identification of the electromagnetic 4-potential.
Understandably, no comments about the physics are given ([295], pp. 89–91).

In the section on Weyl’s theory in his article for the Encyclopedia of Mathematical Sciences,
Pauli described the basic elements of the geometry, the loss of the line-element ds as a physical
variable, the convincing derivation of the conservation law for the electric charge, and the too many
possibilities for a Lagrangian inherent in a homogeneous function of degree 1 of the invariants (103).
As compared to his criticism with respect to Eddington’s and Einstein’s later unified field theories,
he is speaking softly, here. Of course, as he noted, no progress had been made with regard to

92“Der Ausdruck Rgikdx
idxk für die gemessene Länge ist aber, wenn man für R die Krümmungsinvariante nimmt,

nach meiner Meinung keineswegs akzeptabel, weil R sehr abhängig ist von der materiellen Dichte. Eine ganz kleine
Änderung des Messweges würde das Integral der Quadratzwurzel dieser Grösse sehr stark beeinflussen.”

93“Natürlich weiss ich, dass der Zustand der Theorie, wie ich ihn hingestellt habe, ein nicht befriedigender ist,
abgesehen davon, dass die Materie unerklärt bleibt. Die zusammenhanglose Nebeneinandersetzung der Gravitation-
sglieder, der elektromagnetischen Glieder und der λ-Glieder ist unleugbar ein Produkt der Resignation. [...] Endlich
muss es so herauskommen, dass man nicht Wirkungsdichten additiv aneinander kleben muss.”

94“Was Sie da sagen, ist wirklich wundervoll. So wie Mie seiner konsequenten Elektrodynamik eine Gravitation
angeklebt hatte, die nicht organisch mit jener zusammenhing, ebenso hat Einstein seiner konsequenten Gravitation
eine Elektrodynamik (d.h. die gewöhliche Elektrodynamik) angeklebt, die mit jener nicht viel zu tun hatte. Sie
stellen eine wirkliche Einheit her.”
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the explanation of the constituents of matter; on the one hand because the differential equations
were too complicated to be solved, on the other because the observed mass difference between
the elementary particles with positive and negative electrical charge remained unexplained. In
his general remarks about this problem at the very end of his article, Pauli points to a link of
the asymmetry with time-reflection symmetry (see [242], pp. 774–775; [244]). For Einstein, this
criticism was not only directed against Weyl’s theory

“but also against every continuum-theory, also one which treats the electron as a sin-
gularity. Now as before I believe that one must look for such an overdetermination by
differential equations that the solutions no longer have the character of a continuum.
But how?” ([103], p. 43)

In a letter to Besso on 26 July 1920, Einstein repeated an argument against Weyl’s theory
which had been removed by Weyl – if only by a trick to be described below; Einstein thus said:

“One must pass to tensors of fourth order rather than only to those of second order,
which carries with it a vast indeterminacy, because, first, there exist many more equa-
tions to be taken into account, second, because the solutions contain more arbitrary
constants.”95 ([327], p. 153)

In his book “Space, Time, and Gravitation”, Eddington gave a non-technical introduction into
Weyl’s “welding together of electricity and gravitation into one geometry”. The idea of gauging
lengths independently at different events was the central theme. He pointed out that while the
fourfold freedom in the choice of coordinates had led to the conservation laws for energy and
momentum, “in the new geometry is a fifth arbitrariness, namely that of the selected gauge-
system. This must also give rise to an identity; and it is found that the new identity expresses the
law of conservation of electric charge.” One natural gauge was formed by the “radius of curvature
of the world”; “the electron could not know how large it ought to be, unless it had something to
measure itself against” ([57], pp. 174, 173, 177).

As Eddington distinguished natural geometry and actual space from world geometry and con-
ceptual space serving for a graphical representation of relationships among physical observables,
he presented Weyl’s theory in his monograph “The mathematical theory of relativity”

“from the wrong end – as its author might consider; but I trust that my treatment has
not unduly obscured the brilliance of what is unquestionably the greatest advance in
the relativity theory after Einstein’s work.” ([59], p. 198)

Of course, “wrong end” meant that Eddington took Weyl’s theory such

“that his non-Riemannian geometry is not to be applied to actual space-time; it refers
to a graphical representation of that relation-structure which is the basis of all physics,
and both electromagnetic and metrical variables appear in it as interrelated.” ([59],
p. 197)

Again, Eddington liked Weyl’s natural gauge encountered in Section 4.1.5, which made the cur-
vature scalar a constant, i.e., K = 4λ; it became a consequence of Eddington’s own natural
gauge in his affine theory, Kij = λgij (cf. Section 4.3). For Eddington, Weyl’s theory of gauge-
transformation was a hybrid:

“He admits the physical comparison of length by optical methods [...]; but he does not
recognise physical comparison of length by material transfer, and consequently he takes

95“Man muss zu Tensoren übergehen die 4. Ordnung sind statt nur zweiter Ordnung, was eine weitgehende
Unbestimmtheit der Theorie mit sich bringt, erstens weil es bedeutend mehr Gleichungen gibt, die in Betracht
kommen, zweitens, weil die Lösungen mehr willkürliche Konstanten enthalten.”

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


42 Hubert F. M. Goenner

λ to be a function fixed by arbitrary convention and not necessarily a constant.” ([59],
pp. 220–221)

In the depth of his heart Weyl must have kept a fondness for his idea of “gauging” a field all
during the decade between 1918 and 1928. As he had abandoned the idea of describing matter
as a classical field theory since 1920, the linking of the electromagnetic field via the gauge idea
could only be done through the matter variables. As soon as the new spinorial wave function
(“matter wave”) in Schrödinger’s and Dirac’s equations emerged, he adapted his idea and linked
the electromagnetic field to the gauging of the quantum mechanical wave function [407, 408]. In
October 1950, in the preface for the first American printing of the English translation of the fourth
edition of his book Space, Time, Matter from 1922, Weyl clearly expressed that he had given up
only the particular idea of a link between the electromagnetic field and the local calibration of
length:

“While it was not difficult to adapt also Maxwell’s equations of the electromagnetic field
to this principle [of general relativity], it proved insufficient to reach the goal at which
classical field physics is aiming: a unified field theory deriving all forces of nature from
one common structure of the world and one uniquely determined law of action.[...] My
book describes an attempt to attain this goal by a new principle which I called gauge
invariance. (Eichinvarianz). This attempt has failed.” ([410], p. V)

4.1.5 Reactions to Weyl’s theory III: Further research

Pauli, still a student, and with his article for the Encyclopedia in front of him, pragmatically looked
into the gravitational effects in the planetary system, which, as a consequence of Einstein’s field
equations, had helped Einstein to his fame. He showed that Weyl’s theory had, for the static case,
as a possible solution a constant Ricci scalar; thus it also admitted the Schwarzschild solution and
could reproduce all desired effects [244, 243].

Weyl himself continued to develop the dynamics of his theory. In the third edition of his
Space–Time–Matter [398], at the Naturforscherversammlung in Bad Nauheim in 1920 [399], and
in his paper on “the foundations of the extended relativity theory” in 1921 [402], he returned
to his new idea of gauging length by setting R = λ = const. (cf. Section 4.1.3); he interpreted
λ to be the “radius of curvature” of the world. In 1919, Weyl’s Lagrangian originally was L =
1
2

√
g K2 + βFikF

ik together with the constraint K = 2λ, with constant λ ([398], p. 253). As an
equivalent Lagrangian Weyl gave, up to a divergence96

L =
√
g

(
R+ αFikF

ik +
1
4
(2λ− 3φlφl)

)
, (105)

with the 4-potential φl and the electromagnetic field Fik. Due to his constraint, Weyl had navigated
around another problem, i.e., the formulation of the Cauchy initial value problem for field equations
of fourth order: Now he had arrived at second order field equations. In the paper in 1921, he
changed his Lagrangian slightly into

L =
√
g

(
R+ αFikF

ik +
ε2

4
(1− 3φlφl)

)
, (106)

with ε a factor in Weyl’s connection (100),

Γ k
ij = {kij}+

ε

2
(
δki φj + δkj φi − gijg

klφl
)
. (107)

In both presentations, he considered as an advantage of his theory:
96In fact, from Equation (104) we obtain K = R+ 3QlQ

l + 3Qj
;j .
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“Moreover, this theory leads to the cosmological term in a uniform and forceful manner,
[a term] which in Einstein’s theory was introduced ad hoc”97 ([402], p. 474)

Reichenbächer seemingly was unhappy about Weyl’s taking the curvature scalar to be a constant
before the variation; in the discussion after Weyl’s talk in 1920, he inquired whether one could
not introduce Weyl’s “natural gauge” after the variation of the Lagrangian such that the field
equations would show their gauge invariance first ([399], p. 651). Eddington criticised Weyl’s
choice of a Lagrangian as speculative:

“At the most we can only regard the assumed form of action [...] as a step towards
some more natural combination of electromagnetic and gravitational variables.” ([59],
p. 212)

The changes, which Weyl had introduced in the 4th edition of his book [401], and which,
according to him, were of fundamental importance for the understanding of relativity theory, were
discussed by him in a further paper [400]. In connection with the question of whether, in general
relativity, a formulation might be possible such that “matter whose characteristical traits are
charge, mass, and motion generates the field”, a question which was considered as unanswered
by Weyl, he also mentioned a publication of Reichenbächer [271]. For Weyl, knowledge of the
charge and mass of each particle, and of the extension of their “world-channels” were insufficient
to determine the field uniquely. Weyl’s hint at a solution remains dark; nevertheless, for him it
meant

“to reconciliate Reichenbächer’s idea: matter causes a ‘deformation’ of the metrical
field and Einstein’s idea: inertia and gravitation are one.” ([400], p. 561, footnote)

Although Einstein could not accept Weyl’s theory as a physical theory, he cherished “its coura-
geous mathematical construction” and thought intensively about its conceptual foundation: This
becomes clear from his paper “On a complement at hand of the bases of general relativity” of
1921 [73]. In it, he raised the question whether it would be possible to generate a geometry just
from the conformal invariance of Equation (9) without use of the conception “distance”, i.e., with-
out using rulers and clocks. He then embarked on conformal invariants and tensors of gauge-weight
0, and gave the one formed from the square of Weyl’s conformal curvature tensor (59), i.e. CijklC

jkl
i .

His colleague in Vienna, Wirtinger98, had helped him in this99. Einstein’s conclusion was that, by
writing down a metric with gauge-weight 0, it was possible to form a theory depending only on
the quotient of the metrical components. If J has gauge-weight −1, then Jgik is such a metric. In
order to reduce the new theory to general relativity, in addition only the differential equation

J = J0 = const. (108)

would have to be solved.
Eisenhart wished to partially reinterpret Weyl’s theory: In place of putting the vector potential

equal to Weyl’s gauge vector, he suggested to identify it with −F i
kJ

k

µ , where J i is the electrical
4-current vector (-density) and µ the mass density. He referred to Weyl, Eddington’s book, and to
Pauli’s article in the Encyclopedia of Mathematical Sciences [117].

97“Ausserdem führt dies Theorie auf einheitliche Weise und zwingend zu dem kosmologischen Gliede, das bei
Einstein nur eine ad hoc gemachte Annahme war [...].”

98Wilhelm Wirtinger (1865–1945). Born in Ybbs, Austria. Studied mathematics at the University of Vienna.
Received his doctorate in 1887, and continued his studies at the Universities of Berlin and of Göttingen. From
1895 a full professor at the University of Vienna, but accepted professorship at University of Innsbruck, returning
to Vienna only in 1905. Wrote an important paper on the general theta function and had an exceptional range in
mathematics (function theory, algebra, number theory, plane geometry, theory of invariants).

99In the same year, Wirtinger sent in a paper on relativity theory published only in 1922 [421].
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Einstein’s rejection of the physical value of Weyl’s theory was seconded by Dienes100, if only
with a not very helpful argument. He demanded that the connection remain metric-compatible
from which, trivially, Weyl’s gauge-vector must vanish. Dienes applied the same argument to
Eddington’s generalisation of Weyl’s theory [51]. Other mathematicians took Weyl’s theory at
its face value and drew consequences; thus M. Juvet calculated Frenet’s formulas for an “n-èdre”
in Weyl’s geometry by generalising a result of Blaschke for Riemannian geometry [179]. More
important, however, for later work was the gauge invariant tensor calculus by a fellow of St. John’s
College in Cambridge, M. H. A. Newman [236]. In this calculus, tensor equations preserve their
form both under a change of coordinates and a change of gauge. Newman applied his scheme to a
variational principle with Lagrangian K2 and concluded:

“The part independent of the ‘electrical’ vector φi is found to be Kij − 1
4Kgij , a tensor

which has been considered by Einstein from time to time in connection with the theory
of gravitation.” ([236], p. 623)

After the Second World War, research following Weyl’s classical geometrical approach with
his original 1-dimensional Abelian gauge-group was resumed. The more important development,
however, was the extension to non-Abelian gauge-groups and the combination with Kaluza’s idea.
We shall discuss these topics in Part II of this article. The shift in Weyl’s interpretation of the
role of the gauging from the link between gravitation and electromagnetism to a link between the
quantum mechanical state function and electromagnetism is touched on in Section 7.

4.2 Kaluza’s five-dimensional unification

What is now called Kaluza–Klein theory in the physics community is a mixture of quite different
contributions by both scientists101. Kaluza’s idea of looking at four spatial and one time dimension
originated in or before 1919; by then he had communicated it to Einstein:

“The idea of achieving [a unified field theory] by means of a five-dimensional cylinder
world never dawned on me. [...] At first glance I like your idea enormously.” (letter of
Einstein to Kaluza of 21 April 1919)

This remark is surprising because Nordström had suggested a five-dimensional unification of his
scalar gravitational theory with electromagnetism five years earlier [237], by embedding space-time
into a five-dimensional world in quite the same way as Kaluza did. In principle, Einstein could have
known Nordström’s work. In the same year 1914, he and Fokker had given a covariant formulation
of Nordström’s pure (scalar) theory of gravitation [104]. In a subsequent letter to Kaluza of 5 May
1919 Einstein still was impressed: “The formal unity of your theory is startling.” However, on 29
May 1919, Einstein became somewhat reserved102:

“I respect greatly the beauty and boldness of your idea. But you understand that, in
view of the existing factual concerns, I cannot take sides as planned originally.”103

Kaluza’s paper was communicated by Einstein to the Academy, but for reasons unknown was
published only in 1921 [180]. Kaluza’s idea was to write down the Einstein field equations for empty

100Paul Dienes (1982–1952). Born in Tokaj, Hungary. Studied mathematics. From 1929–1945 Reader, and from
1945–48 Professor at Birkbeck College, University of London.
101A detailed investigation of this subject will appear soon, and will be included in the next update of this

article [145].
102Some letters of Einstein to Kaluza are quoted by Pais ([240], p. 330), some are reprinted as facsimile in the

Proceedings of the Erice Summer School of Cosmology and Gravitation 1982 [49], p. 452.
103“Ich habe grossen Respekt vor der Schönheit und Kühnheit Ihrer Gedanken. Aber Sie begreifen ja, dass ich bei

den obwaltenden sachlichen Bedenken nicht in der ursprünglich geplanten Weise dafür Partei nehmen kann.”
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space in a five-dimensional Riemannian manifold with metric gαβ , i.e., Rαβ = 0, α, β = 1, . . . , 5,
where Rαβ is the Ricci tensor of M5, and to look at small deviations γ from Minkowski space:
gαβ = −δαβ+γαβ .104. In order to obtain a theory in space-time, he assumed the so-called “cylinder
condition”

gαβ ,5 = 0, (109)

equivalent to the existence of a spacelike translational symmetry (Killing vector). Equation (109)
is used for all “functions of state” (Zustandsgrössen), i.e., also for the matter variables. Kaluza
did not normalize the Killing vector to a constant, i.e., he kept

g55 6= const. (110)

Equation (110) is called the “sharpened cylinder condition” by some authors including Einstein.
Of the 15 components of gαβ , five had to get a new physical interpretation, i.e. gα5 and g55; the
components gik, i, k = 1, . . . , 4, were to describe the gravitational field as before; Kaluza took gi5
proportional to the electromagnetic vector potential Ai. The component g55 turned out to be a
(scalar) gravitational potential which, in the static case, satisfies the equation

∇2g55 = −κµ0, (111)

with the constant matter density µ0.
Kaluza also showed that the geodesics of the five-dimensional space reduce to the equations

of motion for a charged point particle in space-time, if a weakness assumption is made for the
components of the 5-velocity uα: u1, u2, u3, u5 � 1, u4 ' 1. The Lorentz force appears augmented
by an additional term containing g55 of the order (uc )

2 which thus may be neglected. From the
fifth equation of motion Kaluza concluded that the fifth component of momentum p5 ∼ e, with
e being the particles’ electric charge (up to a constant of proportionality). From the equations
of motion, charge conservation also followed in Kaluza’s linear approximation. Kaluza was well
aware that his theory broke down if applied to elementary particles like electrons or protons,
and speculated about an escape in which gravitation had to be considered as some “difference
effect”, and the gravitational constant given “a statistical meaning”. For him, any theory claiming
universal validity was endangered by quantum theory, anyway.

From the cylinder condition, a grave objection toward Kaluza’s approach results: Covariance
with regard to the diffeomorphism group of M5 is destroyed. The remaining covariance group G5

is given by
x5′ = x5 + f(xk), xl

′
= xl(xm), k, l,m = 1, . . . , 4. (112)

The objects transforming properly under (112) are: the scalar g5′5′ = g55, the vector-potential
g5′k′ = g5l

∂xl

∂xk′ + g55
∂x5

∂xk′ , and the projected metric

gi′k′ −
gi′5′gk′5′

g5′5′
=
(
glm −

gl5gm5

g55

)
∂xl

∂xi′
∂xm

∂xk′
. (113)

Klein identified the group; however, he did not comment on the fact that now further invariants are
available for a Lagrangian, but started right away from the Ricci scalar of M5 [184]. The group G5

is isomorphic to the group H5 of transformations for five homogeneous coordinates Xµ′ = fµ(Xν)
with fν homogeneous functions of degree 1. Here, contact is made to the projective formulation
of Kaluza’s theory (cf. “projective geometry” in Sections 2.1.3 and 6.3.2).

While towards the end of May 1919 Einstein had not yet fully supported the publication of
Kaluza’s manuscript, on 14 October 1921 he thought differently:
104Greek lettered indices run in M5, Latin ones in space time; x4 is the time coordinate, x5 the new spacelike

coordinate.
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“I am having second thoughts about having kept you from the publication of your idea
on the unification of gravitation and electricity two years ago. I value your approach
more than the one followed by H. Weyl. If you wish, I will present your paper to the
Academy after all.”105 (letter from Einstein to Kaluza reprinted in [49], p. 454)

It seems that at some point Einstein had set his calculational aide Grommer106 to work on regular
spherically symmetric solutions of Kaluza’s theory. This led to a joint publication which was
submitted just one month after Einstein had finally presented a rewritten manuscript of Kaluza’s
to the Berlin Academy [105]. The negative result of his own paper, i.e., that no non-singular,
statical, spherically symmetric exact solution exists, did not please Einstein. He also thought that
Kaluza’s assumption of general covariance in the five-dimensional manifold had no support from
physics; he disliked the preference of the fifth coordinate due to Equation (109) which seemed to
contradict the equivalence of all five coordinates used by Kaluza in the construction of the field
equations [105]. In any case, apart from an encouraging letter to Kaluza in 1925 in which he
called Kaluza’s idea the only serious attempt at unified field theory besides the Weyl–Eddington
approach, Einstein kept silent on the five-dimensional theory until 1926.

4.3 Eddington’s affine theory

4.3.1 Eddington’s paper

The third main idea that emerged was Eddington’s suggestion to forego the metric as a fundamental
concept and start right away with a (general) connection, which he then restricted to a symmetric
one Γ in order to avoid an “infinitely crinkled” world [58]. His motivation went beyond the
unification of gravitation and electromagnetism:

“In passing beyond Euclidean geometry, gravitation makes its appearance; in pass-
ing beyond Riemannian geometry, electromagnetic force appears; what remains to be
gained by further generalisation? Clearly, the non-Maxwellian binding forces which
hold together an electron. But the problem of the electron must be difficult, and I
cannot say whether the present generalisation succeeds in providing the material for
its solution” ([58], p. 104)

In the first, shorter, part of two, Eddington describes affine geometry; in the second he relates
mathematical objects to physical variables. He distinguishes the affine geometry as the “geometry
of the world-structure” from Riemannian geometry as “the natural geometry of the world”. He
starts by calculating both the curvature and Ricci tensors from the symmetric connection according
to Equation (39). The Ricci tensor Kij(Γ) :=∗ Gij is asymmetric107,

∗Gkl = Rkl + Fkl, (114)

with Rkl(Γ) being the symmetric and Fkl(Γ) the antisymmetric part. According to Equation (31)
Fkl derives from a “vector potential”, i.e., Fkl = ∂kΓl − ∂lΓk with Γl := Γ r

lr , such that an
immediate physical identification of Fkl with the electromagnetic field tensor is at hand. With half
of Maxwell’s equations being satisfied automatically, the other half is used to define the electric
charge current jk by jl := F lk‖k. By this, Eddington claims to guarantee charge conservation:

105“Ich mache mir Gedanken darüber, dass ich Sie vor zwei Jahren von der Publikation Ihrer Idee über die
Vereinigung von Gravitation und Elektrizität abgehalten habe. Ihr Weg scheint mir jedenfalls mehr für sich zu
haben als der von H. Weyl beschrittene. Wenn Sie wollen, lege ich Ihre Arbeit doch der Akademie vor [...].”
106Jakob Grommer (1879–1933). Born near Brest, then in Russia. First a Talmud student with a keen interest in

mathematics. Came to Göttingen to study mathematics and obtained his Ph.D. there. Worked with Einstein for at
least a decade (1917–1927) as his calculational assistant. He held a university position in Minsk from 1929 on and
later became a member of the Belorussian Academy of Sciences. From his youth he was inflicted with elephantiasis.
107We use some of Eddington’s notation. His notation representing the covariant derivative by a lower index is

highly ambiguous, though, and will be avoided. ∗Gkl is not a dual.
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“The divergence of jk will vanish identically if jk is itself the divergence of any anti-
symmetrical contravariant tensor.” ([64], p. 223; cf. also [58], p. 113)

Now, by Equation (25),
F lk‖[l‖k] = K[rk]F

rk + S s
jk ∇sF jk. (115)

For a symmetric connection thus, unlike in Riemannian geometry,

jk‖k = F lk‖[l‖k] = FrkF
rk 6= 0. (116)

However, for a tensor density, due to Equation (16) we obtain

̂
k
‖k = F̂ lk‖[l‖k] =

1
2
(Vrk + 2K[rk])F̂ rk + S s

jk ∇s F̂ jk, (117)

and thus for a torsionless connection (cf. Equation (38)) jk‖k = 0.
Eddington introduces the metrical tensor by the definition

λgkl = Rkl, (118)

“introducing a universal constant λ, for convenience, in order to remain free to use the centimetre
instead of the natural unit of length”. This is called “Einstein’s gauge” by Eddington; he is
delighted that

“Our gauging-equation is therefore certainly true wherever light is propagated, i.e.,
everywhere inside the electron. Who shall say what is the ordinary gauge inside the
electron?” ([58], p. 114)

While this remark certainly is true, there is no guarantee in Eddington’s approach that gkl thus
defined is a Lorentzian metric, i.e., that it could describe light propagation at all. Only connections
leading to a Lorentz metric can be used if a physical interpretation is wanted. Note also, that the
interpretation of Rkl as the metric implies that det Rkl 6= 0.

We must read Equation (118) as giving gkl(Γ) if the only basic variable in affine geometry, i.e.,
the connection Γ k

ij , has been determined by help of some field equations. Thus, in general, gkl is
not metric-compatible; in order to make it such, we are led to the differential equations Rij‖k = 0
for Γ k

ij , an equation not considered by Eddington. In the absence of an electromagnetic field,
Equation (118) looks like Einstein’s vacuum field equation with cosmological constant. In principle,
now a fictitious “Riemannian” connection (the Christoffel symbol) can be written down which,
however, is a horribly complicated function of the affine connection – as the only fundamental
geometrical quantity available. This is due to the expression for the inverse of the metric, a
function cubic in Rkl. Eddington’s affine theory thus can also be seen as a bi-connection theory.
Note also that Eddington does not explicitly say how to obtain the contravariant form of the
electromagnetic field F ij from Fij ; we must assume that he thought of raising indices with the
complicated inverse metric tensor.

In connection with cosmological considerations, Eddington cherished the λ-term in Equa-
tion (118):

“I would as soon think of reverting to Newtonian theory as of dropping the cosmic
constant.” ([63], p. 35)

Now, Eddington was able to identify the energy-momentum tensor T ik of the electromagnetic
field by decomposing the Ricci tensorKij formed from Equation (51) into a metric part Rik and the
rest. The energy-momentum tensor T ik of the electromagnetic field is then defined by Einstein’s
field equations with a fictitious cosmological constant κT ik := Gik − 1

2g
ik(G− 2λ).
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Although Eddington’s interest did not rest on finding a proper set of field equations, he never-
theless discussed the Lagrangian L =

√
−g ∗Gik ∗Gik, and showed that a variation with regard

to gik did not lead to an acceptable field equation.
Eddington’s main goal in this paper was to include matter as an inherent geometrical structure:

“What we have sought is not the geometry of actual space and time, but the geometry
of the world-structure which is the common basis of space and time and things.” ([58],
p. 121)

By “things” he meant

(1) the energy-momentum tensor of matter, i.e., of the electromagnetic field,

(2) the tensor of the electromagnetic field, and

(3) the electric charge-and-current vector.

His aim was reached in the sense that all three quantities were fixed entirely by the connection;
they could no longer be given from the outside. As to the question of the electron, it is seen as “a
region of abnormal world-curvature”, i.e., of abnormally large curvature.

While Pauli liked Eddington’s distinction between “natural geometry” and “world geometry”
– with the latter being only “a graphical representation” of reality – he was not sure at all whether
“a point of view could be taken from which the gravitational and electromagnetical fields appear
as union”. If so, then it must be a purely phenomenological one without any recourse to the nature
of the charged elementary particles (cf. his letter to Eddington quoted below).

Lorentz did not like the large number of variables in Eddington’s theory; there were 4 com-
ponents of the electromagnetic potential, 10 components of the metric and 40 components of the
connection:

“It may well be asked whether after all it would not be preferable simply to introduce
the functions that are necessary for characterising the electromagnetic and gravita-
tional fields, without encumbering the theory with so great a number of superfluous
quantities.” ([210], p. 382)

4.3.2 Einstein’s reaction and publications

Eddington’s publication early in 1921, generalising Einstein’s and Weyl’s theories started a new
direction of research both in physics and mathematics. At first, Einstein seems to have been
reserved (cf. his letters to Weyl in June and September 1921 quoted by Stachel in his article on
Eddington and Einstein ([330], pp. 453–475; here p. 466)), but one and a half years later he became
attracted by Eddington’s idea. To Bohr, Einstein wrote from Singapore on 11 January 1923:

“I believe I have finally understood the connection between electricity and gravitation.
Eddington has come closer to the truth than Weyl.” ([139], p. 274)

He now tried to make Eddington’s theory work as a physical theory; Eddington had not given field
equations:

“I must absolutely publish since Eddington’s idea must be thought through to the end.”
(letter of Einstein to Weyl of 23 May 1923; cf. [240], p. 343)

And a few days later, he was still intrigued about this sort of unified field theory, in particular
about its elusiveness:
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“[...] Over it lingers the marble smile of inexorable nature, which has bestowed on us
more longing than brains.”108 (letter of Einstein to Weyl of 26 May 1923; cf.[240],
p. 343)

And indeed Einstein published fast, even while still on the steamer returning from Japan through
Palestine and Spain: The paper of February 1923 in the reports of the Berlin Academy carries, as
location of the sender, the ship “Haruna Maru” of the Japanese Nippon Yushen Kaisha line109 [77].

“In past years, the wish to understand the gravitational and electromagnetic field as
one in essence has dominated the endeavours of theoreticians. [...] From a purely logical
point of view only the connection should be used as a fundamental quantity, and the
metric as a quantity derived thereof [...] Eddington has done this.”110 ([77], p. 32)

Like Eddington, Einstein used a symmetric connection and wrote down the equation111

λ2Kkl = gkl + φkl, (119)

where gkl = g(kl) and φkl = φ[kl], and λ is a “large number”. By this, the metric was defined as
the symmetric part of the Ricci tensor. Due to

φkl =
1
2

(
∂Γ j

kj

∂xl
−
∂Γ j

lj

∂xk

)
(120)

one half of Maxwell’s equations is satisfied if φkl is taken to be the electromagnetic field tensor.
Let us note, however, that while Γ j

kj transforms inhomogeneously, its transformation law

Γ j′

k′j′ = Γ m
lm

∂xl

∂xk′
+

∂2xl
′

∂xk′∂xm′ ·
∂xm

′

∂xl′

is not exactly the same as that of the electric 4-potential under gauge transformations.
For a Lagrangian, Einstein used L = 2

√
−det Kij ; he claims that for vanishing electromagnetic

field the vacuum field equations of general relativity, with the cosmological term included, hold.
Einstein varied with regard to gkl and φkl, not, as one might have expected, with regard to the
connection Γ j

kj . If f̂kl := δL
δφkl

, then the electric current density jl is defined by ̂
l := ∂f̂ lk

∂xk . f̂
kl is

interpreted as “the contravariant tensor of the electromagnetic field”.
The field equations are obtained from the Lagrangian by variation with regard to the connection

Γ l
kj and are (Einstein worked in space-time)

ŝkl‖m +
1
3
δkm ̂

l +
1
3
δlm ̂

k = 0, 3ŝkl‖l + 5 ̂
k = 0, (121)

with the definition of the current density ̂
k given before, and ŝkl = δL

δgkl
. Besides ŝkl, Einstein also

uses skl introduced by
ŝkl = skl

√
−det skl, sklsml = δkm. (122)

108“[...] Darüber steht das marmorne Lächeln der unerbittlichen Natur, die uns mehr Sehnsucht als Geist verliehen
hat.”
109There even exist a manuscript dating from Einstein’s stop-over in Singapore; it is incomplete and of little

importance [222].
110“Der Wunsch, das Gravitationsfeld und das elektromagnetische Feld als Wesenseinheit zu begreifen, beherrscht

in den letzten Jahren das Streben der Theoretiker. [...] Von einem logisch einleuchtenden Standpunkt her sollte nur
die Konnektion als fundamentale Grösse benutzt werden und die Metrik eine daraus abgeleitete Grösse sein. [...]
Dies that Eddington.”
111In place of our Kik Einstein used Rik.
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From Equation (121) the connection can be obtained. If ̂
l =

√
−det skl jl, and jk = sklj

l, then
the affine connection may formally be expressed by

Γ l
kj =

1
2
slr
(
∂skr
∂xj

+
∂sjr
∂xk

− ∂skj
∂xr

)
− 1

2
skj ̂

l +
1
3
δl(k ̂j) (123)

This equation is an identity if a solution of the field equations (121) is inserted. From Equa-
tion (123),

Γ j
kj =

∂

∂xk

√
det slr +

1
3
jk. (124)

If no electromagnetic field is present, ŝkl reduces to ŝkl = gkl
√
−det gkl; the definition of the

metric gij in Equation (119) is reinterpreted by Einstein as giving his vacuum field equation with
cosmological constant λ−2. In order that this makes sense, the identifications in Equation (119)
are always to be made after the variation of the Lagrangian is performed.

For non-vanishing electromagnetic field, due to Equation (124) the Equation (120) now becomes

φ̂kl =
1
6

(
∂ ̂k

∂xl
− ∂ ̂l

∂xk

)
, (125)

which means that for vanishing current density no electromagnetic field is possible. Einstein
concluded:

“But the extraordinary smallness of 1
λ2 implies that finite φkl are possible only for tiny,

almost vanishing current density. Except for singular positions, the current density is
practically vanishing.”112

Einstein went on to show that Maxwell’s vacuum equations are holding in first order approximation.
Up to the same order, f̂kl ' φ̂kl. In general however, φ̂kl 6= skmslnf̂

nm. Also, the geometrical
theory presented here is energetically closed, i.e., the current density ̂l cannot be given arbitrarily
as in the usual Maxwell theory with external sources.

Einstein was not sure whether “electrical elementary elements”, i.e., nonsingular electrons, are
possible in this theory; they might be. He found it remarkable “[...] that, according to this theory,
positive and negative electricity cannot differ just in sign”113 ([77], p. 38). His final conclusion
was:

“that EDDINGTON’S general idea in context with the Hamiltonian principle leads
to a theory almost free of ambiguities; it does justice to our present knowledge about
gravitation and electricity and unifies both kinds of fields in a truly accomplished
manner.”114 ([77], p. 38)

Until the end of May 1923, two further publications followed in which Einstein elaborated on
the theory. In the second paper, he exchanged the Lagrangian L = 2

√
−det Kij for a new one,

i.e., for L = −2
√

det Kij + R̂ − 1
6 ŝ
lmilim, where ı̂

k = ik
√

det skl. L is to be varied with respect
to ŝkl and f̂kl. The resulting equations for the gravitational and electromagnetic fields are the
symmetric and skew-symmetric part, respectively, of

Kjk = Rjk +
1
6

(
∂ij
∂xk

− ∂ik
∂xj

+ ijik

)
. (126)

112“Aber die ausserordentliche Kleinheit von 1
λ2 bringt es mit sich, dass endliche φkl nur bei winzigen, praktisch

verschwindenden kovarianten Stromdichten möglich sind. Singuläre Stellen ausgenommen verschwindet praktisch
also die Stromdichte.”
113“[...] dass nach dieser Theorie die positive und die negative Elektrizität keineswegs bloss dem Vorzeichen nach

verschieden sein können.”
114“dass EDDINGTONS allgemeiner Gedanke in Verbindung mit dem Hamiltonschen Prinzip zu einer von Willkür

fast freien Theorie führt, welche unserem bisherigen Wissen über Gravitation und Elektrizität gerecht wird und beide
Feldarten in wahrhaft vollendeter Weise vereinigt.”
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Although the theory offered, for every solution with positive charge, also a solution with negative
charge, the masses in the two cases were the same. However, the only known particle with positive
charge at the time (what is now called the proton) had a mass greatly different from the particle
with negative charge, the electron. Einstein noted:

“Therefore, the theory may not account for the difference in mass of positive and
negative electrons.”115 ([74], p. 77)

In the third paper [76], apart from changing notations116, Einstein set λ = 1. He also dropped
the assumption (119) and replaced it by allowing his Lagrangian (Hamiltonian) Ĥ to be a function
of the two independent variables,

γij = K(ij), φij = K[ij]. (127)

The logic of the subsequent derivations in his paper is quite involved. The first step consisted in
the definition of tensor densities

ĝkl :=
δĤ

δγkl
, f̂kl :=

δĤ

δφkl
. (128)

In the second step, the variations δγkl and δφkl were expressed by δΓ l
ik via (127) and inserted into

δĤ = 0. The ensuing equation could be solved for Γ l
ik and led to Equation (123). In the third

step, the Lagrangian Ĥ∗ is taken as a functional of the variables introduced in the first step, i.e.,
of ĝkl, f̂kl such that in place of Equation (128) the relations

γkl :=
δĤ∗
δĝkl

, φkl :=
δĤ∗
δf̂kl

. (129)

hold. Einstein then took “the expression most natural vis-a-vis our present knowledge”, i.e.,
Ĥ∗ = 2α

√
−g − β

2 fikf̂
ik. By using both Equation (127) and Equation (129), Einstein obtained

the Einstein–Maxwell equations augmented by a term − 1
6 ikil on the side of the energy-momentum

tensor of the electromagnetic field and Equation (125) with a changed l.h.s. now reading −βfik.
After a field rescaling, he then took a third expression to become his Lagrangian

H̄ =
√
−g
[
R− 2α+ κ

(
1
2
fijf

ij

)
− 1
β
ili
l

]
,

where α and β are arbitrary constants, and κ is the gravitational constant. il is defined to be pro-
portional to the electromagnetic 4-potential fk, i.e., 1

β il = −fk, and fij corresponds to φij ,
√
−g f ij

to f̂ ij . After the field equations had been obtained by this longwinded procedure, it became obvi-
ous that they could also be derived from H̄ = H taken as an “effective” Lagrangian varied with
respect to gik and fik. In Einstein’s words: “R is the Riemannian curvature scalar formed from
gij”117. In the third paper as well, Einstein’s desire to create a unified field theory satisfying all
his criteria still was not fulfilled: His equations, again, did not give a singularity-free electron. In
a paper on Hilbert’s vision of a unified science, Sauer and Majer recently have found out from
lectures of Hilbert given in Hamburg and Zürich in 1923, that Hilbert considered Einstein’s work
in affine theory a return to his own results of 1915 by “[...] a colossal detour via Levi-Civita,
Weyl, Schouten, Eddington [...]” [214]. It seems that, in this evaluation, Hilbert was influenced
by Einstein’s proportionality between the 4-potential and the electrical current which Hilbert had
assumed as early as in 1915 [161]118.
115“Die Theorie vermag also jedenfalls von der Verschiedenheit der Masse der positiven und negativen Elektronen

keine Rechenschaft zu geben.”
116He exchanged gik by γik, Rik by rik.
117“R bedeutet hierbei den aus den gij gebildeten RIEMANNschen Krümmungsskalar”
118This proportionality is about the simplest assumption one can make; the equation ∇lF

kl ∼ Ak corresponds, in
the case of the gravitational field, to the equation Rik = λgik leading to Einstein spaces.
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4.3.3 Comments by Einstein’s colleagues

While, in the meantime, mathematicians had taken over the conceptual development of affine
theory, some other physicists, including the perpetual pièce de resistance Pauli, kept a negative
attitude:

“[...] I now do not at all believe that the problem of elementary particles can be solved
by any theory applying the concept of continuously varying field strengths which satisfy
certain differential equations to regions in the interior of elementary particles. [...] The
quantities Γµνα cannot be measured directly, but must be obtained from the directly
measured quantities by complicated calculational operations. Nobody can determine
empirically an affine connection for vectors at neighbouring points if he has not obtained
the line element before. Therefore, unlike you and Einstein, I deem the mathematician’s
discovery of the possibility to found a geometry on an affine connection without a metric
as meaningless for physics, in the first place.”119 (Pauli to Eddington on 20 September
1923; [250], pp. 115–119)

Also Weyl, in the 5th edition of Raum–Zeit–Materie ([398], Appendix 4), in discussing “world-
geometric extensions of Einstein’s theory”, found Eddington’s theory not convincing. He criticised
a theory that keeps only the connection as a fundamental building block for its lack of a guar-
antee that it would also house the conformal structure (light cone structure). This is needed for
special relativity to be incorporated in some sense, and thus must be an independent fundamental
input [405].

Likewise, Eddington himself did not appreciate much Einstein’s followership. In Note 14, § 100
appended to the second edition of his book, he laid out Einstein’s theory but not without first
having warned the reader:

“The theory is intensely formal as indeed all such action-theories must be, and I cannot
avoid the suspicion that the mathematical elegance is obtained by a short cut which
does not lead along the direct route of real physical progress. From a recent conversation
with Einstein I learn that he is of much the same opinion.” ([64], pp. 257–261)

In fact, when Eddington’s book was translated into German in 1925 [60], Einstein wrote an ap-
pendix to it in which he repeated, with minor changes, the results of his last paper on the affine
theory. His outlook on the state of the theory now was rather bleak:

“For me, the final result of this consideration regrettably consists in the impression that
the deepening of the geometrical foundations by Weyl–Eddington is unable to bring
progress for our physical understanding; hopefully, future developments will show that
this pessimistic opinion has been unjustified.”120 ([60], p. 371)

An echo of this can be found in Einstein’s letter to Besso of 5 June 1925:

119“[...] Ich glaube nun überhaupt nicht, dass dieses Problem der elektrischen Elementarteilchen von irgend einer
Theorie gelöst werden kann, die den Begriff der kontinuierlich variierenden Feldstärken, die gewissen Differentialgle-
ichungen genügen, auf die Gebiete im Innern der Elementarteilchen anwendet. [...] Die Grössen Γµ

ν α können nicht
direkt gemessen werden, sondern müssen aus den direkt gemessenen Grössen erst durch komplizierte Rechenopera-
tionen gewonnen werden. Niemand kann empirisch einen affinen Zusammenhang zwischen Vektoren in benachbarten
Punkten feststellen, wenn er nicht vorher bereits das Linienelement ermittelt hat. Deswegen halte ich im Gegen-
satz zu Ihnen und Einstein die Erfindung der Mathematiker, dass man auch ohne Linienelement auf einen affinen
Zusammenhang eine Geometrie gründen kann, zunächst für die Physik bedeutungslos.”
120“Für mich besteht das Endergebnis dieser Betrachtung leider in dem Eindruck, dass uns die Weyl–Eddingtonsche

Vertiefung der geometrischen Grundlagen keinen Fortschritt der physikalischen Erkenntnis zu bringen vermag; hof-
fentlich wird die künftige Entwicklung zeigen, dass diese pessimistische Meinung unberechtigt gewesen ist.”
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“I am firmly convinced that the entire chain of thought Weyl–Eddington–Schouten
does not lead to something useful in physics, and I now have found another, physically
better founded approach. To me, the quantum-problem seems to require something
like a special scalar, for the introduction of which I have found a plausible way.”121

([327], p. 204)

This remark shows that Einstein must have taken some notice of Schouten’s work in affine geometry.
What the “special scalar” was, remains an open question.

4.3.4 Overdetermination of partial differential equations and elementary particles

Einstein spent much time in thinking about the “quantum problem”, as he confessed to Born:

“I do not believe that the theory will be able to dispense with the continuum. But I fail
to succeed in giving my pet idea a tangible form: to understand the quantum-structure
through an overdetermination by differential equations.”122 ([103], pp. 48–49)

In a paper from December 1923, Einstein not only stated clearly the necessary conditions for a
unified field theory to be acceptable to him, but also expressed his hope that this technique of
“overdetermination” of systems of differential equations could solve the “quantum problem”.

“According to the theories known until now the initial state of a system may be chosen
freely; the differential equations then give the evolution in time. From our knowledge
about quantum states, in particular as it developed in the wake of Bohr’s theory during
the past decade, this characteristic feature of theory does not correspond to reality.
The initial state of an electron moving around a hydrogen nucleus cannot be chosen
freely; its choice must correspond to the quantum conditions. In general: not only the
evolution in time but also the initial state obey laws.”123 ([75], pp. 360–361)

He then ventured the hope that a system of overdetermined differential equations is able to deter-
mine

“also the mechanical behaviour of singular points (electrons) in such a way that the
initial states of the field and of the singular points are subjected to constraints as well.
[...] If it is possible at all to solve the quantum problem by differential equations, we
may hope to reach the goal in this direction.”

We note here Einstein’s emphasis on the very special problem of the quantum nature of elementary
particles like the electron, as compared to the general problem of embedding matter fields into a
geometrical setting.

One of the crucial tests for an acceptable unified field theory for him now was:

121“Ich bin fest überzeugt, dass die ganze Gedanken-Reihe Weyl–Eddington–Schouten zu nichts physikalisch
brauchbarem führt und habe jetzt eine andere Spur gefunden, die mehr physikalisch fundiert ist. Das Quanten-
Problem scheint mir etwas wie einen besonderen Skalar zu verlangen, für dessen Einführung ich einen plausiblen
Weg gefunden habe.”
122“Ich glaube nicht, dass die Theorie das Kontinuum wird entbehren können. Es will mir aber nicht gelingen,

meiner Lieblingsidee, die Quantenstruktur aus einer Überbestimmung durch Differentialgleichungen zu verstehen,
greifbare Gestalt zu geben.”
123“Nach den bisherigen Theorien kann der Anfangszustand eines Systems frei gewählt werden; die Differential-

gleichungen liefern dann die zeitliche Fortsetzung. Nach unserem Wissen über die Quantenzustände, wie es sich
insbesondere im Anschluss an die BOHRsche Theorie im letzten Jahrzehnt entwickelt hat, entspricht dieser Zug
der Theorie nicht der Wirklichkeit. Der Anfangszustand eines um einen Wasserstoffkern bewegten Elektrons kann
nicht frei gewählt werden, sondern diese Wahl muss den Quantenbedingungen entsprechen. Allgemein: nicht nur
die zeitliche Fortsetzung, sondern auch der Anfangszustand unterliegt Gesetzen.”
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“The system of differential equations to be found, and which overdetermines the field,
in any case must admit this static, spherically symmetric solution which describes,
respectively, the positive and negative electron according to the equations given above
[i.e the Einstein–Maxwell equations].”124

This attitude can also be found in a letter to M. Besso from 5 January 1924:

“The idea I am wrestling with concerns the understanding of the quantum facts; it is:
overdetermination of the laws by more field equations than field variables. In such a
way, the un-ambiguity of the initial conditions ought to be understood without leaving
field theory. [...] The equations of motion of material points (electrons) will be given
up totally; their motion ought to be co-determined by the field laws.”125 ([327], p. 197)

In his answer, Besso asked for more information concerning the quantum aspect of the concept of
“overdetermination”, because:

“On the one hand, this seems to be connected only formally with a field theory; on the
other, it has not yet dawned on me how in this manner something corresponding to
the discrete quantum orbits may be reached.”126 ([327], p. 199)

124“Das gesuchte Gleichungssystem, welches das Feld überbestimmt, muss jedenfalls jene statische, kugelsym-
metrische Lösung zulassen, welche gemäss obigen Gleichungen [i.e., the Einstein–Maxwell equations] das positive
bzw. negative Elektron beschreibt.”
125“Die Idee, mit der ich mich herumschlage, betrifft das Verstehen der Quantentheorie und heisst:

Überbestimmung der Gesetze durch mehr Gleichungen als Feldvariable. So soll die Nichtwillkürlichkeit der Anfangs-
bedingungen begriffen werden, ohne die Feldtheorie zu verlassen.[...] Die Bewegungsgleichungen materieller Punkte
(Elektronen) wird ganz aufgegeben; das motorische Verhalten der letzteren soll durch die Feldgesetze mitbestimmt
werden.”
126“Einerseits scheint das nur noch formell etwas mit einer Feldtheorie gemeinsam zu haben; und andererseits

schimmert mir noch nicht, wie auf diesem Wege etwas den diskreten Quantenbahnen entsprechendes zu erreichen
ist.”
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5 Differential Geometry’s High Tide

In the introduction to his book, Struik distinguished three directions in the development of the
theory of linear connections [338]:

(1) The generalisation of parallel transport in the sense of Levi-Civita and Weyl. Schouten is
the leading figure in this approach [300].

(2) The “geometry of paths” considering the lines of constant direction for a connection – with the
proponents Veblen, Eisenhart [122, 114, 115, 373], J. M. Thomas [348], and T. Y. Thomas127[349,
347]. Here, only symmetric connections can appear.

(3) The idea of mapping a manifold at one point to a manifold at a neighbouring point is central
(affine, conformal, projective mappings). The names of König [191] and Cartan [30, 302] are
connected with this program.

In his assessment, Eisenhart [121] adds to this all the geometries whose metric is

“based upon an integral whose integrand is homogeneous of the first degree in the
differentials. Developments of this theory have been made by Finsler, Berwald, Synge,
and J. H. Taylor. In this geometry the paths are the shortest lines, and in that sense
are a generalisation of geodesics. Affine properties of these spaces are obtained from a
natural generalisation of the definition of Levi-Civita for Riemannian spaces.” ([121],
p. V)

In fact, already in May 1921 Jan Arnoldus Schouten in Delft had submitted two papers classi-
fying all possible connections [297, 296]. In the first he wrote:

“Motivated by relativity theory, differential geometry received a totally novel, sim-
ple and satisfying foundation; I just refer to G. Hessenberg’s ‘Vectorial foundation...’,
Math. Ann. 78, 1917, S. 187–217 and H. Weyl, Raum–Zeit–Materie, 2. Section, Leipzig
1918 (3. Aufl. Berlin 1920) as well as ‘Reine Infinitesimalgeometrie’ etc.128. [...] In the
present investigation all 18 different linear connections are listed and determined in an
invariant manner. The most general connection is characterised by two fields of third
degree, one tensor field of second degree, and a vector field [...].”129 ([297], p. 57)

The fields referred to are the torsion tensor Skij , the tensor of non-metricity Qkij , the metric gij ,
and the tensor Ckij which, in unified field theory, was rarely used. It arose because Schouten intro-
duced different linear connections for tangent vectors and linear forms. He defined the covariant
derivative of a 1-form not by the connection Lkij in Equation (13), but by

+
ωi=

∂ωi
∂xk

− ′L j
ki ωj , (130)

127Tracy Yerkes Thomas (1899–1983). Born in Alton, Illinois, U.S.A.: Studied mathematics at Princeton University
and received his doctorate in 1923. Professor at Princeton, then from 1938–1944 at the University of California
in Los Angeles, and since 1944 professor and chairman of the mathematics department at Indiana University in
Bloomington, U.S.A.
128This is [160, 398] and [397].
129“Durch die Relativitätstheorie veranlasst, hat die Differentialgeometrie eine ganz neue, einfache und befriedi-

gende Begründung erfahren; ich nenne nur G. Hessenberg ‘Vektorielle Begründung...’, Math. Ann. 78, 1917, S. 187–
217 und H. Weyl, Raum–Zeit–Materie, 2. Kap., Leipzig 1918 (3. Aufl. Berlin 1920) sowie ‘Reine Infinitesimalgeome-
trie’ etc. [...] In der vorliegenden Untersuchung sind nun alle achtzehn verschiedenen Arten der linearen Übertragung
vollständig aufgezählt und in invarianter Weise festgelegt. Die allgemeinste Übertragung wird durch zwei Felder
dritten Grades, ein Tensorfeld zweiten Grades und ein Vektorfeld charakterisiert, [...].”
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with ′L 6= L. In fact
Ckij := Lkij − ′Lkij . (131)

In the first paper, Schouten had considered only the special case Ckij = Ci δ
k
j
130.

Furthermore, on p. 57 of [297] we read:

“The general connection for n = 4 at least theoretically opens the door for an extension
of Weyl’s theory. For such an extension an invariant fixing of the connection is needed,
because a physical phenomenon can correspond only to an invariant expression.”131

Through footnote 5 on the same page we learn the pedagogical reason why Schouten did not use
the ‘direct’ method [294, 337] in his presentation, but rather a coordinate dependent formalism132:

“As the results of the present investigation might be of interest for a wider circle of
mathematicians, and also for a number of physicists [...].”133

At the end of the first paper we can find a section “Eventual importance of the present in-
vestigation for physics” (p. 79–81) and the confirmation that during the proofreading Schouten
received Eddington’s paper ([58], accepted 19 February 1921). Thus, while Einstein and Weyl
influenced Eddington, Schouten apparently did his research without knowing of Eddington’s idea.
Einstein, perhaps, got to know Schouten’s work only later through the German translation of Ed-
dington’s book where it is mentioned ([60], p. 319), and to which he wrote an addendum, or, more
directly, through Schouten’s book on the Ricci calculus, Die Grundlehren der Mathematischen
Wissenschaften in Einzeldarstellungen, in the same famous yellow series of Springer Verlag [300].
On the other hand, Einstein’s papers following Eddington’s [77, 74] inspired Schouten to publish
on a theory with vector torsion that tried to remedy a problem Einstein had noted in his papers,
i.e., that no electromagnetic field could be present in regions of vanishing electric current density.
According to Schouten

“[...] we see that the electromagnetic field only depends on the curl of the electric
current vector, so that the difficulty arises that the electromagnetic field cannot exist
in a place with vanishing current density. In the following pages will be shown that
this difficulty disappears when the more general supposition is made that the original
deplacement is not necessarily symmetrical.” ([300], p. 850)

Schouten criticised Einstein’s argument for using a symmetric connection134 as unfounded (cf.
Equation (15)). He then restricted the generality of his approach; in modern parlance, he did
allow for vector torsion only:

“We will not consider the most general case, but the semi-symmetric case in which the
alternating part of the parameters has the form:

1/2(Γ
′ ν
µ λ − Γ

′ ν
λ µ) = 1/2(Sλ δνµ − Sµ δ

ν
λ),

in which Sλ is a general covariant vector.” ([298], p. 851)
130The 18 possibilities were numbered by Schouten as I, . . . , VI a–c; he mentioned 5 examples: Einstein (VI c),

Hessenberg (VI a), Weyl (IV c) and (II c) (the latter also corresponds to Eddington’s choice) as well as König (II
a) (cf. also [296]).
131“Die allgemeinen Übertragungen für n = 4 eröffnen für die Physik wenigstens theoretisch die Möglichkeit einer

Erweiterung der Weylschen Theorie. Für eine solche Erweiterung ist eine invariante Festlegung der Übertragung
notwendig, da eine physische Erscheinung nur mit einem invarianten Ausdruck korrespondieren kann.”
132A summary of Schouten’s papers from 1922 is given in [300].
133“Da die Resultate der vorliegenden Arbeit aber für weitere Kreise von Mathematikern und auch für manche

Physiker interessant sein dürften [...].”

134Einstein had wished to avoid the distinction between
+
∇ and

−
∇.
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The affine connection Γ
′
can then be decomposed as follows:

Γ
′ l
jk = Λ l

jk + S[j δ
l
k]. (132)

Hence, besides the covariant derivative ∇′
following from use of Γ

′ l
jk , in his calculations Schouten

also introduced a covariant derivative ∇∗ formed with Λ l
jk . Schouten’s point of departure for the

field equations is Einstein’s first Lagrangian L =
√

det Kij and, consequently, his field equations
were the same as Einstein’s apart from additional terms in vector torsion. Also, Schouten’s defini-
tion of some of the observables is different; For example, the electromagnetic field tensor unlike in
Equation (125) is now

F̂kl =
1
6

(
∂ ı̂k

∂xl
− ∂ ı̂l

∂xk

)
−

(
∂Ŝk
∂xl

− ∂Ŝl
∂xk

)
, (133)

where ik := ∇∗
l f
kl−Plfkl, and Pk := − ∂

∂xk (log
√
−det Kij )+Λ l

lk . On the same topic, Schouten
wrote a paper with Friedman in Leningrad [142]. A similar, but less detailed, classification of
connections than Schouten’s has also been given by Cartan. He relied on the curvature, torsion
and homothetic curvature 2-forms ([33], Section III; cf. also Section 2.1.4). In 1925, Eyraud135

came back to Schouten’s paper [298] and proved that his connection can be mapped projectively
and conformally on a Riemannian space [124, 123].

Other mathematicians were also stimulated by Einstein’s use of differential geometry in his
general relativity and, particularly, by the idea of unified field theory. Examples are Eisenhart
and Veblen, both in Princeton, who developed the “geometry of paths”136 under the influence of
papers by Weyl, Eddington, and Einstein [122, 116, 383]. In Eisenhart’s paper, we may read that

“Einstein has said (in Meaning of Relativity) that ‘a theory of relativity in which the
gravitational field and the electromagnetic field enter as an essential unity’ is desirable
and recently has proposed such a theory.” ([116], pp. 367–368)

and

“His geometry also is included in the one now proposed and it may be that the latter,
because of its greater generality and adaptability will serve better as the basis for the
mathematical formulation of the results of physical experiments.” ([116], p. 369)

The spreading of knowledge about properties of differential geometric objects like connection and
curvature took time, however, even in Leningrad. Seven years after Schouten’s classification of
connections, Fréedericksz of Leningrad – known better for his contributions to the physics of liquid
crystals – put forward a classification of his own by using both the connection and the curvature
tensor [138].

135Henri Eyraud (1892–1994). Studied mathematics at the University of Paris and received his doctorate in 1926
with a thesis on “Metrical spaces and physico-geometrical theories”. From 1930 professor of mathematics at the
University of Lyon and director of the Institute of “Financial and Assurance-Sciences”. Perhaps he considered his
papers on the geometry of unified field theory as a sin of his youth: In Poggendorff, among the 33 papers listed, all
are from his later main interest.
136The geometry of paths involves a change of connection that preserves the geodesics when vectors are displaced

along themselves.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


58 Hubert F. M. Goenner

6 The Pursuit of Unified Field Theory by Einstein and His
Collaborators

6.1 Affine and mixed geometry

Already in July 1925 Einstein had laid aside his doubts concerning “the deepening of the geometric
foundations”. He modified Eddington’s approach to the extent that he now took both a non-
symmetric connection and a non-symmetric metric, i.e., dealt with a mixed geometry (metric-affine
theory):

“[...] Also, my opinion about my paper which appeared in these reports [i.e., Sitzungs-
berichte of the Prussian Academy, Nr. 17, p. 137, 1923], and which was based on
Eddington’s fundamental idea, is such that it does not present the true solution of the
problem. After an uninterrupted search during the past two years I now believe to have
found the true solution.”137 ([78], p. 414)

As in general relativity, he started from the Lagrangian L = ĝikRik, but now with ĝik and the
connection Γ l

kj being varied separately as independent variables. After some manipulations, the
variation with regard to the metric and to the connection led to the following equations:

− ∂gik
∂xl

+ grkΓ r
il + girΓ r

lk + gikφl + gilφk = 0, Rik = 0, (134)

i.e., 64 + 16 equations for the same number of variables. φk is an arbitrary covariant vector. The
asymmetric gik is related to ĝlm by

ĝir ĝ
jr = ĝriĝ

rj = δ ji , ĝik =
gik√
−g

. (135)

The three equations (134) and

∂ĝik

∂xk
− ∂ĝki

∂xk
= 0, Rik = 0, (136)

were the result of the variation. In order to be able to interpret the symmetric part of gik as
metrical tensor and its anti(skew)-symmetric part as the electromagnetic field tensor, Einstein put
φk = 0, i.e., overdetermined his system of partial differential equations. However, he cautioned:

“However, for later investigations (e.g., the problem of the electron) it is to be kept in
mind that the HAMILTONian principle does not provide an argument for putting φk
equal to zero.”138

In comparing Equation (134) with φk = 0 and Equation (47), we note that the expression does
not seem to correspond to a covariant derivative due to the + sign where a − sign is required.
But this must be due to either a calculational error, or to a printer’s typo because in the paper of
J. M. Thomas following Einstein’s by six months and showing that Einstein’s

“new equations can be obtained by direct generalisation of the equations of the gravita-
tional field previously given by him. The process of generalisation consists in abandon-
ing assumptions of symmetry and in adopting a definition of covariant differentiation
which is not the usual one, but which reduces to the usual one in case the connection
is symmetric.” ([346], p. 187)

137“[...] Auch von meiner in diesen Sitzungsberichten (Nr. 17, p. 137 1923) erschienenen Abhandlung, welche ganz
auf Eddingtons Grundgedanke basiert war, bin ich der Ansicht, dass sie die wahre Lösung des Problems nicht gibt.
Nach unablässigem Suchen in den letzten zwei Jahren glaube ich nun die wahre Lösung gefunden zu haben.”
138“Man wird jedoch für spätere Untersuchungen (z. B. Problem des Elektrons) im Sinne behalten müssen, dass

das HAMILTONsche Prinzip für das Verschwinden der φk keinen Anhaltspunkt liefert.”
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J. M. Thomas wrote Einstein’s Equation (134) in the form

gik/l = gikφl + gilφk, φl = − 2
n− 1

Ω r
rl , (137)

with Ω being the skew-symmetric part of the asymmetric connection H k
ij = Γ k

(ij) + Ω k
[ij], and gij

being the symmetric part of the asymmetric metric hij = g(ij)+ω[ij]. The two covariant derivatives
introduced by J. M. Thomas are gij,k = ∂gij

∂xk −grjΓ r
ik −girΓ r

jk and hij/k = ∂hij

∂xk −hrjH r
ik −hirH r

jk .
J. M. Thomas then could reformulate Equation (137) in the form

gij/l = g[ri]Ω r
jl + g[ir]Ω r

lj , (138)

and derive the result
gij,l + gjl,i + gli,j = 0 (139)

(see [346], p. 189).
After having shown that his new theory contains the vacuum field equations of general relativ-

ity for vanishing electromagnetic field, Einstein then proved that, in a first-order approximation,
Maxwell’s field equations result cum grano salis: Instead of Fik,l+Fli,k+Fkl,i = 0 he only obtained∑

∂
∂xl (Fik,l + Fli,k + Fkl,i) = 0.
This was commented on in a paper by Eisenhart who showed “more particularly what kind

of linear connection Einstein has employed” and who obtained “in tensor form the equations
which in this theory should replace Maxwell’s equations.” He then pointed to some difficulty in
Einstein’s theory: When identification of the components of the antisymmetric part φij of the
metric aij = gij + φij with the electromagnetic field is made in first order,

“they are not the components of the curl of a vector as in the classical theory, unless
an additional condition is added.” ([120], p. 129)

Toward the end of the paper Einstein discussed time-reversal; according to him, by it the sign
of the magnetic field is changed, while the sign of the electric field vector is left unchanged139.
As he wanted to obtain charge-symmetric solutions from his equations, Einstein now proposed to
change the roles of the magnetic fields and the electric fields in the electromagnetic field tensor.
In fact, the substitutions Ẽ → B̃ and B̃ → −Ẽ leave invariant Maxwell’s vacuum field equations
(duality transformations)140. Already Pauli had pointed to time-reflection symmetry in relation
with the problem of having elementary particles with charge ±e and unequal mass ([242], p. 774).

At first, Einstein seems to have been proud about his new version of unified field theory; he
wrote to Besso on 28 July 1925 that he would have liked to present him “orally, the egg laid recently,
but now I do it in writing”, and then explained the independence of metric and connection in his
mixed geometry. He went on to say:

“If the assumption of symmetry141 is dropped, the laws of gravitation and Maxwell’s
field laws for empty space are obtained in first approximation; the antisymmetric part
of ĝik is the electromagnetic field. This is surely a magnificent possibility which likely
corresponds to reality. The question now is whether this field theory is consistent

139Some extended discussion about the transformation of the field components with regard to time-reversal exist,
in which two differing points of view are expressed (cf. [169], pp. 91–92, which corresponds to Einstein’s view,
and [390]).
140Einstein’s proof that charge-symmetric solutions with the same mass are unavoidable, although to him a rather

negative feature of his unified field theories, later was interpreted as Einstein’s discovery of the concept of antimatter
([357, 371], p. 78, footnote 44). To me, this seems to be a case of whiggish historical hindsight. According to
Bargmann, Einstein’s lasting result is that he pointed out the importance of the discrete symmetry operations [8].
141i.e., the symmetry of the metrical tensor.
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with the existence of quanta and atoms. In the macroscopic realm, I do not doubt its
correctness.”142 ([327], p. 209)

We have noted before that a similar suggestion within a theory with a geometry built from an
asymmetric metric had been made, in 1917, by Bach alias Förster.

Yet, in the end, also this novel approach did not convince Einstein. Soon after the publication
discussed, he found his argument concerning charge symmetric solutions not to be helpful. The
link between the occurrence of solutions with both signs of the charge with time-symmetry of the
field equations induced him to doubt, if only for a moment, whether the endeavour of unifying
electricity and gravitation made sense at all:

“To me, the insight seems to be important that an explanation of the dissimilarity
of the two electricities is possible only if time is given a preferred direction, and if
this is taken into account in the definition of the decisive physical quantities. In this,
electrodynamics is basically different from gravitation; therefore, the endeavour to melt
electrodynamics with the law of gravitation into one unity, to me no longer seems to
be justified.”143 [79]

In a paper dealing with the field equations

Rik −
R

4
gik = −κTik, (140)

which had been discussed earlier by Einstein [70], and to which he came back now after Rainich144’s
insightful paper into the algebraic properties of both the curvature tensor and the electromagnetic
field tensor ([262, 263, 264, 265]), Einstein indicated that he had lost hope in the extension of
Eddington’s affine theory:

“That the equations (140) have received only little attention is due to two circum-
stances. First, the attempts of all of us were directed to arrive, along the path taken
by Weyl and Eddington or a similar one, at a theory melting into a formal unity the
gravitational and electromagnetic fields; but by lasting failure I now have laboured to
convince myself that truth cannot be approached along this path.”145 (Einstein’s italics;
[80], p. 100)

The new field equation was picked up by R. N. Sen of Kalkutta who calculated “the energy of an
electric particle” according to it [322].
142“Lässt man die Voraussetzung der Symmetrie fallen, so erhält man in erster Näherung die Gesetze der Gravita-

tion und die Maxwell’schen Feldgesetze für den leeren Raum, wobei der antisymmetrische Teil der ĝik das elektro-
magnetische Feld ist. Dies ist doch eine prachtvolle Möglichkeit, die doch der Realität entsprechen dürfte. Nun ist
die Frage, ob diese Feldtheorie mit der Existenz der Atome und Quanten vereinbar ist. Im Makroskopischen zweifle
ich nicht an ihrer Richtigkeit.”
143“Wesentlich scheint mir die Erkenntnis zu sein, dass eine Erklärung der Ungleichartigkeit der beiden Elek-

trizitäten nur möglich ist, wenn man der Zeit eine Ablaufrichtung zuschreibt und diese bei der Definition der
massgebenden physikalischen Grössen heranzieht. Hierin unterscheidet sich die Elektrodynamik von der Gravita-
tion; deshalb erscheint mir auch das Bestreben, die Elektrodynamik mit dem Gravitationsgesetz zu einer Einheit zu
verschmelzen, nicht mehr gerechtfertigt.”
144George Yuri Rainich (1886–1968). Of Russian origin. He studied mathematics at universities in Odessa,

Göttingen, and Munich, taking his final exam at the University of Kazan in 1913. He then taught at Kazan
and Odessa until 1922, when he came to the United States of America. He was a Johnston Scholar at Johns Hop-
kins University from 1923–1926 and then Professor of Mathematics at the University of Michigan in Ann Arbor,
U.S.A.
145“Dass die Gleichungen (140) noch wenig Beachtung gefunden haben, liegt an zwei Umständen. Erstens nämlich

waren unser aller Bestrebungen darauf gerichtet, auf dem von Weyl und Eddington eingeschlagenen oder einem
ähnlichen Weg zu einer Theorie zu gelangen, die das Gravitationsfeld und das elektromagnetische Feld zu einer for-
malen Einheit verschmilzt; durch mannigfache Misserfolge habe ich mich aber nun zu der Überzeugung durchgerun-
gen, dass man auf diesem Wege der Wahrheit nicht näher kommt.”
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In the same spirit as the one of his paper, Einstein said good bye to his theory in a letter to
Besso on Christmas 1925 in words similar to those in his letter in June:

“Regrettably, I had to throw away my work in the spirit of Eddington. Anyway, I now
am convinced that, unfortunately, nothing can be made with the complex of ideas by
Weyl–Eddington. The equations

Rik −
1
4
R gik = −κTik electromagnetic

I take as the best we have nowadays. They are 9 equations for the 14 variables gik
and γik. New calculations seem to show that these equations yield the motion of the
electrons. But it appears doubtful whether there is room in them for the quanta.”146

([327], p. 216)

According to the commenting note by Tonnelat, the 14 variables are given by the 10 components
of the symmetric part g(ik)147 of the metric and the 4 components of the electromagnetic vector
potential “the rotation of which are formed by the γ[ik]”148.

But even “the best we have nowadays” did not satisfy Einstein; half a year later, he expressed
his opinion in a letter to Besso:

“Also, the equation put forward by myself149,

Rik = gikflmf
lm − 1

2
flfkmg

lm

gives me little satisfaction. It does not allow for electrical masses free from singularities.
Moreover, I cannot bring myself to gluing together two items (as the l.h.s. and the r.h.s.
of an equation) which from a logical-mathematical point of view have nothing to do
with each other.”150 ([327], p. 230)

6.2 Further work on (metric-) affine and mixed geometry

Research on affine geometry as a frame for unified field theory was also carried on by mathemati-
cians of the Princeton school. Thus J. M. Thomas, after having given a review of Weyl’s, Einstein’s,
and Schouten’s approaches, said about his own work:

146“Meine Arbeit im Sinne Eddington’s habe ich leider verwerfen müssen. Ueberhaupt bin ich jetzt überzeugt,
dass mit dem Weyl–Eddington’schen Gedanken-Komplex leider nichts zu machen ist. Ich halte die Gleichung

Rik −
1

4
R gik = −κTik elektromagnetisch

[cf. Equation (140)] für das beste, was wir heute haben. Es sind 9 Gleichungen für die 14 Grössen gik und γik. Aus
den neuen Rechnungen scheint sich zu ergeben, dass diese Gleichungen die Bewegung der Elektronen liefern. Aber
es erscheint zweifelhaft, ob die Quanten darin Platz haben.”
147It remains unclear how these γ[ik] are embedded into the theory, possibly in the sense of Rainich. Einstein’s

paper practically excludes that they form the antisymmetric part of an asymmetric metric tensor.
148“dont les γ[ik] forment le rotationel”
149Einstein had a wrong factor: 1

2
instead of 1

4
.

150“Auch die ja von mir selbst aufgestellte Gleichung

Rik = gikflmf
lm −

1

2
flfkmg

lm

befriedigt mich wenig. Sie lässt keine singularitätenfreien elektrischen Massen zu. Ferner kann ich mich nicht dazu
entschliessen, zwei Sachen zusammenzuleimen (wie die rechte und die linke Seite einer Gleichung), die logisch-
mathematisch nichts miteinander zu schaffen haben.”
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“I show in the present paper that his [Einstein’s] new equations can be obtained by
a direct generalisation of the equations of the gravitational field previously given by
him [gij;k = 0;Rij = 0]. [...] In the final section I show that the adoption of the
ordinary definition of covariant differentiation leads to a geometry which includes as a
special case that proposed by Weyl as a basis for the electric theory; further that the
asymmetric connection for this special case is of the type adopted by Schouten for the
geometry at the basis of his electric theory.” ([346], p. 187)

We met J. M. Thomas’ paper before in section 6.1.
During the period considered here, a few physicists followed the path of Eddington and Einstein.

One who had absorbed Eddington’s and Einstein’s theories a bit later was Infeld151 of Warsaw152.
In January 1928, he followed Einstein by using an asymmetric metric the symmetric part γik of
which stood for the gravitational potential, the skew-symmetric part φik for the electromagnetic
field. However, he set the non-metricity tensor (of the symmetric part γ of the metric) Q k

ij = 0,
and assumed for the skew-symmetric part φ,

∇lφij = Jijl, (141)

with an arbitrary tensor Jijl. The electric current vector then is defined by J i = J ill where the
indices, as I assume, are moved with γik. In a weak-field approximation for the metric, Infeld’s
connection turned out to be L l

ik = {lik} + 1
2 (φ l

i,k + φ l
k,i + δlsφik,s). For field equations Infeld

postulated the (generalised) Einstein field equations in empty space, Kij = 0. He showed that, in
first approximation, he got what is wanted, i.e., Einstein’s and Maxwell’s equations [165].

Three months later, Infeld published a note in Comptes Rendus of the Parisian Academy in
which he now presented the exact connection as

L l
ik = {lik}+

α

2
(φ l
i, k + φ l

k, i + glsφik,s), (142)

where α is “an extremely small numerical factor”. By neglecting terms ∼ α2 he could gain both
Einstein’s field equation in empty space (94) and Maxwell’s equation, if the electric current vector is
identified with α−1(L l

il −L l
li ). Thus, he is back at vector torsion treated before by Schouten [298].

The Japanese physicist Hattori embarked on a metric-affine geometry derived purely from an
asymmetric metrical tensor hik = g(ik) + f[ik]. He defined an affine connection

L j
ik = {jik}+ gjl(fli,k + fli,k − fik,l), (143)

where gilglk = δik, and the Christoffel symbol is formed from g. The electromagnetic field was
not identified with fik by Hattori, but with the skew-symmetric part of the (generalised) Ricci
tensor formed from L j

ik . By introducing the tensor fijk := ∂fij

∂xk + ∂fjk

∂xi + ∂fki

∂xj , he could write the
(generalised) Ricci tensor as

Kik = Rik +
1
4
f n
im f m

kn −∇lf l
ik , (144)

where the covariant derivative ∇ is formed with the Levi-Civita connection of gij . The electromag-
netic field tensor Fik now is introduced through a tensor potential by Fik := ∇lf l

ik and leads to half
of “Maxwell’s” equations. In the sequel, Hattori started from a Lagrangian L = (gik + α2F ik)Kik

151Leopold Infeld (1889–1968). Born in Cracow, Poland. Studied at the University of Cracow and received his
doctorate in 1923. After teaching in Lwow/Lemberg, he became professor of applied mathematics at the University
of Toronto in 1938. Worked on unitary field theory and quantum electrodynamics, with van der Waerden on spinors,
worked with Born on non-linear electrodynamics, and with Einstein on equations of motion (“EIH paper”).
152For the correspondence between Einstein and Infeld, cf. J. Stachel’s essay in [330], pp. 477–497.
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with the constant α2 and varied, alternatively, with respect to gij and fij . He could write the
field equations in the form of Einstein’s, with the energy-momentum tensor of the electromagnetic
field Fik and a “matter” tensor M ik on the r.h.s., M ik being a complicated, purely geometrical
quantity depending on Kik,K, fikl, and Fikl. Fikl is formed from Fik as fikl from fik. From the
variation with regard to fik, in addition to Maxwell’s equation, a further field equation resulted,
which could be brought into the form

F ik =
2
3
∇lF ikl, (145)

i.e., fikl ∼ Fikl. Hattori’s conclusion was:

“The preceding equation shows that electrical charge and electrical current are dis-
tributed wherever an electromagnetic field exists.”153

Thus, the same problem obtained as in Einstein’s theory: A field without electric current or charge
density could not exist [155]154.

Infeld quickly reacted to Hattori’s paper by noting that Hattori’s voluminous calculations could
be simplified by use of Schouten’s Equation (39) of Section 2.1.2. As in Hattori’s theory two con-
nections are used, Infeld criticised that Hattori had not explained what his fundamental geometry
should be: Riemannian or non-Riemannian? He then gave another example for a theory allow-
ing the identification of the electromagnetic field tensor with the antisymmetric part of the Ricci
tensor: He displayed again the well-known connection with vector torsion used by Schouten [298]
without referring to Schouten’s paper [164]. He also claimed that Hattori’s Equation (145) is the
same as the one that had been deduced from Eddington’s theory by Einstein in the Appendix to
the German translation of Eddington’s book ([60], p. 367). All in all, Infeld’s critique tended to
deny that Hattori’s theory was more general than Einstein’s, and to point out

“that the problem of generalising the theory of relativity cannot be solved along a purely
formal way. At first, one does not see how a choice can be made among the various non-
Riemannian geometries providing us with the gravitational and Maxwell’s equations.
The proper world geometry which ought to lead to a unified theory of gravitation and
electricity can only be found by an investigation of its physical content.”155 ([164],
p. 811)

Infeld could as well have applied this admonishment to his own unified field theory discussed
above. Perhaps, he became irritated by comparing his expression for the connection (142) with
Hattori’s (145).

In June 1931, von Laue submitted a paper of the Genuese mathematical physicist Paolo Straneo
to the Berlin Academy [331]. In it Straneo took note of Einstein’s teleparallel geometry, but
decided to take another route within mixed geometry; he started with a symmetric metric and the
asymmetric connection

L j
ik = {jik}+ 2δjiψk (146)

with both non-vanishing curvature tensorKi
jkl = Rijkl+2δij(

∂ψl

∂xk−∂ψk

∂xl ) and torsion S j
ik = 2δj[iψk].

Thus, Straneo suggested a unified field theory with only vector torsion as Schouten had done 8
153“Die obige Gleichung zeigt, dass sich die elektrische Ladung und der elektrische Strom überall verteilen, wo das

elektromagnetische Feld existiert.”
154I have not yet been able to read the contributions from other Japanese authors [196, 163, 181].
155“das Problem der Verallgemeinerung der Relativitätstheorie nicht auf rein formalem Wege gelöst werden kann.

Man sieht zunächst nicht, wie die Wahl zwischen den verschiedenen nicht-Riemannschen Geometrien, die uns die
Gravitation- und die Maxwellschen Gleichungen ergeben, zu treffen ist. Die eigentliche Weltgeometrie, die zu einer
einheitlichen Theorie von Gravitation und Elektrizität führen soll, kann nur durch Untersuchung ihres physikalischen
Inhalts gefunden werden.”
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years earlier [298, 142]) without referring to him. The field equations Straneo wrote down, i. e.

Kik −
1
2
Kgik = −κTik + Ψik, (147)

where Tik is the symmetric and Ψik the antisymmetric part of the l.h.s., do not fulfill Einstein’s
conception of unification: Straneo kept the energy-momentum tensor of matter as an extraneous
object (including the electromagnetic field) as well as the electric current vector. The antisymmetric
part of (147) just is Ψik = ( ∂ψl

∂xk − ∂ψk

∂xl ); thus Ψik is identified with the electromagnetic field tensor,
and the electric current vector J i defined by Ψil

l = J i. Straneo wrote further papers on the
subject [332, 333].

By a remark of Straneo, that auto-parallels and geodesics have to be distinguished in an
affine geometry, the Indian mathematician Kosambi156 felt motivated to approach affine geom-
etry from the system of curves solving ẍi + αi(x, ẋ, t) with an arbitrary parameter t. He then
defined two covariant “vector-derivations” along an arbitrary curve and arrived at an (asymmet-
ric) affine connection. By this, he claimed to have made superfluous the five-vectors of Einstein and
Mayer157 [107]. This must be read in the sense that he could obtain the Einstein–Mayer equations
from his formalism without introducing a connecting quantity leading from the space of 5-vectors
to space-time [194].

Einstein, in his papers, did not comment on the missing metric compatibility in his theory
and its physical meaning. Due to this complication – for example even a condition of metric
compatibility would not have the physical meaning of the conservation of the norm of an angle
between vectors under parallel transport, and the further difficulty that much of the formalism
was very clumsy to manipulate; essential work along this line was done only much later in the
10940s and 1950s (Einstein, Einstein and Strauss, Schrödinger, Lichnerowicz, Hlavaty, Tonnelat,
and many others). In this work a generalisation of the equation for metric compatibility, i.e.,
Equation (47), will play a central role. The continuation of this research line will be presented in
Part II of this article.

6.3 Kaluza’s idea taken up again

6.3.1 Kaluza: Act I

Einstein became interested in Kaluza’s theory again due to O. Klein’s paper concerning a relation
between “quantum theory and relativity in five dimensions” (see Klein 1926 [184], received by
the journal on 28 April 1926). Einstein wrote to his friend and colleague Paul Ehrenfest on 23
August 1926: “Subject Kaluza, Schroedinger, general relativity”, and, again on 3 September 1926:
“Klein’s paper is beautiful and impressive, but I find Kaluza’s principle too unnatural.” However,
less than half a year later he had completely reversed his opinion:

“It appears that the union of gravitation and Maxwell’s theory is achieved in a com-
pletely satisfactory way by the five-dimensional theory (Kaluza–Klein–Fock).” (Ein-
stein to H. A. Lorentz, 16 February 1927)

156Damodar D. Kosambi (1907–1966). Of Indian origin; born in Goa he moved to America in 1918 with his learned
father and graduated from Harvard University in 1926 in mathematics, history and languages. Taught at the Muslim
University of Aligarh and, from 1932, at Ferguson College, Pune. Mathematician, historian, and Sanskrit scholar.
157Walther Mayer (1887–1948). Studied mathematics at the Federal Institute of Technology in Zürich and at the

University of Vienna where he wrote his dissertation and became a Privatdozent (lecturer) with the title “professor”.
He had made himself a name in topology (“Mayer–Vietoris sequences”), and worked also in differential geometry
(well-known textbook “Duschek–Mayer” on differential geometry). In 1929 he became Einstein’s assistant with
the explicit understanding that he work with him on distant parallelism. It seems that Mayer was appreciated
much by Einstein and, despite being in his forties, did accept this role as a collaborator of Einstein. After coming
to Princeton with Einstein in 1933, he got a position at the Mathematical Institute of Princeton University and
became an associate of the Institute for Advanced Study. Wrote a joint paper with T. Thomas on “Field of parallel
vectors in nonanalytic manifolds in the large.” Mayer died in 1948.
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On the next day (17 February 1927), and ten days later Einstein was to give papers of his own in
front of the Prussian Academy in which he pointed out the gauge-group, wrote down the geodesic
equation, and derived exactly the Einstein–Maxwell equations – not just in first order as Kaluza
had done [81, 82]. He came too late: Klein had already shown the same before [184]. Einstein
himself acknowledged indirectly that his two notes in the report of the Berlin Academy did not
contain any new material. In his second communication, he added a postscript:

“Mr. Mandel brings to my attention that the results reported by me here are not new.
The entire content can be found in the paper by O. Klein.”158

He then referred to the papers of Klein [184, 185] and to “Fochs Arbeit” which is a paper by
Fock159 1926 [130], submitted three months later than Klein’s paper. That Klein had published
another important clarifying note in Nature, in which he closed the fifth dimension, seems to have
escaped Einstein160 [183]. Unlike in his paper with Grommer, but as in Klein’s, Einstein, in his
notes, applied the “sharpened cylinder condition”, i.e., dropped the scalar field. Thus, the three
of them had no chance to find out that Kaluza had made a mistake: For g55 6= const., even in
first approximation the new field will appear in the four-dimensional Einstein–Maxwell equations
([145], p. 5).

Mandel161 of Leningrad was not given credit by Einstein although he also had rediscovered by
a different method some of O. Klein’s results [215]. In a footnoote, Mandel stated that he had
learned of Kaluza’s (whom he spelled “Kalusa”) paper only through Klein’s article. He started
by embedding space-time as a hypersurface x5 = const. into M5, and derived the field equations
in space-time by assuming that the five-dimensional curvature tensor vanishes; by this procedure
he obtained also a matter-energy tensor “closely linked to the second fundamental form of this
hypersurface”. From the geodesics in M5 he derived the equations of motion of a charged point
particle. One of the two additional terms appearing besides the Lorentz force could be removed
by a weakness assumption; as to the second, Mandel opinioned

“that the experimental discovery of the second term appears difficult, yet perhaps not
entirely impossible.” ([215], p. 145)

As to Fock’s paper, it is remarkable because it contains, in nuce, the coupling of the Schrödinger
wave function ψ and the electromagnetic potential by the gauge transformation ψ = ψ0 e

2πip/h,
where h is Planck’s constant and p “a new parameter with the unit of the quantum of action” [130].
In Fock’s words:

“The importance of the additional coordinate parameter p seems to lie in the fact that it
causes the invariance of the equations [i.e., the relativistic wave equations] with respect
to addition of an arbitrary gradient to the 4-potential.”162 ([130], p. 228)

Fock derived the general relativistic wave equation and the equations of motion of a charged point
particle; the latter is identified with the null geodesics of M5. Neither Mandel nor Fock used the
“sharpened cylinder condition” (110).
158“Herr Mandel macht mich darauf aufmerksam, dass die von mir hier mitgeteilten Ergebnisse nicht neu sind.

Der ganze Inhalt findet sich in der Arbeit von O. Klein.”
159Vladimir Aleksandrovich Fo(c)k (1898–1974). Born in St. Petersburg (renamed later Petrograd and Leningrad).

Studied at Petrograd University and spent his whole carrier at this University. Member of the USSR Academy of
Sciences. Fundamental contributions to quantum theory (Fock space, Hartree–Fock method); also worked in and
defended general relativity.
160The correspondence is taken from Pais [240] who, in his book, expresses his lack of understanding as to why

Einstein published these two papers at all.
161Heinrich Mandel (1898– ). From 1928 lecturer at the University of Leningrad, and from 1931 research work at

the Physics Institute of this university.
162“Die Bedeutung des überzähligen Koordinatenparameters scheint nämlich gerade darin zu liegen, dass er die

Invarianz der Gleichungen [i.e., the relativistic wave equations] in bezug auf die Addition eines beliebigen Gradienten
zum Viererpotential bewirkt.”
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A main motivation for Klein was to relate the fifth dimension with quantum physics. From a
postulated five-dimensional wave equation

aik
(

∂2U

∂xi∂xk
− {ikr}

∂U

∂xr

)
= 0, i, k,= 1, . . . , 5 (148)

and by neglecting the gravitational field, he arrived at the four-dimensional Schrödinger equation
after insertion of the quantum mechanical differential operators − ih

2π
∂
∂xi . It was Klein’s papers

and the magical lure of a link between classical field theory and quantum theory that raised
interest in Kaluza’s idea – seven years after Kaluza had sent his manuscript to Einstein. Klein
acknowledged Mandel’s contribution in his second paper received on 22 October 1927, where he
also gave further references on work done in the meantime, but remained silent about Einstein’s
papers [188]. Likewise, Einstein did not comment on Klein’s new idea of “dimensional reduction”
as it is now called and which justifies Klein’s name in the “Kaluza–Klein” theories of our time.
By this, the reduction of five-dimensional equations (as e.g., the five-dimensional wave equation)
to four-dimensional equations by Fourier decomposition with respect to the new 5th spacelike
coordinate x5, taken as periodic with period L, is understood:

ψ(x, x5) =
1√
L

Σnψn(x), einx
5/R5

with an integer n. Klein had only the lowest term in the series. The 5th dimension is assumed
to be a circle, topologically, and thus gets a finite linear scale: This is at the base of what now is
called “compactification”. By adding to this picture the idea of de Broglie waves, Klein brought
in Planck’s constant and determined the linear scale of x5 to be unmeasurably small (∼ 10−30).
From this, the possibility of “forgetting” the fifth dimension arose which up to now has not been
observed.

In his papers, Einstein took over Klein’s condition g55 = 1, which removed the additional
scalar field admitted by the theory. It was Reichenbächer who apparently first tried to perform
the projection into space-time of the most general five-dimensional metric, and without using the
cylinder condition (109):

“Now, a rather laborious calculation of the five-dimensional curvature quantities in
terms of a four-dimensional submanifold contained in it has shown to me also in the
general case (g55 6= const., dependence of the components of the f u n d am e n t a l [ten-
sor] of x5 is admitted) that the c h a r a c t e r i s t i c properties of the field equations are
then conserved as well, i.e., they keep the form

Rik − 1
2
gikR = T ik,

∂
√
gF ik

∂xk
= si,

only the T ik contain further terms besides the electromagnetic energy tensor Sik, and
the quantities collected in si do not vanish. [...] The appearance of the new terms on
the right hand sides could even be welcomed in the sense that now the field equations
are obtained not only for a field point free of matter and charge163.”164 ([275], p. 426)

163My italics.
164“Nun hat mir die allerdings reichlich mühsehlige Umrechnung der fünfdimensionalen Krümmungsgrössen auf

eine in ihr enthaltene vierdimensionale Untermannigfaltigkeit auch im allgemeinen Falle (g55 6= const., Abhängigkeit
der F u n d am e n t a l komponenten auch von x5 zugelassen) gezeigt, dass die w e s e n t l i c h e n Eigenschaften der
Feldgleichungen auch dann erhalten bleiben, d.h. diese behalten die Gestalt:

Rik −
1

2
gikR = T ik,

∂
√
gF ik

∂xk
= si,
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Here, in nuce, is already contained what more than a decade later Einstein and Bergmann worked
out in detail [102].

It is likely that Reichenbächer had been led to this excursion into five-dimensional space, an
idea which he had rejected before as unphysical, because his attempt to build a unified field theory
in space-time through the ansatz for the metric γik = gik − ε2φiφk with φk the electromagnetic
4-potential, had failed. Beyond incredibly complicated field equations nothing much had been
gained [274]. Reichenbächer’s ansatz is well founded: As we have seen in Section 4.2, due to the
violation of covariance in M5, γik transforms as a tensor under the reduced covariance group.

Even L. de Broglie became interested in Kaluza’s “bold but very beautiful theory” and red-
erived Klein’s results his way [46], but not without getting into a squabble with Klein, who felt
misunderstood [187, 47]. He also suggested that one should not accept the cylinder condition,
a suggestion looked into by Darrieus who introduced an electrical 5-potential and 5-current, and
deduced Maxwell’s equations from the five-dimensional homogeneous wave equation and the five-
dimensional equation of continuity [43].

In 1929 Mandel tried to “axiomatise” the five-dimensional theory: His two axioms were the
cylinder condition (109) and its sharpening, Equation (110). He then weakened the second as-
sumption by assuming that “an objective meaning does not rest in the gik proper, but only in
their quotients”, an idea he ascribed to O. Klein and Einstein. He then discussed conformally
invariant field equations, and tried to relate them to equations of wave mechanics [219].

Klein’s lure lasted for some years. In 1930, N. R. Sen claimed to have investigated the “Kepler-
problem for the five-dimensional wave equation of Klein”. What he did was to calculate the energy
levels of the hydrogen atom (as a one particle-system) with the general relativistic wave equation
in space-time (148) with aik = γik, where γik = gik + α2γ55 is the metric on space-time following
from the 5-metric γαβ by dx5 = 0. For gik he took the Reissner–Nordström solution and did not
obtain a discrete spectrum [323]. He continued his approach by trying to solve Schrödinger’s wave
equation [324]

gik
(

∂2u

∂xi∂xk
− {ikr}

∂u

∂xr

)
= −4π2

h2
m2

0c
2u.

Presently, the different contributions of Kaluza and O. Klein are lumped together by most
physicists into what is called “Kaluza–Klein theory”. An early criticism of this unhistorical attitude
has been voiced in [209].

6.3.2 Kaluza: Act II

Four years later, Einstein returned to Kaluza’s idea. Perhaps, he had since absorbed Mandel’s
ideas which included a projection formalism from the five-dimensional space to space-time [215,
216, 217, 218].

In a paper with his assistant Mayer, Einstein now presented Kaluza’s approach in the form
of an implicit projective four-dimensional theory, although he did not mention the word “projec-
tive” [107]:

“Psychologically, the theory presented here connects to Kaluza’s well-known theory;
however, it avoids extending the physical continuum to one of five dimensions.”165

In the eyes of Einstein, by avoiding the artificial cylinder condition (109), the new method removed
a serious objection to Kaluza’s theory.

nur enthalten die T ik ausser den Komponenten Sik des elektromagnetischen Energietensors noch weitere Glieder,
und die zu si zusammengefassten Grössen verschwinden nicht. [...] Man könnte sogar das Auftreten der neuen
Glieder auf den rechten Seiten von dem Standpunkt aus begrüssen, dass nunmehr die Feldgleichungen nicht nur für
einen materie- und ladungsfreien Feldpunkt geliefert werden.”
165“Die hier dargestellte Theorie knüpft psychologisch an die bekannte Theorie von KALUZA an, vermeidet es

aber, das physikalische Kontinuum zu einem solchen von fünf Dimensionen zu erweitern.”
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Another motivation is also put forward: The linearity of Maxwell’s equations “may not cor-
respond to reality”; thus, for strong electromagnetic fields, Einstein expected deviations from
Maxwell’s equations. After a listing of all the shortcomings of Kaluza’s theory, the new approach
is introduced: At every event a five-dimensional vector space V5 is affixed to space-time V4, and
“mixed” tensors γ k

ι are defined linking the tangent space of space-time V4 with a V5 such that

gικγ
ι
lγ
κ
m = glm, (149)

where glm is the metric tensor of V4, and gικ a non-singular, symmetric tensor on V5 with ι, κ =
1, . . . , 5, and k, l = 1, . . . , 4166. Indices are raised and lowered with the metrics of V5 or V4,
respectively. There exists a “preferred direction of V5” defined by γ k

ι A
ι = 0, and which is the

normal to a “preferred plane” γ k
ι ωk = 0167. A consequence then is

γσkγ
τk = γ k

σ γ
τ
k = δ τσ −AσA

τ . (150)

A covariant derivative for five-vectors in V4 is defined with a “three-index-symbol” Γιπl with two
indices in V5, and one in V4 standing in for the connection coefficients:

+

∇l Xι =
∂Xι

∂xl
+ Γ ι

π Xπ. (151)

The covariant derivative of 4-vectors is defined as usual,

∇lXi =
∂Xi

∂xl
+ {ijl}Xj , (152)

where {ijl} is calculated from the metric of V4 as given in Equation (149). Both covariant derivatives
are abbreviated by the same symbol A;k. The covariant derivative of tensors with both indices
referring to V5 and those referring to V4, is formed correspondingly. In this context, Einstein and
Mayer mention an extension of absolute differential calculus by “WAERDEN and BARTOLOTTI”
without giving any reference to their respective papers. They may have had in mind van der
Waerden’s [368] and Bortolotti168’s [24] papers. The autoparallels of V5 lead to the exact equations
of motion of a charged particle, not the geodesics of V4.

Einstein and Mayer made three basic assumptions:

gικ; l = 0,
γ k
ι ; l = AιFkl, (153)
Fkl = −Flk,

where Aι is the preferred direction and Fkl an arbitrary 2-form, later to be interpreted as the
electromagnetic field tensor. From them Aσ;l = γ k

σ Flk follows. They also noted that a symmetric
tensor Fkl could have been interpreted as the second fundamental form, and the formalism would
then be the same as local isometric embedding of V4 into V5.

Einstein and Mayer introduced what they called “Fünferkrümmung” (5-curvature) via the
three-index symbol given above by

Pσιkl = ∂kΓ σ
ιl − ∂lΓ σ

ιk + Γ σ
τk Γ τ

ιl − Γ σ
τl Γ τ

ιk . (154)
166Greek indices run from 1 to 5, Latin indices from 1 to 4.
167In special coordinates, Aι ∗

= δι
5.

168Enea Bortolotti (1896–1934). Born in Rome. After a break during the First World War, he received his Ph.D.
in 1920 at Pisa; he was particularly influenced by L. Bianchi. After teaching at the medical school, he became
professor of geometry at the Univerity of Cagliari in 1928. From there he moved on to the same position at the
University of Florence in 1934. Despite his premature death, Bortolotti published about a hundred papers, notably
in differential geometry.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


On the History of Unified Field Theories 69

It is related to the Riemannian curvature Rrmlk of V4 by

Pσιkl γσm = Aι(Fmk;l − Fml;k) + γιr(Rrmlk + FmkF
r
l − FmlF

r
k ), (155)

and
PσιklAσ = γιr(F r

k ; l − F r
l ; k). (156)

From (154), by transvection with γτk, the 5-curvature itself appears:

P τιkl = γιrA
τ (F r

k;l − F r
l;k) + γτrAι(Frk;l − Frl;k) + γιrγ

τs(Rrslk + FskF
r
l − FslF

r
k ). (157)

By contraction, Pιk := γ r
τ P

τ
ιrk and P := γιkPιk. Two new quantities are introduced:

(1) Uιk := Pιk − 1
4 (P + R), where R is the Ricci scalar of the Riemannian curvature tensor of

V4, and

(2) the tensor Nklm := F{kl;m}
169.

It turns out that P = R− FkpF
kp.

The field equations put forward in the paper by Einstein and Mayer now are

Uιk = 0, Nklm = 0, (158)

and turn out to be exactly the Einstein–Maxwell vacuum field equations. Thus, by another for-
malism, Einstein and Mayer rederived what Klein had obtained in his first paper on Kaluza’s
theory [184].

The authors’ conclusion is:

“From the theory presented here, the equations for the gravitational and the elec-
tromagnetic fields follow effortlessly by a unifying method; however, up to now, [the
theory] does not bring any understanding for the way corpuscles are built, nor for the
facts comprised by quantum theory.”170 ([107], p. 19)

After this paper Einstein wrote to Ehrenfest in a letter of 17 September 1931 that this theory “in
my opinion definitively solves the problem in the macroscopic domain” ([240], p. 333). Also, in a
lecture given on 14 October 1931 in the Physics Institute of the University of Wien, he still was
proud of the 5-vector approach. In talking about the failed endeavours to reconcile classical field
theory and quantum theory (“a cemetery of buried hopes”) he is reported to have said:

“Since 1928 I also tried to find a bridge, yet left that road again. However, following an
idea half of which came from myself and half from my collaborator, Prof. Dr. Mayer,
a startlingly simple construction became successful. [...] According to my and Mayer’s
opinion, the fifth dimension will not show up. [...] according to which relationships be-
tween a hypothetical five-dimensional space and the four-dimensional can be obtained.
In this way, we succeeded to recognise the gravitational and electromagnetic fields as
a logical unity.”171 [96]

169The curly bracket was introduced in Equation (29).
170“Die hier dargelegte Theorie liefert die Gleichungen des Gravitationsfeldes und des elektromagnetischen Feldes

zwanglos auf einheitlichem Wege; dagegen liefert sie vorläufig kein Verständnis für den Bau der Korpuskeln sowie
für die in der Quantentheorie zusammengefassten Tatsachen.”
171“Auch ich habe seit 1928 einen Ausgleich zu finden gesucht, diesen Weg aber wieder verlassen. Dagegen

gelang eine verblüffend einfache Konstruktion auf Grund einer Idee, die zur Hälfte von mir, zur Hälfte von meinem
Mitarbeiter Prof. Dr. Mayer stammt. [...] Nach meiner und Mayers Auffassung tritt die fünfte Dimension nicht in
Erscheinung. [...] demzufolge man Beziehungen zwischen einem hypothetischen fünfdimensionalen Raum und dem
vierdimensionalen aufstellen kann. Auf diese Weise gelang es, das Gravitations- und das elektromagnetische Feld
als logische Einheit zu erfassen.”
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In his letter to Besso of 30 October 1931, Einstein seemed intrigued by the mathematics used in
his paper with Mayer, but not enthusiastic about the physical content of this projective formulation
of Kaluza’s unitary field theory:

“The only result of our investigation is the unification of gravitation and electricity,
whereby the equations for the latter are just Maxwell’s equations for empty space.
Hence, no physical progress is made, [if at all] at most only in the sense that one can
see that Maxwell’s equations are not just first approximations but appear on as good
a rational foundation as the gravitational equations of empty space. Electrical and
mass-density are non-existent; here, splendour ends; perhaps this already belongs to
the quantum problem, which up to now is unattainable from the point of view of field
[theory] (in the same way as relativity is from the point of view of quantum mechanics).
The witty point is the introduction of 5-vectors aσ in fourdimensional space, which are
bound to space by a linear mechanism. Let as be the 4-vector belonging to aσ; then
such a relation as = γsσa

σ obtains. In the theory equations are meaningful which hold
independently of the special relationship generated by γsσ. Infinitesimal transport of aσ

in fourdimensional space is defined, likewise the corresponding 5-curvature from which
spring the field equations.”172 ([327], pp. 274–275)

In his report for the Macy-Foundation, which appeared in Science on the very same day in
October 1931, Einstein had to be more optimistic:

“This theory does not yet contain the conclusions of the quantum theory. It furnishes,
however, clues to a natural development, from which we may anticipate further de-
velopments in this direction. In any event, the results thus far obtained represent a
definite advance in knowledge of the structure of physical space.” ([94], p. 439)

Unfortunately, as in the case of his previous papers on Kaluza’s theory, Einstein came in
only second: Veblen had already worked on projective geometry and projective connections for
a couple of years [374, 376, 375]. One year prior to Einstein’s and Mayer’s publication, with his
student Hoffmann173, he had suggested an application to physics equivalent to the Kaluza–Klein
theory [381, 162]. However, according to Pauli, Veblen and Hoffmann had spoiled the advantage
of projective theory:

“But these authors choose a formulation that, due to an unnecessary specialisation of
the coordinate system, prefers the fifth coordinate relative to the remaining [coordi-
nates] in much the same way as this had happened in Kaluza–Klein theory by means
of the cylinder condition [...].”174 ([248], p. 307)

172“Das Einzige, was in unserer Untersuchung herauskommt, ist die Vereinigung von Gravitation und Elektrizität,
wobei die Gleichungen der letzteren genau die (relativistisch geschriebenen) Maxwell’schen des leeren Raumes sind.
Es ist also kein physikalischer Fortschritt dabei, höchstens nur insoweit als man eben sieht, dass die Maxwell’schen
Gleichungen nicht nur erste Näherungen sind, sondern ebensogut rationell begründet erscheinen wie die Gravita-
tionsgleichungen des leeren raumes. Elektrische und Massendichte gibt es hierbei nicht; da hört die Herrlichkeit auf;
dies gehört wohl schon zum Quantenproblem, das bis jetzt vom Feldstandpunkt unerreichbar ist (ebensowenig wie
die Relativität vom Standpunkt der Quantenmechanik aus). Der Witz liegt in der Einführung von Fünfervektoren
aσ im vierdimensionalen Raum, die an den Raum durch einen linearen Mechanismus gebunden sind. as sei der
zu aσ gehörende Vierervektor, dann gibt es eine solche Beziehung aσ = γs

σa
σ . Sinnvoll sind dann in der Theorie

solche Gleichungen, welche unabhängig von der durch γs
σ geschaffenen besonderen Beziehung gelten. Infinitesimale

Verschiebung von (aσ) im vierdim. Raum wird definiert, ebenso die dazu gehörige Fünferkrümmung und diese liefert
dann die Feldgleichungen.”
173Banesh Hoffmann (1906–1986). Born in Richmond, England. Studied mathematics and theoretical physics at

Oxford University and received his doctorate in 1929. Became an assistant at Princeton University and worked
there with Einstein in 1932–1935. (His name supplied the “H” in the EIH paper.) From 1939 professor at Queens
College in New York. His scientific interests were in relativity theory, tensor analysis, and quantum theory.
174“Diese Autoren wählen aber eine Formulierung, die infolge unnötiger Spezialisierung des Koordinatensystems
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By using the idea that an affine (n + 1)-space can be represented by a projective n-space [413],
Veblen and Hoffmann avoided the five dimensions of Kaluza: There is a one-to-one correspondence
between the points of space-time and a certain congruence of curves in a five-dimensional space
for which the fifth coordinate is the curves’ parameter, while the coordinates of space-time are
fixed. The five-dimensional space is just a mathematical device to represent the events (points) of
space-time by these curves. Geometrically, the theory of Veblen and Hoffmann is more transparent
and also more general than Einstein and Mayer’s: It can house the additional scalar field inherent
in Kaluza’s original approach. Thus, Veblen and Hoffmann also gained the Klein–Gordon equa-
tion in curved space, i.e., an equation with the Ricci scalar R appearing besides its mass term.
Interestingly, the curvature term reads as 5

27R ([381], p. 821). In his note, Hoffmann generalised
the formalism such as to include Dirac’s equations (without gravitation), although some technical
difficulties remained. Nevertheless, Hoffman remained optimistic:

“There is thus a possibility that the complete system will constitute an improved uni-
fication within the relativity theory of the gravitational, electromagnetic and quantum
aspects of the field.” ([162], p. 89)

In his book, Veblen emphasised

“[...] that our theory starts from a physical and geometrical point of view totally
different from KALUZA’s. In particular, we do not demand a relationship between
electrical charge and a fifth coordinate; our theory is strictly four-dimensional.”175

[379]

Shortly after Einstein’s and Mayer’s paper had appeared, Schouten and van Dantzig also proved
that the 5-vector formalism of this paper can be brought into a projective form [314].

In a second note, Einstein and Mayer extended the 5-vector-formalism to include Maxwell’s
equations with a non-vanishing current density [109]. Of the three basic assumptions of the
previous paper, the second had to be given up. The expression in the middle of Equation (153) is
replaced by

γιk;l = AιFkl + γιrVrlk, (159)

where, again, Fkl = −Flk, and the new Vrlk = Vrkl are arbitrary tensors. The field equations
were set up according to the method of the first paper; now the 5-curvature scalar was P =
R − FkpF

kp − VrqpV
rpq. It also turned out that V rpq = εlrpqφl with φl = ∂φ

∂xl , i.e., that the
introduction of Vrpq brought only one additional variable. The electric current density became
∼ VprqF

rq.
In the last paragraph, the compatibility of the equations was proven, and at the end Cartan

was acknowledged:

“We note that Mr. Cartan, in a general and very illuminating investigation, has anal-
ysed more deeply the property of systems of differential equations that has been termed
by us ‘compatibility’ in this paper and in previous papers.”176 [37]

At about the same time as Einstein and Mayer wrote their second note, van Dantzig continued
his work on projective geometry [361, 362, 360]. He used homogeneous coordinates Xα, with

die fünfte Koordinate in ganz ähnlicher Weise vor den übrigen auszeichnet wie dies bei Kaluza–Klein durch die
Zylinderbedingung geschehen war [...].”
175“[...] dass unsere Theorie von ganz anderen physikalischen und geometrischen Gesichtspunkten als die KALUZA-

sche ausgeht. Insbesondere fordern wir kein Verhältnis zwischen elektrischer Ladung und einer fünften Koordinate;
unsere Theorie ist vielmehr durchaus vierdimensional.”
176“Wir bemerken, dass Herr Cartan in einer allgemeinen und überaus aufklärenden Untersuchung jene Eigenschaft

von Differentialgleichungssystemen tiefer analysiert hat, welche von uns in dieser Arbeit und in früheren Arbeiten
als ‘Kompatibilität’ bezeichnet wurde.”
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α = 1, . . . , 5, and the invariant gαβXαXβ , and introduced projectors and covariant differentiation
(cf. Section 2.1.3). Together with him, Schouten wrote a series of papers on projective geometry
as the basis of a unified field theory [293, 316, 315, 317]177, which, according to Pauli, combine

“all advantages of the formulations of Kaluza–Klein and Einstein–Mayer while avoiding
all their disadvantages.” ([248], p. 307)

Both the Einstein–Mayer theory and Veblen and Hoffmann’s approach turned out to be subcases
of the more general scheme of Schouten and van Dantzig intending

“to give a unification of general relativity not only with Maxwell’s electromagnetic
theory but also with Schrödinger’s and Dirac’s theory of material waves.” ([317], p. 271)

In this paper ([317], p. 311, Figure 2), we find an early graphical representation of the parametrised
set of all possible theories of a kind178. The formalism of Schouten and van Dantzig allows for
taking the additional dimension to be timelike; in their physical applications the metric of space-
time is taken as a Lorentz metric; torsion is also included in their geometry.

Pauli, with his student J. Solomon179, generalised Klein, and Einstein and Mayer by allowing
for an arbitrary signature in an investigation concerning “the form that take Dirac’s equations in
the unitary theory of Einstein and Mayer”180 [252]. In a note added after proofreading, the authors
showed that they had noted Schouten and Dantzig’s papers [293, 316]. The authors pointed out
that

“[...] even in the absence of gravitation we must pay attention to a difference between
Dirac’s equation in the theory of Einstein and Mayer, and Dirac’s equation as it is
written out, usually.”181 ([252], p. 458)

The second order wave equation iterated from their form of Dirac’s equation, besides the spin term
contained a curvature term − 1

4R, with the numerical factor different from Veblen’s and Hoffmann’s.
In a sequel to this publication, Pauli and Solomon corrected an error:

“We examine from a general point of view the theory of spinors in a five-dimensional
space. Then we discuss the form of the energy-momentum tensor and of the current
vector in the theory of Einstein–Mayer.[...] Unfortunately, it turned out that the con-
siderations of §in the first part are marred by a calculational error. . . This has made
it necessary to introduce a new expression for the energy-momentum tensor and [...]
likewise for the current vector [...].”182 ([253], p. 582)

In the California Institute of Technology, Einstein’s and Mayer’s new mathematical technique
found an attentive reader as well; A. D. Michal and his co-author generalised the Einstein–Mayer
5-vector-formalism:

177van Dantzig ventured even into physics; he wrote a paper on Miller’s repeat of Michelson’s experiment but
published it in a mathematics journal [359].
178A similar picture is already given in [315], p. 666, Figure 2
179J. Solomon came from Copenhagen to Zürich on a Rockerfeller grant.
180“la forme que prennent les équations de Dirac dans la théorie unitaire d’Einstein et Mayer”
181“[...] même en l’absence de gravitation nous devons nous attendre à une différence entre l’equation de Dirac

dans la théorie d’Einstein et Mayer et l’équation de Dirac telle qu’elle est écrite habituellement.”
182“On y examine d’un point de vue général la théorie des spinors dans l’espace à cinq dimensions. On discute

ensuite la forme du tenseur énergie-quantité de mouvement et du vecteur de courant dans la théorie d’Einstein et
Mayer.[...] Malheureusement il s’est montré que les considérations du §7 de la première partie sont entachées d‘une
faute de calcul. . . Ceci a rendu nécessaire l‘introduction d’une nouvelle expression pour le tenseur énergie-quantité
de mouvement et [...] également pour le vecteur de courant [...].”
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“The geometry considered by Einstein and Mayer in their ‘Unified field theory’ leads to
the consideration of an n-dimensional Riemannian space Vn with a metric tensor gij ,
to each point of which is associated an m-dimensional linear vector space Vm, (m > n),
for which vector spaces a general linear connection is defined. For the general case
(m − n 6= 1) we find that the calculation of the m − n ‘exceptional directions’ is not
unique, and that an additional postulate on the linear connection is necessary. Several
of the new theorems give new results even for n = 4, m = 5, the Einstein–Mayer case.”
[227]

Michal had come from Cartan and Schouten’s papers on group manifolds and the distant paral-
lelisms defined on them [226]. H. P. Robertson found a new way of applying distant parallelism:
He studied groups of motion admitted by such spaces, e.g., by Einstein’s and Mayer’s spherically
symmetric exact solution [281] (cf. Section 6.4.3).

Cartan wrote a paper on the Einstein–Mayer theory as well ([29], an article published only
posthumously) in which he showed that this could be interpreted as a five-dimensional flat geometry
with torsion, in which space-time is embedded as a totally geodesic subspace.

6.4 Distant parallelism

The next geometry Einstein took as a fundament for unified field theory was a geometry with
Riemannian metric, vanishing curvature, and non-vanishing torsion, named “absolute parallelism”,
“distant parallelism”, “teleparallelism, or “Fernparallelismus”. The contributions from the Levi-
Civita connection and from contorsion183 in the curvature tensor cancel. In place of the metric,
tetrads are introduced as the basic variables. As in Euclidean space, in the new geometry these
4-beins can be parallely translated to retain the same fixed directions everywhere. Thus, again,
a degree of absoluteness is re-introduced into geometry in contrast to Weyl’s first attempt at
unification which tried to soften the “rigidity” of Riemannian geometry.

The geometric concept of “fields of parallel vectors” had been introduced on the level of ad-
vanced textbooks by Eisenhart as early as 1925–1927 [119, 121] without use of the concept of
a metric. In particular, the vanishing of the (affine) curvature tensor was given as a necessary
and sufficient condition for the existence of D linearly independent fields of parallel vectors in a
D-dimensional affine space ([121], p. 19).

6.4.1 Cartan and Einstein

As concerns the geometry of “Fernparallelism”, it is a special case of a space with Euclidean
connection introduced by Cartan in 1922/23 [32, 31, 33]. Pais let Einstein “invent” and “discover”
distant parallelism, and he states that Einstein “did not know that Cartan was already aware of
this geometry” ([240], pp. 344–345). However, when Einstein published his contributions in June
1928 [84, 83], Cartan had to remind him that a paper of his introducing the concept of torsion had

“appeared at the moment at which you gave your talks at the Collège de France. I
even remember having tried, at Hadamard’s place, to give you the most simple example
of a Riemannian space with Fernparallelismus by taking a sphere and by treating as
parallels two vectors forming the same angle with the meridians going through their
two origins: the corresponding geodesics are the rhumb lines.”184 (letter of Cartan to
Einstein on 8 May 1929; cf. [50], p. 4)

183a linear combination of torsion appearing in the connection besides the metric contribution (cf. Equation (43)).
184“Parue au moment oú vous faisiez vos conférences au Collège de France; je me rappelle même avoir, chez

M. Hadamard, essayé de vous donner l’exemple le plus simple d’un espace de Riemann avec Fernparallelismus en
prenant une sphère et en regardand commes paralléles deux vecteurs faisant le même angle avec les méridiennes qui
passent par leurs deux origines: les géodésiques correspondantes sont les loxodromies.”
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This remark refers to Einstein’s visit in Paris in March/April 1922. Einstein had believed to
have found the idea of distant parallelism by himself. In this regard, Pais may be correct. Every
researcher knows how an idea, heard or read someplace, can subconsciously work for years and
then surface all of a sudden as his or her own new idea without the slightest remembrance as to
where it came from. It seems that this happened also to Einstein. It is quite understandable that
he did not remember what had happened six years earlier; perhaps, he had not even fully followed
then what Cartan wanted to explain to him. In any case, Einstein’s motivation came from the
wish to generalise Riemannian geometry such that the electromagnetic field could be geometrized:

“Therefore, the endeavour of the theoreticians is directed toward finding natural gener-
alisations of, or supplements to, Riemannian geometry in the hope of reaching a logical
building in which all physical field concepts are unified by one single viewpoint.”185

([84], p. 217)

In an investigation concerning spaces with simply transitive continuous groups, Eisenhart al-
ready in 1925 had found the connection for a manifold with distant parallelism given 3 years
later by Einstein [118]. He also had taken up Cartan’s idea and, in 1926, produced a joint paper
with Cartan on “Riemannian geometries admitting absolute parallelism” [39], and Cartan also had
written about absolute parallelism in Riemannian spaces [38]. Einstein, of course, could not have
been expected to react to these and other purely mathematical papers by Cartan and Schouten,
focussed on group manifolds as spaces with torsion and vanishing curvature ([40, 34], pp. 50–54).
No physical application had been envisaged by these two mathematicians.

Nevertheless, this story of distant parallelism raises the question of whether Einstein kept up
on mathematical developments himself, or whether, at the least, he demanded of his assistants
to read the mathematical literature. Against his familiarity with mathematical papers speaks the
fact that he did not use the name “torsion” in his publications to be described in the following
section. In the area of unified field theory including spinor theory, Einstein just loved to do the
mathematics himself, irrespective of whether others had done it before – and done so even better
(cf. Section 7.3).

Anyhow, in his response (Einstein to Cartan on 10 May 1929, [50], p. 10), Einstein admitted
Cartan’s priority and referred also to Eisenhart’s book of 1927 and to Weitzenböck’s paper [393].
He excused himself by Weitzenböck’s likewise omittance of Cartan’s papers among his 14 references.
In his answer, Cartan found it curious that Weitzenböck was silent because

“[...] he indicates in his bibliography a note by Bortolotti in which he several times
refers to my papers.”186 (Cartan to Einstein on 15 May 1929; [50], p. 14)

The embarrassing situation was solved by Einstein’s suggestion that he had submitted a compre-
hensive paper on the subject to Zeitschrift für Physik, and he invited Cartan to add his description
of the historical record in another paper (Einstein to Cartan on 10 May 1929). After Cartan had
sent his historical review to Einstein on 24 May 1929, the latter answered three months later:

“I am now writing up the work for the Mathematische Annalen and should like to add
yours [...]. The publication should appear in the Mathematische Annalen because, at
present, only the mathematical implications are explored and not their applications to
physics.”187 (letter of Einstein to Cartan on 25 August 1929 [50, 35, 89])

185“Deshalb ist das Bestreben der Theoretiker darauf gerichtet, natürliche Verallgemeinerungen oder Ergänzungen
der RIEMANNschen Geometrie aufzufinden, welche begriffsreicher sind als diese, in der Hoffnung, zu einem logischen
Gebäude zu gelangen, das alle physikalischen Feldbegriffe unter einem einzigen Gesichtspunkte vereinigt.”
186“[...] il indique dans sa bibliographie une note de Bortolotti dans laquelle il se réfère plusieurs fois à mes

travaux.”
187Mathematische Annalen was a journal edited by David Hilbert with co-editors O. Blumenthal and G. Hecke

which physicists usually would not read. Einstein had been co-editor for the volumes 81 (1920) to 100 (1928); thus
he had easy access. The editor of Zeitschrift für Physik was Karl Scheel, an experimental physicist.
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In his article, Cartan made it very clear that it was not Weitzenböck who had introduced the
concept of distant parallelism, as valuable as his results were after the concept had become known.
Also, he took Einstein’s treatment of Fernparallelism as a special case of his more general con-
siderations. Interestingly, he permitted himself to interpet the physical meaning of geometrical
structures188:

“Let us say simply that mechanical phenomena are of a purely affine nature whereas
electromagnetic phenomena are essentially metric; therefore it is rather natural to try to
represent the electromagnetic potential by a not purely affine vector.”189 ([35], p. 703)

Einstein explained:

“In particular, I learned from Mr. Weitzenböck and Mr. Cartan that the treatment of
continua of the species which is of import here, is not really new.[...] In any case, what
is most important in the paper, and new in any case, is the discovery of the simplest
field laws that can be imposed on a Riemannian manifold with Fernparallelismus.”190

([89], p. 685)

For Einstein, the attraction of his theory consisted

“For me, the great attraction of the theory presented here lies in its unity and in the
allowed highly overdetermined field variables. I also could show that the field equations,
in first approximation, lead to equations that correspond to the Newton–Poisson theory
of gravitation and to Maxwell’s theory. Nevertheless, I still am far from being able to
claim that the derived equations have a physical meaning. The reason is that I could
not derive the equations of motion for the corpuscles.”191 ([89], p. 697)

The split, in first approximation, of the tetrad field hab according to hab = ηab+ h̄ab lead to homo-
geneous wave equations and divergence relations for both the symmetric and the antisymmetric
part identified as metric and electromagnetic field tensors, respectively.

6.4.2 How the word spread

Einstein in 1929 really seemed to have believed that he was on a good track because, in this and
the following year, he published at least 9 articles on distant parallelism and unified field theory
before switching off his interest. The press did its best to spread the word: On 2 February 1929,
in its column News and Views, the respected British science journal Nature reported:

“For some time it has been rumoured that Prof. Einstein has been about to publish
the results of a protracted investigation into the possibility of generalising the theory
of relativity so as to include the phenomena of electromagnetism. It is now announced
that he has submitted to the Prussian Academy of Sciences a short paper in which the
laws of gravitation and of electromagnetism are expressed in a single statement.”

188In view of van Dantzig’s later papers showing that the vacuum Maxwell equations depend neither on the concept
of metric nor of connection, Cartan’s reasons underlying his remark are not obvious [367, 363, 364, 365, 366].
189“Remarquons simplement qu’en principe les phénomènes mécaniques sont de nature purement affine, tandis que

les phénomènes électromagnétiques sont de nature essentiellement métrique; il peut donc assez naturel de chercher
à représenter le potentiel électromagnétique par un vecteur non purement affine.”
190“Insbesondere durch die Herren Weitzenböck und Cartan erfuhr ich, dass die Behandlung von Kontinua der hier

in Betracht kommenden Gattung an sich nicht neu sei. [...] Was an der vorliegenden Abhandlung das Wichtigste
und jedenfalls neu ist, das ist die Auffindung der einfachsten Feldgesetze, welche eine Riemannsche Mannigfaltigkeit
mit Fernparallelismus unterworfen werden kann.”
191“in ihrer Einheitlichkeit und der hochgradigen (erlaubten) Überbestimmung der Feldvariablen. Auch habe ich

zeigen können, dass die Feldgleichungen in erster Näherung auf Gleichungen führen, welche der Newton–Poissonschen
Theorie der Gravitation und der Maxwellschen Theorie des elektromagnetischen Feldes entsprechen. Trotzdem bin
ich noch weit davon entfernt, die physikalische Gültigkeit der abgeleiteten Gleichungen behaupten zu können. Der
Grund liegt darin, dass mir die Ableitung von Bewegungsgesetzen für die Korpuskeln noch nicht gelungen ist.”
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Nature then went on to quote from an interview of Einstein of 26 January 1929 in a newspaper,
the Daily Chronicle. According to the newspaper, among other statements Einstein made, in his
wonderful language, was the following:

“Now, but only now, we know that the force which moves electrons in their ellipses
about the nuclei of atoms is the same force which moves our earth in its annual course
about the sun, and it is the same force which brings to us the rays of light and heat
which make life possible upon this planet.” [2]

Whether Einstein used this as a metaphorical language or, whether he at this time still believed
that the system “nucleus and electrons” is dominated by the electromagnetic force, remains open.

The paper announced by Nature is Einstein’s “Zur einheitlichen Feldtheorie”, published by the
Prussian Academy on 30 January 1929 [88]. A thousand copies of this paper had been sold within
3 days, so the presiding secretary of the Academy ordered the printing of a second thousand.
Normally, only a hundred copies were printed ([182], Dokument Nr. 49, p. 136). On 4 February
1929, The Times (of London) published the translation of an article by Einstein, “written as an
explanation of his thesis for readers who do not possess an expert knowledge of mathematics”. This
article then became reprinted in March by the British astronomy journal The Observatory [86]. In
it, Einstein first gave a historical sketch leading up to the introduction of relativity theory, and then
described the method that guided him to the new theory of distant parallelism. In fact, the only
formulas appearing are the line elements for two-dimensional Riemannian and Euclidean space.
At the end, by one figure, Einstein tried to convey to the reader what consequence a Euclidean
geometry with torsion would have – without using that name. His closing sentences are192:

“Which are the simplest and most natural conditions to which a continuum of this kind
can be subjected? The answer to this question which I have attempted to give in a new
paper yields unitary field laws for gravitation and electromagnetism.” ([86], p. 118)

A few months later in that year, again in Nature, the mathematician H. T. H. Piaggio gave an
exposition for the general reader of “Einstein’s and other Unitary Field Theories”. He was a bit
more explicit than Einstein in his article for the educated general reader. However, he was careful
to end it with a warning:

“Of course the ultimate test of the theory must be by experiment. It may succeed in
predicting some interaction between gravitation and electromagnetism which can be
confirmed by observation. On the other hand, it may be only a ‘graph’ and so outside
the ken of the ordinary physicist.” ([257], p. 879)

The use of the concept “graph” had its origin in Eddington’s interpretation of his and other peoples’
unified field theories to be only graphs of the world; the true geometry remained the Riemannian
geometry underlying Einstein’s general relativity.

Even the French-Belgian writer and poet Maurice Maeterlinck had heard of Einstein’s latest
achievement in the area of unified field theory. In his poetic presentation of the universe “La
grande féerie”193 we find his remark:

“Einstein, in his last publications comments to which are still to appear, again brings
us mathematical formulae which are applicable to both gravitation and electricity, as
if these two forces seemingly governing the universe were identical and subject to the

192Einstein’s policy was to permit only articles for the general reader to be printed in newspapers; he discouraged
an English translation of his first teleparallelism paper of 1929 asked for by a publishing house (see [182], Documents
Nr. 57 and 58, p. 141).
193German edition: “Geheimnisse des Weltalls” (secrets of the universe).
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same law. If this were true it would be impossible to calculate the consequences.”194

([213], p. 68)

6.4.3 Einstein’s research papers

We are dealing here with Einstein’s, and Einstein and Mayer’s joint papers on distant parallelism
in the reports of the Berlin Academy and Mathematische Annalen, which were taken as the starting
point by other researchers following suit with further calculations. Indeed, there was a lot of work
to do, only in part because Einstein, from one paper to the next, had changed his field equations195.

In his first note [84], dynamics was absent; Einstein made geometrical considerations his main
theme: Introduction of a local “n-bein-field” hkı̂ at every point of a differentiable manifold and
the related object hkı̂ defined as the collection of the “normed subdeterminants of the hkı̂ ”196 such
that hil̂h

k
l̂

= δki . As we have seen before, the components of the metric tensor are defined by

glm = hl̂hm̂, (160)

where summation over ̂ = 1, . . . , n is assumed197.
“Fernparallelism” now means that if the components referred to the local n-bein of a vector

Ak̂ = hk̂l A
l at a point p, and of a vector Bk̂ at a different point q are the same, i.e., Ak̂ = Bk̂,

then the vectors are to be considered as “parallel”. There is an underlying symmetry, called
“rotational invariance” by Einstein: joint rotations of each n-bein by the same angle. All relations
with a physical meaning must be “rotationally invariant”. Of course, in space-time with a Lorentz
metric, the 4-bein-transformations do form the proper Lorentz group.

If parallel transport of a tangent vector A is defined as usual by dAk = −∆ k
lmA

ldxm, then the
connection components turn out to be

∆ k
lm = hk̂

∂hl̂
∂xm

. (161)

An immediate consequence is that the covariant derivative of each bein-vector vanishes,

hk̂;l := hk̂,l + ∆ k
sl h

s
̂ = 0, (162)

by use of Equation (161). Also, the metric is covariantly constant

gik;l = 0. (163)

Neither fact is mentioned in Einstein’s note. Also, no reference is given to Eisenhart’s paper of
1925 [118], in which the connection (161) had been given (Equation (3.5) on p. 248 of [118]), as
noted above, its metric-compatibility shown, and the vanishing of the curvature tensor concluded.

The (Riemannian) curvature tensor calculated from Equation (161) turns out to vanish. As
Einstein noted, by gij from Equation (160) also the usual Riemannian connection Γ k

lm (g) may be
formed. Moreover, Y k

lm := Γ k
lm (g) −∆ k

lm is a tensor that could be used for building invariants.

194“Einstein wiederum bringt uns in seiner letzten Veröffentlichung, deren Kommentare noch ausstehen, mathe-
matische Formeln, die gleichzeitig auf die Schwerkraft und die Elektrizität anwendbar sind, als wären diese beiden
Kräfte, die das Weltall zu lenken scheinen, identisch und demselben Gesetz unterworfen. Wenn dem so wäre, würden
die Folgen unberechenbar sein.”
195The non-specialised reader will find this section rather technical.
196“normed subdeterminants” means that the subdeterminants are divided by the determinant det hk

ı̂ . Thus, the
inverse matrix must be calculated.
197Unlike in Einstein’s notation, which used Greek indices for the coordinate indices and Latin ones for the beins,

here bein-indices are noted by a hat-symbol. Consequently, Latin indices are to be moved by the metric gik, while
bein-indices are raised and lowered by δı̂k̂ or, for real coordinates, by the Minkowski metric.
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In principle, distant parallelism is a particular bi-connection theory. The connection Γ k
lm (g) does

not play a role in the following (cf., however, de Donder198’s paper [48]).
From Equation (161), obviously the torsion tensor S k

lm = 1
2 (∆ k

lm −∆ k
ml ) 6= 0 follows (cf. Equa-

tion (21)). Einstein denoted it by Λ k
lm and, in comparison with the curvature tensor, considered

it as the “formally simplest” tensor of the theory for building invariants by help of the linear form
Λ j
lj dx

l and of the scalars gijΛ l
imΛ m

jl and gij g
lrgmsΛ i

lm Λ j.
rs . He indicated how a Lagrangian

could be built and the 16 field equations for the field variables hlj obtained.
At the end of the note Einstein compared his new approach to Weyl’s and Riemann’s:

• WEYL: Comparison at a distance neither of lengths nor of directions;

• RIEMANN: Comparison at a distance of lengths but not of directions;

• Present theory: Comparison at a distance of both lengths and directions.

In his second note [83], Einstein departed from the Lagrangian L = h gijΛ l
imΛ m

jl , i.e., a
scalar density corresponding to the first scalar invariant of his previous note199. He introduced
φk := Λ l

kl , and took the case φ = 0 to describe a “purely gravitational field”. However, as he added
in a footnote, pure gravitation could have been characterised by ∂φi

∂xk − ∂φk

∂xi as well. In his first
paper on distant parallelism, Einstein did not use the names “electrical potential” or “electrical
field”. He then showed that in a first-order approximation starting from hî = δî + kî + . . ., both
the Einstein vacuum field equations and Maxwell’s equations are surfacing. To do so he replaced
hî by gij = δij + 2k(ij) and introduced φk := 1

2

(
∂kkj

∂xj − ∂kjj

∂xk

)
. Einstein concluded that

“The separation of the gravitational and the electromagnetic field appears artificial
in this theory. [...] Furthermore, it is remarkable that, according to this theory, the
electromagnetic field does not enter the field equations quadratically.”200 ([83], p. 6)

In a postscript, Einstein noted that he could have obtained similar results by using the second
scalar invariant of his previous note, and that there was a certain indeterminacy as to the choice
of the Lagrangian.

This shows clearly that the ambiguity in the choice of a Lagrangian had bothered Einstein.
Thus, in his third note, he looked for a more reassuring way of deriving field equations [88]. He left
aside the Hamiltonian principle and started from identities for the torsion tensor, following from
the vanishing of the curvature tensor201. He thus arrived at the identity given by Equation (29),
i.e., (Einstein’s equation (3), p. 5; his convention is Λ ı̂

k̂l̂
:= 2S ı̂

k̂l̂
)

0 = 2∇{̂S
ı̂

k̂l̂} + 4S ı̂
m̂{̂ S

m̂
k̂l̂} . (164)

198Théophile Ernest de Donder (1872–1957). Born in Brussels. Studied mathematics and physics at the University
of Brussels and received his doctorate in 1899. Professor of mathematical physics at the Université libre de Bruxelles
from 1911 to 1942. Member of the Royal Belgian Academy. Research on variational calculus, general relativity,
electromagnetism, thermodynamics, and wave mechanics.
199h := det hlm̂ corresponds to

√
− det gij . In his next note [88] Einstein also switched his notation of the 4-leg

to Weitzenböck’s shk, where the index to the left of h counts the number of legs.
200“die Trennung des Gravitationsfeldes und des elektromagnetischen Feldes erscheint aber nach dieser Theorie

als künstlich. [...] Bemerkenswert ist ferner, dass nach dieser Theorie das elektrische Feld nicht quadratisch in die
Feldgleichungen eingeht.”
201There are some misprints in the formulae of § 1 of Einstein’s paper [88]. He writes the tensor density V with an

upper coordinate and two lower bein-indices, i.e., as V̂ j

k̂l̂
. Einstein also introduced a new covariant derivative for

which he used the symbol A/k. We call it ∇∗l; it is given through Equation (16), i.e., by ∇kX
i = ∇ ∗l −∆ r

kr X̂
i.
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By defining φk̂ := Λ l̂
k̂l̂

= 2 S l̂
k̂l̂

, and contracting equation (164), Einstein obtained another
identity202:

∇ ∗j V̂ j

k̂l̂
= 0, (165)

where the covariant divergence refers to the connection components ∆ k̂
m̂l̂

, and the tensor density

V̂ ̂

k̂l̂
is given by

V̂ ̂

k̂l̂
:= 2h(S ̂

k̂l̂
+ φ[l̂δ

̂

k̂]
).

For the proof, he used the formula for the covariant vector density given in Equation (16), which,

for the divergence, reduces to
+

∇i Xi = ∂X̂i

∂xi − 2SjX̂j .
The second identity used by Einstein follows with the help of Equation (27) for vanishing

curvature (Einstein’s equation (5), p. 5):

+

∇[j

+

∇k] Âjk = −S r
jk

+

∇r Âjk. (166)

As we have seen in Section 2, if he had read it, Einstein could have taken these identities from
Schouten’s book of 1924 [300].

By replacing Âjk by V̂ k̂l̂j and using Equation (165), the final form of the second identity now
is

∇∗j(∇l̂V̂
k̂l̂j − 2V̂ k̂lrS j

lr ) = 0. (167)

Einstein first wrote down a preliminary set of field equations from which, in first approximation,
both the gravitational vacuum field equations (in the limit ε = 0, cf. below) and Maxwell’s equations
follow:

∇ ∗j Û j

k̂l̂
= 0, ∇ ∗r ∇ ∗l V̂ lr

k̂
= 0. (168)

Here,
Û ̂

k̂l̂
:= V̂ ̂

k̂l̂
− 2ε h φ[l̂ δ

̂

k̂]
(169)

replaces V̂ j
kl such that the necessary number of equations is obtained. With this first approx-

imation as a hint, Einstein, after some manipulations, postulated the 20 exact field equations:

∇ ∗l̂ V̂
k̂l̂r − 2 V̂ k̂rsS l

sr = 0, ∇ ∗j [h phi[k;j]] = 0, (170)

among which 8 identities hold.
Einstein seems to have sensed that the average reader might be able to follow his path to the

postulated field equations only with difficulty. Therefore, in a postscript, he tried to clear up his
motivation:

“The field equations suggested in this paper may be characterised with regard to other
such possible ones in the following way. By staying close to the identity (167), it has
been accomplished that not only 16, but 20 independent equations can be imposed on
the 16 quantities hk̂i . By ‘independent’ we understand that none of these equations can
be derived from the remaining ones, even if there exist 8 identical (differential) relations
among them.”203 ([88], p. 8)

202The abbreviation A‖k is used only in place of
+
∇k . If summation over indices is to be performed, it is irrelevant

whether bein-indices or coordinate indices are written.
203“Die in dieser Arbeit vorgeschlagenen Feldgleichungen sind formal gegenüber sonst denkbaren so zu kennze-

ichnen. Es ist durch Anlehnung an die Identität (167) erreicht worden, dass die 16 Grössen hk̂
i nicht nur 16,

sondern 20 selbständigen Differentialgleichungen unterworfen werden können. Unter ‘selbständig’ ist dabei ver-
standen, dass keine dieser Gleichungen aus den übrigen gefolgert werden kann, wenn auch zwischen ihnen 8 identische
(Differentiations-) Relationen bestehen.”
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He still was not entirely sure that the theory was physically acceptable:

“A deeper investigation of the consequences of the field equations (170) will have to
show whether the Riemannian metric, together with distant parallelism, really gives an
adequate representation of the physical qualities of space.”204

In his second paper of 1929, the fourth in the series in the Berlin Academy, Einstein returned
to the Hamiltonian principle because his collaborators Lanczos and Müntz205 had doubted the
validity of the field equations of his previous publication [88] on grounds of their unproven compat-
ibility. In the meantime, however, he had found a Lagrangian such that the compatibility-problem
disappeared. He restricted the many constructive possibilities for L = L(hk̂i , ∂lh

k̂
i ) by asking for a

Lagrangian containing torsion at most quadratically. His Lagrangian is a particular linear combi-
nation of the three possible scalar densities, as follows:

(1) Ĥ = 1
2 ̂1 + 1

4 ̂2 − ̂3,

(2) Ĥ∗ = 1
2 ̂1 − 1

4 ̂2,

(3) Ĥ∗∗ = ̂3,

with ̂1 := h S m
kl Sk l

m , ̂2 := h S m
kl Skl m, and ̂3 := h SjS

j . If ε1, ε2 are small parameters, then
his final Lagrangian is L = Ĥ + ε1Ĥ∗ + ε2Ĥ

∗∗. In order to prove that Maxwell’s equations follow
from his Lagrangian, Einstein had to perform the limit σ := ε1

ε2
→ 0 in an expression termed

Ĝ∗ ik, which he assumed to depend homogeneously and quadratically on a linear combination of
torsion206.

In a Festschrift for his former teacher and colleague in Zürich, A. Stodola, Einstein summed
up what he had reached207. He exchanged the definition of the invariants named ̂2, and ̂3, and
stated that a choice of A = −B, C = 0 in the Lagrangian ̂ = Â1 + B ̂2 + C ̂3 would give field
equations

“[...] that coincide in first approximation with the known laws for the gravitational and
electromagnetic field [...]”208

with the proviso that the specialisation of the constants A, B, C must be made only after the
variation of the Lagrangian, not before. Also, together with Müntz, he had shown that for an
uncharged mass point the Schwarzschild solution again obtained [87].
204“Eine tiefere Untersuchung der Konsequenzen der Feldgleichungen (170) wird zu zeigen haben, ob die

RIEMANN-Metrik in Verbindung mit dem Fernparallelismus wirklich eine adäquate Auffassung der physikalischen
Qualitäten des Raumes liefert.”
205As to the person of H. Müntz, it is not obvious whether he can be identified with Dr. Ch. Müntz, a possibility

following from a paper of Ch. H. Müntz, presented to the Göttingen Academy by D. Hilbert in 1917. If it is the same
person, then H. Müntz seems to have been a mathematics teacher, first at the Odenwaldschule in Heppenheim a.d. B.
from 1918 to 1922(?), then, possibly for a short time in Göttingen (Friedländerweg 61), and from 1924 on in Berlin-
Nikolassee, Herkrathstr. 5. I conclude this from the membership lists of the Deutsche Mathematikervereinigung,
which Müntz entered in 1913, and which gives a Berlin address since July 1924 and lists him as “Prof.” in Berlin, in
1931. At the time, experienced teachers at Gymnasium could carry the title of professor. In the Einstein archive, 26
letters of Einstein to Müntz from the years 1927–1931 exist. The addresses show that Müntz went to Stockhom via
Tallin. In fact, Pais [240] writes that Müntz became a professor of mathematics at the University of Leningrad but
had to leave the Soviet Union in 1938 for Sweden. In fact, a document of 1931 states: “Prof. Hermann Mueninz,
der einer der engeren wissenschaftlichen Mitarbeiter Albert Einsteins ist und gegenwärtig ein Lehramt für höhere
Mathematik an der Leningrader Universität bekleidet [...]” ([182], Dokument 144, p. 222). Sauer ([288], p.11)
reports the life span of Müntz to have been 1884–1956.
206The variational derivatives of Ĥ, Ĥ∗, and Ĥ∗∗ are named Ĝik, Ĝ∗ik, and Ĝ∗∗ik, respectively, by Einstein.
207Einstein’s contribution seems to have been submitted towards the end of 1928 (cf. [288], p. 21).
208“[...] welche mit den bekannten Gesetzen des Gravitationsfeldes und des elektromagnetischen Feldes in erster

Näherung übereinstimmen [...]”
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Einstein’s next publication was the note preceding Cartan’s paper in Mathematische An-
nalen [89]. He presented it as an introduction suited for anyone who knew general relativity.
It is here that he first mentioned Equations (162) and (163). Most importantly, he gave a new set
of field equations not derived from a variational principle; they are209.

Gik := Sil k· · ‖l − Simn· · S k
nm = 0, (171)

Fik := S·· l
ik ‖l = 0, (172)

where Sikl = gimgknS l
mn . There exist 4 identities among the 16 + 6 field equations

Gil ‖l − F il‖l + Simn· · Fnm = 0. (173)

As Cartan remarked, Equation (172) expresses conservation of torsion under parallel transport:

“In fact, in the new theory of Mr. Einstein, it is natural to call a universe homogeneous
if the torsion vectors that are associated to two parallel surface elements are parallel
themselves; this means that parallel transport conserves torsion.”210 ([35], p. 703)

From Equation (173) with the help of Equation (171), (172), Einstein wrote down two more
identities. One of them he had obtained from Cartan:

“But I am very grateful to you for the identity

Gik‖i − S k
lm Glm = 0,

which, astonishingly, had escaped me. [...] In a new presentation in the Sitzungs-
berichten, I used this identity while taking the liberty of pointing to you as its source.”211

(letter of Einstein to Cartan from 18 December 1929, Document X of [50], p. 72)

In order to show that his field equations were compatible he counted the number of equations,
identities, and field quantities (in n-dimensional space) to find, in the end, n2 + n equations
for the same number of variables. To do so, he had to introduce an additional variable ψ via
Fk = φk − ∂ logψ

∂xk . Here, Fk is introduced by Fik = ∂kFi − ∂iFk = ∂kφi − ∂iφk. Einstein then
showed that ∂lFik + ∂kFli + ∂iFkl = 0.

The changes in his approach Einstein continuously made, must have been hard on those who
tried to follow him in their scientific work. One of them, Zaycoff212, tried to make the best out of
them:

209The quantity Gik defined here must be distinguished from the Einstein tensor in Section 2.2 denoted by the
same symbol.
210“En effet, avec la nouvelle théorie de M. Einstein, il est naturel d‘appeler homogène un univers où les vecteurs de

torsion associés à deux éléments de surface sont paralléles eux-mêmes; c’est à dire où le transport paralléle conserve
la torsion.”
211“Sehr dankbar bin ich Ihnen aber für die Identität

Gik
‖i − S k

lm Glm = 0,

die mir merkwürdigerweise entgangen war. [...] In einer neuen Darstellung in den Sitzungsberichten habe ich von
dieser Identität Gebrauch gemacht, indem ich mir erlaubte, auf Sie als Quelle aufmerksam zu machen.”
212Gawrilow Raschko Zaycoff (1901–1982). Born in Burgas, Bulgaria. Studied at the Universities of Sofia,

Göttingen, and Berlin from 1922 to 1928. From 1928 assistant in the Physics Institute of the University of Sofia;
1931–1933 teacher at a Gymnasium in Sofia. From 1935 on mathematical statistician at the Institute for Economic
Research of Sofia University. From 1961–1972 Professor at the Physics Institute of the Bulgarian Academy of Science
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“Recently, A. Einstein ([89]), following investigations by E. Cartan ([35]), has consid-
erably modified his teleparallelism theory such that former shortcomings (connected
only to the physical identifications) vanish by themselves.”213 ([433], p. 410)

In November 1929, Einstein gave two lectures at the Institute Henri Poincaré in Paris which
had been opened one year earlier in order to strengthen theoretical physics in France ([14], pp. 263–
272). They were published in 1930 as the first article in the new journal of this institute [92]. On
23 pages he clearly and leisurely outlined his theory of distant parallelism and the progress he had
made. As to references given, first Cartan’s name is mentioned in the text:

“It is not for the first time that such spaces are envisaged. From a purely mathematical
point of view they were studied previously. M. Cartan was so amiable as to write a note
for the Mathematische Annalen exposing the various phases in the formal development
of these concepts.”214 ([92], p. 4)

Note that Einstein does not say that it was Cartan who first “envisaged” these spaces before.
Later in the paper, he comes closer to the point:

“This type of space had been envisaged before me by mathematicians, notably by
WEITZENBÖCK, EISENHART et CARTAN [...].”215 [92]

Again, he held back in his support of Cartan’s priority claim.
Some of the material in the paper overlaps with results from other publications [85, 90, 93].

The counting of independent variables, field equations, and identities is repeated from Einstein’s
paper in Mathematische Annalen [89]. For n = 4, there were 20 field equations (Gik = 0, F l = 0)
for 16 + 1 variables hkı̂ and ψ, four of which were arbitrary (coordinate choice). Hence 7 identities
should exist, four of which Einstein had found previously. He now presented a derivation of the
remaining three identities by a calculation of two pages’ length. The field equations are the same as
in [89]; the proof of their compatibility takes up, in a slightly modified form, the one communicated
by Einstein to Cartan in a letter of 18 December 1929 ([92], p. 20). It is reproduced also in [90].

Interestingly, right after Einstein’s article in the institute’s journal, a paper of C. G. Darwin,
“On the wave theory of matter”, is printed, and, in the same first volume, a report of Max Born on
“Some problems in Quantum Mechanics.” Thus, French readers were kept up-to-date on progress
made by both parties – whether they worked on classical field theory or quantum theory [45, 21].

A. Proca, who had attended Einstein’s lectures, gave an exposition of them in a journal of his
native Romania. He was quite enthusiastic about Einstein’s new theory:

“A great step forward has been made in the pursuit of this total synthesis of phenomena
which is, right or wrong, the ideal of physicists. [...] the splendid effort brought about
by Einstein permits us to hope that the last theoretical difficulties will be vanquished,
and that we soon will compare the consequences of the theory with [our] experience,
the great stepping stone of all creations of the mind.”216 [259, 260]

213“Neuerdings hat A. Einstein gestützt auf Untersuchungen von E. Cartan, seine Fernparallelismustheorie
wesentlich modifiziert, so dass die früheren Nachteile (es handelt sich nur um die physikalischen Identifikationen)
derselben von selbst hinfällig werden.”
214“Ce n’est pas la première fois qu’on envisage de tels espaces. Du point de vue purement mathématique ils ont

déjà été étudié auparavant. M. CARTAN a eu l’amabilité de rédiger, pour les Mathematische Annalen, une note
exposant les diverses phases du développement formel de ces conceptions.”
215“Ce type d‘espace à été envisagé, avant moi, par des mathématiciens, notamment par WEITZENBÖCK, EISEN-

HART et CARTAN [...].”
216“Un grand pas en avant a été fait dans la poursuite de cette synthèse totale des phénomènes qui est, à tort

ou à raison, l’idéal des physiciens. [...] le splendide effort fourni par Einstein nous permet d’espérer que les
dernières difficultés théoriques seront vaincues et que nous pourrons bientôt comparer les conséquences de la théorie
à l’expérience, cette pierre d’achoppement de toutes les créations de l’esprit.”
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Einstein’s next paper in the Berlin Academy, in which he reverts to his original notation hk̂l ,
consisted of a brief critical summary of the formalism used in his previous papers, and the an-
nouncement of a serious mistake in his first note in 1930, which made invalid the derivation of the
field equations for the electromagnetic field ([90], p. 18). The mistake was the assumption on the
kind of dependence on torsion of the quantity Ĝ∗ ik, which was mentioned above. Also, Einstein
now found it better “to keep the concept of divergence, defined by contraction of the extension
of a tensor” and not use the covariant derivative ∇∗l introduced by him in his third paper in the
Berlin Academy [88].

Then Einstein presented the same field equations as in his paper in Annalen der Mathematik,
which he demanded to be

(1) covariant,

(2) of second order, and

(3) linear in the second derivatives of the field variable hki .

While these demands had been sufficient to uniquely lead to the gravitational field equations (with
cosmological constant) of general relativity, in the teleparallelism theory a great deal of ambiguity
remained. Sixteen field equations were needed which, due to covariance, induced four identities.

“Therefore equations must be postulated among which identical relations are holding.
The higher the number of equations (and consequently also the number of identities
among them), the more precise and stronger than mere determinism is the content;
accordingly, the theory is the more valuable, if it is also consistent with the empirical
facts.”217 ([90], p. 21)

He then gave a proof of the compatibility of his field equations:

“The proof of the compatibility, as given in my paper in the Mathematische Annalen,
has been somewhat simplified due to a communication which I owe to a letter of
Mr. CARTAN (cf. §3, [16]).”218

The reader had to make out for himself what Cartan’s contribution really was.
In linear approximation, i.e., for hik = δik + h̄ik, Einstein obtained d’Alembert’s equation for

both the symmetric and the antisymmetric part of h̄ik, identified with the gravitational and the
electromagnetic field, respectively.

Einstein’s next note of one and a half pages contained a mathematical result within telepar-
allelism theory: From any tensor with an antisymmetric pair of indices a vector with vanishing
divergence can be derived [93].

In order to test the field equations by exhibiting an exact solution, a simple case would be
to take a spherically symmetric, asymptotically (Minkowskian) 4-bein. This is what Einstein and
Mayer did, except with the additional assumption of space-reflection symmetry [106]. Then the
4-bein contains three arbitrary functions of one parameter s:

hαι̂ = λ(s)δαι̂ , hα
4̂

= τ(s)xα, h4
ι̂ = 0, h4̂

4̂
= u(s), (174)

where α, ι̂ = 1, 2, 3. As an exact solution of the field equations (171, 172), Einstein and Mayer
obtained λ = τ = es−3(1 − e2/s4)−

1
4 ) and u = 1 + m

∫
ds s−2(1 − e2/s4)−

1
4 . The constants

217“Es müssen also Gleichungen aufgestellt werden, zwischen denen identische Relationen bestehen. Je höher die
Zahl der Gleichungen ist (und folglich auch der zwischen ihnen bestehenden Identitäten), desto bestimmtere, über
die Forderung des blossen Determinismus hinausgehende Aussagen macht die Theorie; desto wertvoller ist also die
Theorie, falls sie mit den Erfahrungstatsachen verträglich ist.”
218“Der Kompatibilitätsbeweis ist auf Grund einer brieflichen Mitteilung, welche ich Herrn CARTAN verdanke

(vgl. §3, [16]), gegenüber der in den Mathematischen Annalen gegebene Darstellung etwas vereinfacht.”
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e and m were interpreted as electric charge and “ponderomotive mass,” respectively. A further
exact solution for uncharged point particles was also derived; it is static and corresponds to “two
or more unconnected electrically neutral masses which can stay at rest at arbitrary distances”.
Einstein and Mayer do not take this physically unacceptable situation as an argument against the
theory, because the equations of motion for such singularities could not be derived from the field
equations as in general relativity. Again, the continuing wish to describe elementary particles by
singularity-free exact solutions is stressed.

Possibly, W. F. G. Swan of the Bartol Research Foundation in Swarthmore had this paper in
mind when he, in April 1930, in a brief description of Einstein’s latest publications, told the readers
of Science:

“It now appears that Einstein has succeeded in working out the consequences of his
general law of gravity and electromagnetism for two special cases just as Newton suc-
ceeded in working out the consequences of his law for several special cases. [...] It
is hoped that the present solutions obtained by Einstein, or if not these, then others
which may later evolve, will suggest some experiments by which the theory may be
tested.” ([339], p. 391)

Two days before the paper by Einstein and Mayer became published by the Berlin Academy,
Einstein wrote to his friend Solovine:

“My field theory is progressing well. Cartan has already worked with it. I myself work
with a mathematician (S. Mayer219 from Vienna), a marvelous chap [...].”220 ([98],
p. 56)

The mentioning of Cartan resulted from the intensive correspondence of both scientists between
December 1929 and February 1930: About a dozen letters were exchanged which, sometimes,
contained long calculations [50] (cf. Section 6.4.6). In an address given at the University of Not-
tingham, England, on 6 June 1930, Einstein also must have commented on the exact solutions
found and on his program concerning the elementary particles. A report of this address stated
about Einstein’s program:

“The problem is nearly solved; and to the first approximations he gets laws of gravi-
tation and electro-magnetics. He does not, however, regard this as sufficient, though
those laws may come out. He still wants to have the motions of ordinary particles to
come out quite naturally. [The program] has been solved for what he calls the ‘quasi-
statical motions’, but he also wants to derive elements of matter (electrons and protons)
out of the metric structure of space.” ([91], p. 610)

With his “assistant” Walther Mayer, Einstein then embarked on a very technical, systematic
study of compatible field equations for distant parallelism [108]. In addition to the assumptions (1),
(2), (3) for allowable field equations given above, further restrictions were made:

(4) the field equations must contain the first derivatives of the field variable hk̂i only quadratically ;

(5) the identities for the left hand sides Gik of the field equations must be linear in Gik and
contain only their first derivatives;

(6) torsion must occur only linearly in Gik.

219Note that Einstein used the initial “S” in place of the correct “W” (Walther)
220“Meine Feldtheorie macht gute Fortschritte. Cartan hat schon darin gearbeitet. Ich selbst arbeite mit einem

Mathematiker (S. Mayer aus Wien), einem prächtigen Kerl [...].”
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For the field equations, the following ansatz was made:

0 = Gik = pSil k· · ‖l + qSkl i· · ‖l + a1φ
i‖k
· · + a2φ

k‖i
· · + a3g

ik
· ·φ

l
‖l +Rik, (175)

where Rik is a collection of terms quadratic in torsion S, and p, q, a1, a2, a3 are constants. They
must be determined in such a way that the “divergence-identity”

Gik;i+Gki;i+Glm(c1S k
lm + c2S

·m
l k + c3S

·l
m k)+ c4G

klφl+ c5G
lkφl+ c6G

· l
l φ

k
· +BGl· kl‖· = 0 (176)

is satisfied. Here, 8 new constants A, B, cr with r = 1, . . . , 6 to be fixed in the process also appear.
After inserting Equation (175) into Equation (176), Einstein and Mayer reduced the problem to
the determination of 10 constants by 20 algebraic equations by a lengthy calculation. In the end,
four different types of compatible field equations for the teleparallelism theory remained:

“Two of these are (non-trivial) generalisations of the original gravitational field equa-
tions, one of them being known already as a consequence of the Hamiltonian principle.
The remaining two types are denoted in the paper by [...].”221

With no further restraining principles at hand, this ambiguity in the choice of field equations
must have convinced Einstein that the theory of distant parallelism could no longer be upheld as a
good candidate for the unified field theory he was looking for, irrespective of the possible physical
content222. Once again, he dropped the subject and moved on to the next. While aboard a ship
back to Europe from the United States, Einstein, on 21 March 1932, wrote to Cartan:

“[...] In any case, I have now completely given up the method of distant parallelism.
It seems that this structure has nothing to do with the true character of space [...].”
([50], p. 209)

What Cartan might have felt, after investing the forty odd pages of his calculations printed in
Debever’s book, is unknown. However, the correspondence on the subject came to an end in May
1930 with a last letter by Cartan.223.

6.4.4 Reactions I: Mostly critical

About half a year after Einstein’s two papers on distant parallelism of 1928 had appeared, Reichen-
bach224, who always tended to defend Einstein against criticism, classified the new theory [267]
according to the lines set out in his book [266] as “having already its precisely fixed logical position
in the edifice of Weyl–Eddington geometry” ([266], p. 683). He mentioned as a possible generaliza-
tion an idea of Einstein’s, in which the operation of parallel transport might be taken as integrable
not with regard to length but with regard to direction: “a generalisation which already has been
conceived by Einstein as I learned from him” ([266], p. 687)225.

As concerns parallelism at a distance, Reichenbach was not enthusiastic about Einstein’s new
approach:
221“Hiervon sind zwei (nichttriviale) Verallgemeinerungen der ursprünglichen Feldgleichungen der Gravitation, von

denen eine als aus dem Hamiltonschen Prinzip hervorgehend bereits bekannt ist [...]. Die beiden übrigen sind in der
Arbeit durch [...] bezeichnet.”
222This view is supported by an (as yet unpublished) detailed investigation of Einstein’s theory of distant parallelism

by T. Sauer which I received 6 month after after having submitted this review [288]. Sauer uses unpublished
correspondence in the Einstein Papers Archive, and points to “some historical and systematic similarities between
the Fernparallelismus episode and the Entwurf theory, i.e., the precurser theory of general relativity theory pursued
by Einstein in the years 1912–1915.”
223An evaluation of this correspondence has been given in [15].
224Hans Reichenbach (1891–1953). Philosopher of science, neo-positivist. Professor in Berlin, Istanbul, and Los

Angeles. Wrote books on the foundations of relativity theory, probability, and quantum mechanics.
225In fact, this generalisation was to be worked out soon by V. Bargmann in 1930 [5] (cf. below).
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“[...] it is the aim of Einstein’s new theory to find such an entanglement between grav-
itation and electricity that it splits into the separate equations of the existing theory
only in first approximation; in higher approximation, however, a mutual influence of
both fields is brought in, which, possibly, leads to an understanding of questions unan-
swered up to now as [is the case] for the quantum riddle. But this aim seems to be
in reach only if a direct physical interpretation of the operation of transport, even of
the immediate field quantities, is given up. From the geometrical point of view, such a
path [of approach] must seem very unsatisfactory; its justifications will only be reached
if the mentioned link does encompass more physical facts than have been brought into
it for building it up.”226 ([266], p. 689)

A first reaction from a competing colleague came from Eddington, who, on 23 February 1929, gave
a cautious but distinct review of Einstein’s first three publications on distant parallelism [84, 83, 88]
in Nature. After having explained the theory and having pointed out the differences to his own
affine unified field theory of 1921, he confessed:

“For my own part I cannot readily give up the affine picture, where gravitational and
electric quantities supplement one another as belonging respectively to the symmetrical
and antisymmetrical features of world measurement; it is difficult to imagine a neater
kind of dovetailing. Perhaps one who believes that Weyl’s theory and its affine gener-
alisation afford considerable enlightenment, may be excused for doubting whether the
new theory offers sufficient inducement to make an exchange.” [62]

Weyl was the next unhappy colleague; in connection with the redefinition of his gauge idea he
remarked (in April/May 1929):

“[...] my approach is radically different, because I reject distant parallelism and keep
to Einstein’s general relativity. [...] Various reasons hold me back from believing in
parallelism at a distance. First, my mathematical intuition a priori resists to accept
such an artificial geometry; I have difficulties to understand the might who has frozen
into rigid togetherness the local frames in different events in their twisted positions.
Two weighty physical arguments join in [...] only by this loosening [of the relationship
between the local frames] the existing gauge-invariance becomes intelligible. Second, the
possibility to rotate the frames independently, in the different events, [...] is equivalent
to the s ym m e t r y o f t h e e n e r g y-m o m e n t um t e n s o r, or to the validity of the
conservation law for angular momentum.”227 ([407], pp. 330–332.)

226“[...] es ist das Ziel der neuen Theorie Einsteins, eine derartige Verkettung von Gravitation und Elektrizität zu
finden, dass sie nur in erster Näherung in die getrennten Gleichungen der bisherigen Theorie zerspaltet, während sie
in höherer Näherung einen gegenseitigen Einfluss der beiden Felder lehrt, der möglicherweise zum Verständnis bisher
ungelöster Fragen, wie der Quantenrätsel, führt. Aber dieses Ziel scheint nur erreichbar zu sein unter Verzicht auf eine
unmittelbare physikalische Interpretation der Verschiebungsoperation, ja sogar der eigentlichen Feldgrössen selbst.
Vom geometrischen Standpunkt muss deshalb ein solcher Weg sehr unbefriedigend erscheinen; seine Rechtfertigung
wird allein dadurch gegeben werden können, dass er durch die genannte Verkettung mehr physikalische Tatsachen
umschliesst, als zu seiner Aufstellung in ihn hineingelegt wurden.”
227“[...] unterscheidet sich mein Ansatz in radikaler Weise dadurch, dass ich den Fernparallelismus ablehne und

an Einsteins klassischer Relativitätstheorie der Gravitation festhalte. [...] An den Fernparallelismus vemag ich aus
mehreren Gründen nicht zu glauben. Erstens sträubt sich mein mathematisches Gefühl a priori dagegen, eine so
künstliche Geometrie zu akzeptieren; es fällt mir schwer, die Macht zu begreifen, welche die lokalen Achsenkreuze in
den verschiedenen Weltpunkten in ihrer verdrehten Lage zu starrer Gebundenheit aneinander hat einfrieren lassen.
Es kommen [...] zwei gewichtige physikalische Gründe hinzu. [...] nur durch diese Lockerung [des Zusammenhangs
zwischen den lokalen Achsenkreuzen] wird die tatsächlich bestehende Eichinvarianz verständlich. Und zweitens ist
die Möglichkeit, die Achsenkreuze an verschiedenen Stellen unabhängig voneinander zu drehen [...] gleichbedeu-
tend mit der S ymm e t r i e d e s En e r g i e i mp u l s t e n s o r s oder mit der Gültigkeit des Erhaltungssatzes für das
Impulsmoment.”
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As usual, Pauli was less than enthusiastic; he expressed his discontent in a letter to Hermann
Weyl of 26 August 1929:

“First let me emphasize that side of the matter about which I fully agree with you:
Your approach for incorporating gravitation into Dirac’s theory of the spinning electron
[...] I am as adverse with regard to Fernparallelismus as you are [...] (And here I must
do justice to your work in physics. When you made your theory with g′ik = λgik this
was pure mathematics and unphysical; Einstein rightly criticised and scolded you. Now
the hour of revenge has come for you, now Einstein has made the blunder of distant
parallelism which is nothing but mathematics unrelated to physics, now you may scold
[him].)”228 ([250], pp. 518–519)

Another confession of Pauli’s went to Paul Ehrenfest:

“By the way, I now no longer believe in one syllable of teleparallelism; Einstein seems
to have been abandoned by the dear Lord.”229 (Pauli to Ehrenfest 29 September
1929; [250], p. 524)

Pauli’s remark shows the importance of ideology in this field: As long as no empirical basis exists,
beliefs, hopes, expectations, and rationally guided guesses abound. Pauli’s letter to Weyl from 1
July 1929 used non-standard language (in terms of science):

“I share completely your skeptical position with regard to Einstein’s 4-bein geometry.
During the Easter holidays I have visited Einstein in Berlin and found his opinion on
modern quantum theory reactionary.”230 ([250], p. 506)

While the wealth of empirical data supporting Heisenberg’s and Schrödinger’s quantum theory
would have justified the use of a word like “uninformed” or even “not up to date” for the description
of Einstein’s position, use of “reactionary” meant a definite devaluation.

Einstein had sent a further exposition of his new theory to the Mathematische Annalen in
August 1928. When he received its proof sheets from Einstein, Pauli had no reservations to
criticise him directly and bluntly:

“I thank you so much for letting be sent to me your new paper from the Mathematische
Annalen [89], which gives such a comfortable and beautiful review of the mathematical
properties of a continuum with Riemannian metric and distant parallelism [...]. Unlike
what I told you in spring, from the point of view of quantum theory, now an argument
in favour of distant parallelism can no longer be put forward [...]. It just remains [...]
to congratulate you (or should I rather say condole you?) that you have passed over to
the mathematicians. Also, I am not so naive as to believe that you would change your
opinion because of whatever criticism. But I would bet with you that, at the latest
after one year, you will have given up the entire distant parallelism in the same way
as you have given up the affine theory earlier. And, I do not wish to provoke you to

228“Zuerst will ich diejenige Seite der Sache hervorheben, bei der ich voll und ganz mit Ihnen übereinstimme:
Ihr Ansatz zur Einordnung der Gravitation in die Diracsche Theorie des Spinelektrons. [...] Ich bin nämlich
dem Fernparallelismus ebenso feindlich gesinnt wie Sie, [...]. (Und hier muss ich Ihrer Tätigkeit in der Physik
Gerechtigkeit widerfahren lassen. Als Sie früher die Theorie mit g′ik = λgik machten, war dies reine Mathematik
und unphysikalisch, Einstein konnte mit Recht kritisieren und schimpfen. Nun ist die Stunde der Rache für Sie
gekommen; jetzt hat Einstein den Bock des Fernparallelismus geschossen, der auch nur reine Mathematik ist und
nichts mit Physik zu tun hat, und Sie können schimpfen!)”
229“Jetzt glaube ich übrigens vom Fernparallelismus keine Silbe mehr, den Einstein scheint der liebe Gott jetzt

völlig verlassen zu haben.”
230“Ihre Skepsis bezüglich der Einsteinschen 4-Beingeometrie teile ich vollständig. In den Osterferien habe ich

Einstein in Berlin besucht und fand seine Einstellung zur modernen Quantenphysik reaktionär.”
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contradict me by continuing this letter, because I do not want to delay the approach
of this natural end of the theory of distant parallelism.”231 (letter to Einstein of 19
December 1929; [250], 526–527)

Einstein answered on 24 December 1929:

“Your letter is quite amusing, but your statement seems rather superficial to me. Only
someone who is certain of seeing through the unity of natural forces in the right way
ought to write in this way. Before the mathematical consequences have not been
thought through properly, is not at all justified to make a negative judgement. [...]
That the system of equations established by myself forms a consequential relationship
with the space structure taken, you would probably accept by a deeper study – more
so because, in the meantime, the proof of the compatibility of the equations could be
simplified.”232 ([250], p. 582)

Before he had written to Einstein, Pauli, with lesser reservations, complained vis-a-vis Jordan:

“Einstein is said to have poured out, at the Berlin colloquium, horrible nonsense about
new parallelism at a distance. The mere fact that his equations are not in the least
similar to Maxwell’s theory is employed by him as an argument that they are somehow
related to quantum theory. With such rubbish he may impress only American journal-
ists, not even American physicists, not to speak of European physicists.”233 (letter of
30 November 1929, [250], p. 525)

Of course, Pauli’s spells of rudeness are well known; in this particular case they might have been
induced by Einstein’s unfounded hopes for eventually replacing the Schrödinger–Heisenberg–Dirac
quantum mechanics by one of his unified field theories.

The question of the compatibility of the field equations played a very important role because
Einstein hoped to gain, eventually, the quantum laws from the extra equations (cf. his extended
correspondence on the subject with Cartan ([50] and section 6.4.6).

That Pauli had been right (except for the time span envisaged by him) was expressly admitted
by Einstein when he had given up his unified field theory based on distant parallelism in 1931 (see
letter of Einstein to Pauli on 22 January 1932; cf. [240], p. 347).

Born’s voice was the lonely approving one (Born to Einstein on 23 September 1929)234:

231“Ich danke Ihnen vielmals dafür, dass Sie die Korrekturen Ihrer neuen Arbeit aus den mathematischen An-
nalen [89] an mich senden liessen, die eine so bequeme und schöne Übersicht über die mathematischen Eigenschaften
eines Kontinuums mit Riemann-Metrik und Fernparallelismus enthält. [...] Entgegen dem, was ich im Frühjahr zu
Ihnen sagte, lässt sich vom Standpunkt der Quantentheorie nunmehr kein Argument zu Gunsten des Fernparallelis-
mus mehr vorbringen. [...] Es bleibt [...] nur übrig, Ihnen zu gratulieren (oder soll ich lieber sagen: zu kondolieren?),
dass Sie zu den reinen Mathematikern übergegangen sind. Ich bin auch nicht so naiv, dass ich glauben würde, Sie
würden auf Grund irgendeiner Kritik durch Andere Ihre Meinung ändern. Aber ich würde jede Wette mit Ihnen
eingehen, dass Sie spätestens nach einem Jahr den ganzen Fernparallelismus aufgegeben haben werden, so wie Sie
früher die Affintheorie aufgegeben haben. Und ich will Sie nicht durch Fortsetzung dieses Briefes noch weiter zum
Widerspruch reizen, um das Herannahen dieses natürlichen Endes der Fernparallelismustheorie nicht zu verzögern.”
232“Ihr Brief ist recht amüsant, aber Ihre Stellungnahme scheint mir doch etwas oberflächlich. So dürfte nur

einer schreiben, der sicher ist, die Einheit der Naturkräfte vom richtigen Standpunkt aus zu überblicken. [...]
Bevor die mathematischen Konsequenzen richtig durchgedacht sind, ist es keineswegs gerechtfertigt, darüber weg-
werfend zu urteilen. [...] Dass das von mir aufgestellte Gleichungssystem zu der zugrundegelegten Raumstruktur
in einer zwangsläufigen Beziehung steht, würden Sie bei tieferem Studium bestimmt einsehn, zumal der Kompati-
bilitätsbeweis der Gleichungen sich unterdessen noch hat vereinfachen lassen.”
233“Einstein soll im Berliner Kolloquium schrecklichen Quatsch über neuen Fernparallelismus verzapft haben! Die

blosse Tatsache, dass seine Gleichungen nicht die geringste Ähnlichkeit mit der Maxwellschen Theorie haben, will er
als Argument dafür hinstellen, dass sie etwas mit Quantentheorie zu tun haben. Mit einem solchen Kohl kann man
nur amerikanischen Journalisten imponieren, nicht einmal amerikanischen Physikern, geschweige denn europäischen
Physikern.”
234This letter printed in Grüning’s book is not contained in the Einstein–Born correspondence edited by Born [103].
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“Your report on progress in the theory of Fernparallelism did interest me very much,
particularly because the new field equations are of unique simplicity. Until now, I
had been uncomfortable with the fact that, aside from the tremendously simple and
transparent geometry, the field theory did look so very involved”235 ([154], p. 307)

Born, however, was not yet a player in unified field theory, and it turned out that Einstein’s theory
of distant parallelism became as involved as the previous ones.

Einstein’s collaborator Lanczos even wrote a review article about distant parallelism with the
title “The new field theory of Einstein” [200]. In it, Lanczos cautiously offers some criticism after
having made enough bows before Einstein:

“To be critical with regard to the creation of a man who has long since obtained a
place in eternity does not suit us and is far from us. Not as a criticism but only as an
impression do we point out why the new field theory does not house the same degree
of conviction, nor the amount of inner consistency and suggestive necessity in which
the former theory excelled.[...] The metric is a sufficient basis for the construction of
geometry, and perhaps the idea of complementing RIEMANNian geometry by distant
parallelism would not occur if there were the wish to implant something new into RIE-
MANNian geometry in order to geometrically interpret electromagnetism.”236 ([200],
p. 126)

When Pauli reviewed this review, he started with the scathing remark

“It is indeed a courageous deed of the editors to accept an essay on a new field theory of
Einstein for the ‘Results in the Exact Sciences’ [literal translation of the journal’s title].
His never-ending gift for invention, his persistent energy in the pursuit of a fixed aim in
recent years surprise us with, on the average, one such theory per year. Psychologically
interesting is that the author normally considers his actual theory for a while as the
‘definite solution’. Hence, [...] one could cry out: ’Einstein’s new field theory is dead.
Long live Einstein’s new field theory!’ ”237 ([247], p. 186)

For the remainder, Pauli engaged in a discussion with the philosophical background of Lanczos
and criticised his support for Mie’s theory of matter of 1913 according to which

“the atomism of electricity and matter, fully separated from the existence of the quan-
tum of action, is to be reduced to the properties of (singularity-free) eigen-solutions of
still-to-be-found nonlinear differential equations for the field variables.”238

235“Dein Bericht über die Fortschritte der Fernparallelismus-Theorie hat mich sehr interessiert und besonders, dass
die neuen Feldgleichungen von einzigartiger Einfachheit sind. Bisher hat mich nämlich immer an der Sache gestört,
dass neben der so ungeheuer einfachen und durchsichtigen Geometrie die Feldtheorie so äusserst verwickelt aussah.”
236“Kritik zu üben an der Schöpfung eines Mannes, der längst der Ewigkeit verschrieben ist, kommt uns nicht

zu und liegt uns auch fern. Nicht als Kritik, lediglich als Eindruck sei darauf hingewiesen, weshalb der neuen
Feldtheorie nicht jene Überzeugungskraft inne zu wohnen scheint, nicht jene innere Geschlossenheit und suggestive
Notwendigkeit, die die frühere Theorie ausgezeichnet hat. [...] Die Metrik ist eine hinreichende Basis zum Aufbau
der Geometrie und man würde wahrscheinlich nicht auf den Gedanken kommen, die RIEMANNsche Geometrie
durch den Fernparallelismus zu ergänzen, wenn man nicht den Wunsch hätte, etwas Neues in die RIEMANNsche
Geometrie hineinzukonstruieren, um den Elektromagnetismus geometrisch zu interpretieren.”
237“Es ist schon eine kühne Tat der Redaktion, ein Referat über eine neue Feldtheorie EINSTEINs unter die

Ergebnisse der exakten Naturwissenschaften aufzunehmen. Beschert uns doch seine nie versagende Erfindungsgabe
sowie seine hartnäckige Energie beim Verfolgen eines bestimmten Zieles in letzter Zeit durchschnittlich etwa eine
solche Theorie pro Jahr – wobei es psychologisch interessant ist, dass die jeweilige Theorie vom Autor gewöhnlich
eine Zeitlang als ‘definitive’ Lösung betrachtet wird. So könnte man [...] ausrufen ‘Die neue Feldtheorie Einsteins
ist tot. Es lebe die neue Feldtheorie Einsteins!’ ”
238“soll der Atomismus von Elektrizität und Materie ganz losgelöst von der Existenz des Wirkungsquantums, auf

die Eigenschaften von (singularitätenfreien) Eigenlösungen noch aufzufindender nichtlinearer Differentialgleichungen
der Feldgrössen zurückgeführt werden.”
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Thus, Pauli lightly pushed aside as untenable one of Einstein’s repeated motivations and hoped-for
tests for his unified field theories.

Lanczos, being dissatisfied with Einstein’s distant parallelism, then tried to explain “electromag-
netism as a natural property of Riemannian geometry” by starting from the Lagrangian quadratic
in the components of the Ricci tensor: L = RikRlmg

ilgkm+C(Rikgik)2 with an arbitrary constant
C. He varied gik and Rik independently [201]. (For Lanczos see J. Stachel’s essay “Lanczos’ early
contributions to relativity and his relation to Einstein” in [330], pp. 499–518.)

6.4.5 Reactions II: Further research on distant parallelism

The first reactions to Einstein’s papers came quickly. On 29 October 1928, de Donder suggested
a generalisation by using two metric tensors, a space-time metric gik, and a bein-metric g?ik,
connected to the 4-bein components hl̂ by

glm = ĝk̂? hl̂hmk̂. (177)

In place of Einstein’s connection (161), defined through the 4-bein only, he took:

∆ k
lm =

1
2
hk̂(hl̂·m − hm̂·l), (178)

where the dot-symbol denotes covariant derivation by help of the Levi-Civita connection derived
from g?ik. If the Minkowski metric is used as a bein metric g?, then the dot derivative reduces to
partial derivation, and Einstein’s original connection is obtained [48].

Another application of Einstein’s new theory came from Eugen Wigner in Berlin whose paper
showing that the tetrads in distant-parallelism-theory permitted a generally covariant formulation
of “Diracs equation for the spinning electron”, was received by Zeitschrift für Physik on 29 Decem-
ber 1928 [419]. He did point out that “up to now, grave difficulties stood in the way of a general
relativistic generalisation of Dirac’s theory” and referred to a paper of Tetrode [344]. Tetrode,
about a week after Einstein’s first paper on distant parallelism had appeared on 14 June 1928,
had given just such a generally relativistic formulation of Dirac’s equation through coordinate de-
pendent Gamma-matrices239; he also wrote down a (symmetric) energy-momentum tensor for the
Dirac field and the conservation laws. However, he had kept the metric gik introduced into the
formalism by

γiγk + γkγi = 2gik (179)

to be conformally flat. For the matrix-valued 4-vector γi he prescribed the condition of vanish-
ing divergence. Wigner did not fully accept Tetrode’s derivations because there, implicitly and
erroneously, it had been assumed that the two-dimensional representation of the Lorentz group
(2-spinors) could be extended to a representation of the affine group. Wigner stated that such dif-
ficulties would disappear if Einstein’s teleparallelism theory were used. Nevertheless, nowhere did
he claim that the Dirac equation could only be formulated covariantly with the help of Einstein’s
new theory.

Zaycoff of the Physics Institute of the University in Sofia also followed Einstein’s work closely.
Half a year after Einstein’s first two notes on distant parallelism had appeared [84, 83], i.e., shortly
before Christmas 1928, Zaycoff sent off his first paper on the subject, whose arrival in Berlin was
acknowledged only after the holidays on 13 January 1929 [429]. In it he described the mathematical
formalism of distant parallelism theory, gave the identity (42), and calculated the new curvature
scalar in terms of the Ricci scalar and of torsion. He then took a more general Lagrangian than
Einstein and obtained the variational derivatives in linear and, in a simple example, also in second
approximation. In his presentation, he used both the teleparallel and the Levi-Civita connections.
239The paper extended a previous one within the framework of special relativity [345].
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His second and third papers came quickly after Einstein’s third note of January 1929 [88], and
thus had to take into account that Einstein had dropped derivation of the field equations from a
variational principle. In his second paper, Zaycoff followed Einstein’s method and gave a somewhat
simpler derivation of the field equations. An exact, complicated wave equation followed:

DlD
lSk − FkjS

j −Xk = 0, (180)

where Xk := 1
2Dk(V lmnSlnm) + SlkmDrS

lrm − 1
2SkV

lmnSlnm + V lmnS r
mn Slkr + SrkmS

rSm with
torsion S r

mn and the torsion vector Sk, and the covariant derivative Dl := ∇l − Sl, ∇l being
the teleparallel connection (161). In linear approximation, the Einstein vacuum and the vacuum
Maxwell equations are obtained, supplemented by the homogeneous wave equation for a vector
field [430]. In his third note, Zaycoff criticised Einstein “for not having shown, in his most re-
cent publication, whether his constraints on the world metric be permissible.” He then derived
additional exact compatibility conditions for Einstein’s field equations to hold; according to him,
their effect would show up only in second approximation [431]. In his fourth publication Zaycoff
came back to Einstein’s Hamiltonian principle and rederived for himself Einstein’s results. He
also defended Einstein against critical remarks by Eddington [62] and Schouten [304], although
Schouten, in his paper, had mentioned neither Einstein nor his teleparallelism theory, but only
gave a geometrical interpretation of the torsion vector in a geometry with semi-symmetric connec-
tion. Zaycoff praised Einstein’s teleparallelism theory in words reminding me of the creation of the
world as described in Genesis:

“We may say that A. Einstein built a plane world which is no longer waste like the
Euclidean space-time-world of H. Minkowski, but, on the contrary, contains in it all
that we usually call physical reality.”240 ([428], p. 724)

A conference on theoretical physics at the Ukrainian Physical-Technical Institute in Charkow in
May 1929, brought together many German and Russian physicists. Unified field theory, quantum
mechanics, and the new quantum field theory were all discussed. Einstein’s former calculational
assistant Grommer, now on his own in Minsk, in a brief contribution stressed Einstein’s path
for getting an overdetermined system of differential equations: Vary with regard to the 16 bein-
quantities but consider only the 10 metrical components as relevant. He claimed that Einstein had
used only the antisymmetric part of the tensor P k

lm := Γ(g) k
lm −∆ k

lm , where both Γ(g) k
lm and ∆ k

lm

were mentioned above (in Einstein’s first note) although Einstein never used Γ(g) k
lm . According to

Grommer the anti-symmetry of P is needed, because its contraction leads to the electromagnetic
4-potential and because the symmetric part can be expressed by the antisymmetric part and the
metrical tensor. He also played the true voice of his (former) master by repeating Einstein’s
program of deriving the equations of motion from the overdetermined system:

“If the law of motion of elementary particles could be derived from the overdetermined
field equation, one could imagine that this law of motion permit only discrete orbits,
in the sense of quantum theory.”241 ([153], p. 646)

Levi-Civita also had sent a paper on distant parallelism to Einstein, who had it appear in the
reports of the Berlin Academy [206]. Levi-Civita introduced a set of four congruences of curves
that intersect each other at right angles, called their tangents λkı̂ and used Equation (160) in the
form:

δlm = hl̂hm̂. (181)
240“Man kann etwa sagen, dass A. Einstein eine ebene Welt aufgebaut hat, welche nicht mehr öde ist wie die

euklidische Raum-Zeit-Welt von H. Minkowski, sondern im Gegenteil alles in sich enthält, was wir als physikalische
Wirklichkeit zu bezeichnen pflegen.”
241“Würde man das Bewegungsgesetz der Elementarteilchen aus den überbestimmten Feldgleichungen ableiten

können, so kann man sich denken, dass dieses Bewegungsgesetz nur diskrete Bahnen, im Sinne der Quantentheorie,
gestatten wird.”

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


92 Hubert F. M. Goenner

He also employed the Ricci rotation coefficients defined by γı̂k̂l̂ = ∇σhβı̂ hk̂βh
σ
l̂
, where the hatted

indices are “bein”-indices; the Greek letters denote coordinates. They obey

γı̂k̂l̂ + γk̂ı̂l̂ = 0. (182)

The electromagnetic field tensor Fik was entered via

Fikλ
i
l̂
λkm̂ = λrŝ

∂

∂xr
γ ŝ
l̂m̂

. (183)

Levi-Civita chose as his field equations the Einstein–Maxwell equations projected on a rigidly fixed
“world-lattice” of 4-beins. He used the time until the printing was done to give a short preview
of his paper in Nature [205]. About a month before Levi-Civita’s paper was issued by the Berlin
Academy, Fock and Ivanenko [135] had had the same idea and compared Einstein’s notation and
the one used by Levi-Civita in his monograph on the absolute differential calculus [204]:

“Einstein’s new gravitational theory is intimately linked to the known theory of the
orthogonal congruences of curves due to Ricci. In order to ease a comparison between
both theories, we may bring together here the notations of R i c c i and L e v i - C i v i t a
[...] with those of Einstein.”242

A little after the publication of Levi-Civita’s papers, Heinrich Mandel embarked on an ap-
plication of Kaluza’s five-dimensional approach to Einstein’s theory of distant parallelism [217].
Einstein had sent him the corrected proof sheets of his fourth paper [85]. The basic idea was to
consider the points of M4 as equivalent to the ensemble of congruences with tangent vector Xi

5 in
M5 (with cylindricity condition)243. The space-time interval is defined as the distance of two lines
of the congruence on M5: dτ2 = (γil − X5i X5l)(δlk − X l

5 X5k)dxidxk. Mandel did not identify
the torsion vector with the electromagnetic 4-potential, but introduced the covariant derivative
4kA

i := ∂Ai

∂xk +{ikj}Aj + e
cX5kMi

lA
l, where the tensor M is skew-symmetric. We may look at this

paper also as a forerunner of some sort to the Einstein–Mayer 5-vector formalism (cf. Section 6.3.2).
Before Einstein dropped the subject of distant parallelism, many more papers were written by

a baker’s dozen of physicists. Some were more interested in the geometrical foundations, in exact
solutions to the field equations, or in the variational principle.

One of those hunting for exact solutions was G. C. McVittie who referred to Einstein’s pa-
per [88]:

“[...] we test whether the new equations proposed by Einstein are satisfied. It is shown
that the new equations are satisfied to the first order but not exactly.”

He then goes on to find a rigourous solution and obtains the metric ds2 = eax1dx2
4 − e−2ax1dx2

1 −
e−ax1dx2

2 − e−ax1dx2
3 and the 4-potential φ4 = 1

2
√
π
e

1
2ax1 [224]. He also wrote a paper on exact

axially symmetric solutions of Einstein’s teleparallelism theory [225].
Tamm and Leontowich treated the field equations given in Einstein’s fourth paper on distant

parallelism [85]. They found that these field equations did not have a spherically symmetric solution
corresponding to a charged point particle at rest244. The corresponding solution for the uncharged
particle was the same as in general relativity, i.e., Schwarzschild’s solution. Tamm and Leontowitch
242“Die neue Einsteinsche Gravitationstheorie steht mit der bekannten, von Ricci herrührenden Theorie der or-

thogonalen Kurvenkongruenzen in engem Zusammenhang. Um den Vergleich der beiden Theorien zu erleichtern,
mögen hier die Bezeichnungen von R i c c i und L e v i - C i v i t a, [...] mit denjenigen von Einstein zusammengestellt
werden.”
243Mandel’s Xi

5 corresponds to a 5-bein vector hi
5̂
.

244There is no contradiction with the result of Einstein and Mayer [106]; this paper proceeds from different field
equations.
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therefore guessed that a charged point particle at rest would lead to an axially-symmetric solution
and pointed to the spin for support of this hypothesis [342, 342].

Wiener245 and Vallarta246 were after particular exact solutions of Einstein’s field equations in
the teleparallelism theory. By referring to Einstein’s first two papers concerning distant parallelism,
they set out to show that the

“[...] electromagnetic field is incompatible in the new Einstein theory with the assump-
tion of static spherical symmetry and symmetry of the past and the future. [...] the
new Einstein theory lacks at present all experimental confirmation.”

In footnote 4, they added:

“Since writing this paper the authors have learned from Dr. H. Müntz that the new
Einstein field equations of the 1929 paper do not yield the vanishing of the gravitational
field in the case of spherical symmetry and time symmetry. In this case he has been
able to obtain results checking the observed perihelion of mercury” ([417], p. 356)

Müntz is mentioned in [88, 85].
In his paper “On unified field theory” of January 1929, Einstein acknowledges work of a

Mr. Müntz:

“I am pleased to dutifully thank Mr. Dr. H. Müntz for the laborious exact calculation
of the centrally-symmetric problem based on the Hamiltonian principle; by the results
of this investigation I was led to the discovery of the road following here.”247

Again, two months later in his next paper, “Unified field theory and Hamiltonian principle”,
Einstein remarks:

“Mr. Lanczos and Müntz have raised doubt about the compatibility of the field equa-
tions obtained in the previous paper [...].”

and, by deriving field equations from a Lagrangian shows that the objection can be overcome. In
his paper in July 1929, the physicist Zaycoff had some details:

“Solutions of the field equations on the basis of the original formulation of unified field
theory to first approximation for the spherically symmetric case were already obtained
by Müntz.”

In the same paper, he states: “I did not see the papers of Lanczos and Müntz.” Even before this,
in the same year, in a footnote to the paper of Wiener and Vallarta, we read:

245Norbert Wiener (1894–1964). Born in Columbia, Missouri, U.S.A. Studied at Tufts College and Harvard Uni-
versity and received his doctorate with a dissertation on mathematical logic. He continued his studies in Cambridge,
England and in Göttingen. From 1918 instructor at the Massachusetts Institute of Technology where he first studied
Brownian motion. Wiener had a wide range of interests, from harmonic analysis to communications theory and
cybernetics.
246Manuel Sandoval Vallarta (1899–1977). Born in Mexico City. He studied at the Massachusetts Institute of

Technology (MIT), where he received his degree in science and specialised in theoretical physics (1924). With a
scholarship from the Guggenheim Foundation (1927–1928), he studied physics in Berlin and Leipzig. From 1923 to
1946, he worked as an assistant, associate, and regular professor at the MIT, and guest professor at the Lovaina
University in Belgium (Cooperation with Lemâıtre). From 1943, he divided his time between MIT and the School
of Sciences and the Institute of Physics of the National Autonomous University of Mexico (UNAM). His main
contributions were in mathematic methods, quantum mechanics, general relativity and, from 1932, cosmic rays.
247“Es ist mir eine angenehme Pflicht, Hrn. Dr. H. Müntz für die mühsame strenge Berechnung des zentralsym-

metrischen Problems auf Grund des Hamiltonschen Prinzips zu danken; durch die Ergebnisse jener Untersuchung
wurde mir die Auffindung des hier beschrittenen Weges nahegebracht.”
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“Since writing this paper the authors have learned from Dr. H. Müntz that the new
Einstein field equations of the 1929 paper do not yield the vanishing of the gravitational
field in the case of spherical symmetry and time symmetry. In this case he has been
able to obtain results checking the observed perihelion of mercury.”

The latter remark refers to a constant query Pauli had about what would happen, within unified
field theory, to the gravitational effects in the planetary system, described so well by general
relativity248.

Unfortunately, as noted by Meyer Salkover of the Mathematics Department in Cincinatti, the
calculations by Wiener and Vallarta were erroneous; if corrected, one finds the Schwarzschild metric
is indeed a solution of Einstein’s field equations. In the second of his two brief notes, Salkover
succeeded in gaining the most general, spherically symmetric solution [286, 287]. This is admitted
by the authors in their second paper, in which they present a new calculation.

“In a previous paper the authors of the present note have treated the case of a spheri-
cally symmetrical statical field, and stated the conclusions: first, that under Einstein’s
definition of the electromagnetic potential an electromagnetic field is incompatible with
the assumption of static spherical symmetry and symmetry of the past and future; sec-
ond, that if one uses the Hamiltonian suggested in Einstein’s second 1928 paper, the
electromagnetic potential vanishes and the gravitational field also vanishes.”

And they hasten to reassure the reader:

“None of the conclusions of the previous paper are vitiated by this investigation, al-
though some of the final formulas are supplemented by an additional term.” ([418],
p. 802)

Vallarta also wrote a paper by himself ([358], p. 784) whose abstract reads:

“In recent papers Wiener and the author have determined the tensors shλ of Einstein’s
unified theory of electricity and gravitation under the assumption of static spherical
symmetry and of symmetry of past and future. It was there shown that the field
equations suggested in Einstein’s second 1928 paper [83] lead in this case to a vanishing
gravitational field. The purpose of this paper is to investigate, for the same case, the
nature of the gravitational field obtained from the field equations suggested by Einstein
in his first 1929 paper [88].”

He also claims

“that Wiener has shown in a paper to be published elsewhere soon that the Schwarzschild
solution satisfies exactly the field equations suggested by Einstein in his second 1929
paper ([85]).”

Finally, Rosen and Vallarta [282] got together for a systematic investigation of the spherically
symmetric, static field in Einstein’s unified field theory of the electromagnetic and gravitational
fields [93].

Further papers on Einstein’s teleparallelism theory were written in Italy by Bortolotti in
Cagliari, Italy [22, 23, 25, 24], and by Palatini [241].

In Princeton, people did not sleep either. In 1930 and 1931, T. Y. Thomas wrote a series of
six papers on distant parallelism and unified field theory. He followed Einstein’s example by also
248See Pauli’s note of 1919 concerning Weyl’s theory [243]. So far, I have not been able to find a publication by

Dr. H. Müntz reporting about his calculations for Einstein. What should we conclude if none exists? That Einstein
lost his interest in this particular version of unified field theory? That the calculations were erroneous, or just not
reaching far enough? Further hypotheses are possible.
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changing his field equations from the first to the second publication. After that, he concentrated
on more mathematical problems , such as proving an existence theorem for the Cauchy–Kowlewsky
type of equations in unified field theory, by studying the characteristics and bi-characteristic, the
characteristic Cauchy problem, and Huygen’s principle. T. Y. Thomas described the contents of
his first paper as follows:

“In a number of notes in the Berlin Sitzungsberichte followed by a revised account in
the Mathematische Annalen, Einstein has attempted to develop a unified theory of the
gravitational and electromagnetic field by introducing into the scheme of Riemannian
geometry the possibility of distant parallelism. [...] we are led to the construction
of a system of wave equations as the equations of the combined gravitational and
electromagnetic field. This system is composed of 16 equations for the determination
of the 16 quantities hk̂i and is closely analogous to the system of 10 equations for the
determination of the 10 components gik in the original theory of gravitation. It is an
interesting fact that the covariant components hk̂i of the fundamental vectors, when
considered as electromagnetic potential vectors, satisfy in the local coordinate system
the universally recognised laws of Maxwell for the electromagnetic field in free space,
as a consequence of the field equations.” [350]

This looks as if he had introduced four vector potentials for the electromagnetic field, and this,
in fact, T. Y. Thomas does: “the components hk̂i will play the role of electromagnetic potentials
in the present theory.” The field equations are just the four wave equations

∑
ek̂h

ı̂
̂,k̂k̂

where the

summation extends over k̂, with k̂ = 1, . . . , 4, and the comma denotes an absolute derivative he
has introduced. The gravitational potentials are still gik. In his next note, T. Y. Thomas changed
his field equations on the grounds that he wanted them to give a conservation law.

“This latter point of view is made the basis for the construction of a system of field
equations in the present note – and the equations so obtained differ from those of note I
only by the appearance of terms quadratic in the quantities hı̂

j,k. It would thus appear

that we can carry over the interpretation of the hk̂i as electromagnetic potentials; doing
this, we can say that Maxwell’s equations hold approximately in the local coordinate
system in the presence of weak electromagnetic fields.” [351]

The third paper contains a remark as to the content of the concept “unified field theory”:

“It is the objective of the present note to deduce the general existence theorem of the
Cauchy–Kowalewsky type for the system of field equations of the unified field theory.
[...] Einstein (Sitzber. 1930, 18–23) has pointed out that the vanishing of the invariant
hı̂
j,k is the condition for the four-dimensional world to be Euclidean, or more prop-

erly, pseudo-Euclidean. From the point of view of our previous notes this fact has its
interpretation in the statement that the world will be pseudo-Euclidean only in the
absence of electric and magnetic forces. This means that gravitational and electromag-
netic phenomena must be intimately related since the existence of gravitation becomes
dependent on the electromagnetic field. Thus we secure a real physical unification of
gravitation and electricity in the sense that these concepts become but different mani-
festations of the same fundamental entity – provided, of course, that the theory shows
itself to be tenable as a theory in agreement with experience.” [352].

In his three further installments, T. Y. Thomas moved away from unified field theory to the
discussion of mathematical details of the theory he had advanced [353, 354, 355].

Unhindered by constraints from physical experience, mathematicians try to play with possibil-
ities. Thus, it was only consequential that Valentin Bargmann in Berlin, after Riemann and Weyl,
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now engaged in looking at a geometry allowing a comparison “at a distance” of directions but not
of lengths, i.e., only of the quotient of vector components, Ai/Ak [5]. In the framework of a purely
affine theory he obtained a necessary and sufficient condition for this geometry,

Rijkl(Γ) =
1
D
δijVkl, (184)

with the homothetic curvature Vkl from Equation (31). Then Bargmann linked his approach to
Einstein’s first note on distant parallelism [84, 89], introduced a D-bein hki , and determined his
connection such that the quotients Ai/Ak of vector components with regard to theD-bein remained
invariant under parallel transport. The resulting connection is given by

Γ k
lm = hkj

∂hjl
∂xm

− δkl ψm, (185)

where ψm corresponds to Γ k
mk.

Schouten and van Dantzig also used a geometry built on complex numbers, and on Hermitian
forms:

“[...] we were able to show that the metric geometry used by Einstein in his most recent
approach to relativity theory [84, 83] coincides with the geometry of a Hermitian tensor
of highest rank, which is real on the real axis and satisfies certain differential equations.”
([313], p. 319)

The Hermitian tensor referred to leads to a linear integrable connection that, in the special case
that it “is real in the real”, coincides with Einstein’s teleparallel connection.

Distant parallelism was revived four decades later within the framework of Poincaré gauge
theory; the corresponding theories will be treated in the second part of this review.

6.4.6 Overdetermination and compatibility of systems of differential equations

In the course of Einstein’s thinking about distant parallelism, his ideas about overdetermined
systems of differential equations gradually changed. At first, the possibility of gaining hold on the
paths of elementary particles – described as singular worldlines of point particles – was central.
He combined this with the idea of quantisation, although Planck’s constant h could not possibly
surface by such an approach. But somehow, for Einstein, discretisation and quantisation must
have been too close to bother about a fundamental constant.

Then, after the richer constructive possibilities (e.g., for a Lagrangian) became obvious, a
principle for finding the correct field equations was needed. As such, “overdetermination” was
brought into the game by Einstein:

“The demand for the existence of an ‘overdetermined’ system of equations does provide
us with the means for the discovery of the field equations”249 ([90], p. 21)

It seems that Einstein, during his visit to Paris in November 1929, had talked to Cartan
about his problem of finding the right field equations and proving their compatibility. Starting in
December of 1929 and extending over the next year, an intensive correspondence on this subject
was carried on by both men [50]. On 3 December 1929, Cartan sent Einstein a letter of five pages
with a mathematical note of 12 pages appended. In it he referred to his theory of partial differential
equations, deterministic and “in involution,” which covered the type of field equations Einstein was
using and put forward a further field equation. He clarified the mathematical point of view but
249“Die Forderung der Existenz eines ‘überbestimmten’ Gleichungssystems mit der erforderlichen Zahl der Iden-

titäten gibt uns ein Mittel zur Auffindung der Feldgleichungen an die Hand.”
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used concepts such as “degree of generality” and “generality index” not familiar to Einstein250.
Cartan admitted251:

“I was not able to completely solve the problem of determining if there are systems of
22 equations other than yours and the one I just indicated [...] and it still astonishes me
that you managed to find your 22 equations! There are other possibilities giving rise to
richer geometrical schemes while remaining deterministic. First, one can take a system
of 15 equations [...]. Finally, maybe there are also solutions with 16 equations; but the
study of this case leads to calculations as complicated as in the case of 22 equations,
and I was not fortunate enough to come across a possible system [...].” ([50], pp. 25–26)

Einstein’s rapid answer of 9 December 1929 referred to the letter only; he had not been able to
study Cartan’s note. As the further correspondence shows, he had difficulties in following Cartan:

“For you have exactly that which I lack: an enviable facility in mathematics. Your
explanation of the indice de généralité I have not yet fully understood, at least not the
proof. I beg you to send me those of your papers from which I can properly study the
theory.” ([50], p. 73)

It would be a task of its own to closely study this correspondence; in our context, it suffices to
note that Cartan wrote a special note252

“[...] edited such that I took the point of view of systems of partial differential equations
and not, as in my papers, the point of view of systems of equations for total differentials
[...]”253

which was better suited to physicists. Through this note, Einstein came to understand Cartan’s
theory of systems in involution:

“I have read your manuscript, and this enthusiastically. Now, everything is clear to
me. Previously, my assistant Prof. Müntz and I had sought something similar – but we
were unsuccessful.”254 ([50], pp. 87, 94)

In the correspondence, Einstein made it very clear that he considered Maxwell’s equations only
as an approximation for weak fields, because they did not allow for non-singular exact solutions
approaching zero at spacelike infinity.

“It now is my conviction that for rigourous field theories to be taken seriously every-
where a complete absence of singularities of the field must be demanded. This probably
will restrict the free choice of solutions in a region in a far-reaching way – more strongly
than the restrictions corresponding to your degrees of determination.”255 ([50], p. 92)

250Cartan explained the generality index like this:

“[...] the general solution of a given deterministic system in involution depends on r2 +2p−n arbitrary
functions of three variables in the sense that the 3-dimensional solution (x4 = 0) that determines the
most general solution can be obtained by arbitrarily taking r2 + 2p − n of the unknown functions to
be functions of x1, x2, x3.”

Here, n is the number of equations of the system for p unknown functions; r2 denotes the number of existing linear
relations among the 2p derivatives of the unknowns with regard to two arbitrary directions in 3-space.
251Here, and in the sequel, I mostly take over the English translation by J. Leroy and J. Ritter used in the book.
252Cartan’s note was published in a very similar form in [37].
253“[...] redigée en me placant au point de vue des systèmes d’équations aux dérivées partielles et non, comme

dans mes mémoires, au point de vue des systémes d’équations aux différentielles totales [...]”
254“Ich habe Ihr Manuskript gelesen und zwar mit Begeisterung. Nun ist mir alles klar. [...] Ich hatte mit meinem

Assistenten Prof. Müntz früher etwas ähnliches versucht – wir sind aber nicht durchgekommen.”
255“Es ist nun meine Überzeugung, dass bei ernst zu nehmenden Feldtheorien völlig Singularitätsfreiheit des

ganzen Feldes verlangt werden muss. Dies wird wohl die freie Wahl der Lösungen in einem Gebiete in einer sehr
weitgehenden Weise einschränken – über die Einschränkung hinaus, die Ihren Determinationsgrade entsprechen.”
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Although Einstein was grateful for Cartan’s help, he abandoned the geometry with distant paral-
lelism.
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7 Geometrization of the Electron Field as an Additional
Element of Unified Field Theory

After the advent of Schrödinger’s and Dirac’s equations describing the electron non-relativistically
and relativistically, a unification of only the electromagnetic and gravitational fields was considered
unconvincing by many theoretical physicists. Hence, in the period 1927–1933, quite a few attempts
were made to include Schrödinger’s, Dirac’s, or the Klein–Gordon equation as a classical one-
particle equation into a geometrical framework by relating the quantum mechanical wave function
with some geometrical object. Such an approach then was believed to constitute a unification,
up to a degree, of gravitation and/or electricity and quantum theory. In this section, we loosely
collect some of these approaches.

The mathematicians Struik and Wiener found the task of an amalgamation of relativity and
quantum theory (wave mechanics) attractive:

“It is the purpose of the present paper to develop a form of the theory of relativity
which shall contain the theory of quanta, as embodied in Schrödingers wave mechanics,
not merely as an afterthought, but as an essential and intrinsic part.” [336]

A further example for the new program is given by J. M. Whittaker at the University of Edin-
burgh [414] who wished to introduce the wave function via the matter terms:

“In addition to the wave equations a complete scheme must include electromagnetic and
gravitational equations. These will differ from the equations of Maxwell and Einstein
in having ‘wave’ terms instead of ‘particle’ terms for the current vector and material
energy tensor. The object of the present paper is to find these equations [...].” ([414],
p. 543)

Zaycoff, from the point of view of distant parallelism, found the following objection to unified
field theory as the only valid one:

“It neglects the existence of wave-mechanical phenomena. By the work of Dirac, wave-
mechanics has reached an independent status; the only attempt to bring together this
new group of phenomena with the other two is J. M. Whittaker’s theory [414].”256 [428]

In fact, in a short note, Zaycoff presented his version of Whittaker’s theory with 8 coupled second-
order linear field equations for two “wave vectors” that, in a suitable combination, were to rep-
resent “the Dirac’s wave equations”; they contain the Ricci tensor and both the electromagnetic
4-potential and field [432]. Thus, what is described is Dirac’s equation in external gravitational and
electromagnetic fields, not a unified field theory. Whittaker had expressed himself more clearly:

“Eight wave functions are employed instead of Dirac’s four. These are grouped together
to form two four-vectors and satisfy wave equations of the second order. It is shown [...]
that these eight wave equations can be reduced, by addition and subtraction, to the
four second order equations satisfied by Dirac’s functions taken twice over; and that,
in a sense, the present theory includes Dirac’s.” ([414], p. 543)

Whittaker also had written down a variational principle by which the gravitational and electro-
magnetic field equations were also gained. However, as the terms for the various fields were just
added up in his Lagrangian, the theory would not have qualified as a genuine unified field theory
in the spirit of Einstein.
256“Sie vernachlässigt die Existenz der wellenmechanischen Erscheinungen. Die Wellenmechanik ist durch die Ar-

beiten von Dirac in eine selbständige Phase getreten, und der einzige Versuch, diese neue Gruppe von Erscheinungen
mit den übrigen beiden in Zusammenhang zu bringen, ist die Theorie von J. M. Whittaker [414].”
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What fancy, if only shortlived, flowers sprang from the mixing of geometry and wave mechanics
is shown by the example of H. Jehle’s

“[...] path leading, on the one hand, to electrical elementary particles and, on the other,
to the explanation of cosmological problems by quantum theory.” [170]

His ad-hoc modification of Einstein’s equations was:

Gik ψ
2 − σ2R

∂ψ

∂xi
∂ψ

∂xk
= 0, Gik ψψ̄ − σ2R

∂ψ

∂xi
∂ψ̄

∂xk
= 0, (186)

where ψ is the quantum mechanical state function. Although, two years later, Jehle withdrew his
claims concerning elementary particles, he continued to apply

“wave-mechanical methods to gravitational phenomena, by which the curious structure
of the spiral nebulae and spherical star systems may be readily understood.” [171]

An eminent voice was Weyl’s:

“It seems to me that it is now hopeless to seek a unification of gravitation and electricity
without taking material waves into account.” ([408], p. 325)

Now, this posed a problem because for the representation of the electrons in the form of Dirac’s
equation, the elements of spin space, i.e., spinors, had to be used. How to combine them with
the vectors and tensors appearing in electromagnetic and gravitational theories? As the spinor
representation is the simplest representation of the Lorentz group, everything may be played back
to spin space. At the time, this was being done in different ways, in part by the use of number fields
with which physicists were unacquainted such as quaternions and sedenions (cf. Schouten [315]).
Others, such as Einstein and Mayer, liked vectors better and introduced so-called semi-vectors.
Still others tried to write Dirac’s equations in a vectorial form and took into account the doubling
of variables and equations [212, 414]. Some less experienced, as e.g., “Exhibition Research Student”
G. Temple, even claimed that a tensorial theory was necessary to retain it relativistically:

“It is an admitted fact that Dirac’s wave functions are not the components of a tensor
and that his wave equations are not in tensorial form. It is contended here that therefore
his theory cannot be upheld without abandoning the theory of relativity.” ([343], p. 352)

While this story about geometrizing wave mechanics might not be a genuine part of unified
field theory at the time, it seems interesting to follow it as a last attempt for binding together
classical field theory and quantum physics. Even Einstein was lured into thinking about spinors
by Dirac’s equation; this equation promised more success for his program concerning elementary
particles as solutions of differential equations (cf. Section 7.3. )

7.1 Unification of Maxwell’s and Dirac’s equations, of electrons and light

The appearance of these so-called “wave equations” for some seemed to show a kinship between
the photon and the electron; this led to attempts to obtain a common representation for both kind
of particles (waves) [198, 199, 197, 285]. Some of the motivation for these papers came from formal
considerations, i.e., the wish to replace the not yet well-understood new spinor representation of
the Lorentz group by the old tensor representation; a working knowledge about non-commuting
objects like matrices was not yet available to everyone:

“There are probably readers who will share the present writer’s feeling that the methods
of non-commutative algebra are harder to follow, and certainly much more difficult to
invent, than are operations of types long familiar to analysis.” ([44], p. 654)
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More interesting is Frenkel’s remark about Darwin’s presentation of Dirac’s equations in a form
analogous to Maxwell’s equations [44]:

“This relation between the wave-mechanical equations of a ‘quantum of electricity’
and the electromagnetic field equations, which may be looked at as wave-mechanical
equations for photons, ought to have a fundamental physical meaning. Therefore, I do
not think it is superfluous to win the wave equation of the electron as a generalisation
of Ma xw e l l’s equations.”257 ([140], p. 357)

H. T. Flint of King’s College in London aimed at describing the electron in a Maxwell-like way
within a five-dimensional approach. He saw two “unsatisfactory points” in Dirac’s approach, the
introduction of the operator h

2πi
∂
∂xk − eφk, and the mass term mc. In order to mend these thin

spots he wrote down two Maxwell’s equations,

∇µFλµ = Jλ, ∇µGλµ = Lλ, (187)

where Fλµ and Gλµ are two asymmetric field tensors, and Jλ = ∂ψ
∂xλ and Lλ = ∂θ

∂xλ are two current
vectors (µ, λ, ν = 1, 2, . . . , 5). ψ is the electron’s wave function; although not provided by Flint,
the interpretation of θ points to a second kind of wave function. Despite the plentitude of variables
introduced, Flint’s result was meagre; his second order wave equation contained the correct mass
term and two new terms; he did not write up all the equations occurring [129]. His approach
for embedding wave mechanics into a Maxwell-like was continued in further papers, in part in
collaboration with J. W. Fisher; to them it appeared

“unnecessary to introduce in any arbitrary way terms and operators to account for
quantum phenomena.” ([128], p. 653; [127])

By adding four spinor equations at his choosing to Dirac’s equation, Wisniewski in Poland
arrived at a “system of equations similar to Maxwell’s”. His conclusion sounds a bit strange:

“These equations may be interpreted as equations for the electromagnetic field in an
electron gas whose elements are electric and magnetic dipoles.” [388]

In this context, another unorthodox suggestion was put forward by A. Anderson who saw matter
and radiation as two phases of the same substrate:

“We conclude that, under sufficiently large pressure, even at absolute zero normal
matter and black-body radiation (gas of light quanta) become identical in every sense.
Electrons and protons cannot be distinguished from quanta of light, gas pressure not
from radiation pressure.”258

Anderson somehow sensed that charge conservation was in his way; he meddled through by either
assuming neutral matter, i.e., a mixture of electrons and protons, or by raising doubt as to “whether
the usual quanta of light are strictly electrically neutral” ([3], p. 441).

One of the German theorists trying to keep up with wave mechanics was Gustav Mie. He
tried to reformulate electrodynamics into a Schrödinger-type equation and arrived at a linear,
homogeneous wave equation of the Klein–Gordon-type for the ψ-function on the continuum of the
257“Diese Beziehung zwischen den wellenmechanischen Gleichungen eines ‘Elektrizitätsquantums’ und den elektro-

magnetischen Feldgleichungen, die man als wellenmechanische Gleichungen von Lichtquanten ansehen darf, muss
wahrscheinlich eine grundlegende physikalische Bedeutung haben. Es erscheint mir daher nicht überflüssig [...], die
Wellengleichung des Elektrons als Verallgemeinerung der Ma xw e l l schen Gleichungen aufzustellen.”
258“Wir kommen also zu dem Schluss, dass unter genügend grossem Drucke selbst beim absoluten Nullpunkt

gewöhnliche Materie und Hohlraumstrahlung (Lichtquantengas) in jeder Hinsicht identisch werden. Die Elektronen
und Protonen sind nicht zu unterscheiden von Lichtquanten, der Gasdruck nicht vom Strahlungsdruck.”
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components of the electromagnetic vector potential [231]. Heisenberg and Pauli, in their paper
on the quantum dynamics of wave fields, although acknowledging Mie’s theory as an attempt to
establish the classical side for the application of the correspondence principle, criticised it as a
formal scheme not yet practically applicable [158].

7.2 Dirac’s electron with spin, Einstein’s teleparallelism, and Kaluza’s
fifth dimension

In the same year 1928 in which Einstein published his theory of distant parallelism, Dirac presented
his relativistic, spinorial wave equation for the electron with spin. This event gave new hope to
those trying to include the electron field into a unified field theory; it induced a flood of papers in
1929 such that this year became the zenith for publications on unified field theory. Although we
will first look at papers which gave a general relativistic formulation of Dirac’s equation without
having recourse to a geometry with distant parallelism, Tetrode’s paper seems to be the only one
not influenced by Einstein’s work with this geometry (cf. Section 6.4.5). Although, as we noted
in Section 6.4.1, the technique of using n-beins (tetrads) had been developed by mathematicians
before Einstein applied it, it may well have been that it became known to physicists through his
work. Both Kaluza’s five-dimensional space and four-dimensional projective geometry were also
applied in the general relativistic formulation of Dirac’s equation.

7.2.1 Spinors

This is a very sketchy outline with a focus on the relationship to unified field theories. An interesting
study into the details of the introduction of local spinor structures by Weyl and Fock and of the
early history of the general relativistic Dirac equation was given recently by Scholz [290].

For some time, the new concept of spinorial wave function stayed unfamiliar to many physicists
deeply entrenched in the customary tensorial formulation of their equations259. For example,
J. M. Whittaker was convinced that Dirac’s theory for the electron

“has been brilliantly successful in accounting for the ‘duplexity’ phenomena of the atom,
but has the defect that the wave equations are unsymmetrical and have not the tensor
form.” ([414], p. 543)

Some early nomenclature reflects this unfamiliarity with spinors. For the 4-component spinors or
Dirac-spinors (cf. Section 2.1.5) the name “half-vectors” coined by Landau was in use260. Podolsky
even purported to show that it was unnecessary to employ this concept of “half-vector” if general
curvilinear coordinates are used [258]. Although van der Waerden had written on spinor analysis
as early as 1929 [368] and Weyl’s [407, 408], Fock’s [133, 131], and Schouten’s [306] treatments in
the context of the general relativistic Dirac equation were available, it seems that only with van der
Waerden’s book [369], Schrödinger’s and Bargmann’s papers of 1932 [318, 6], and the publication
of Infeld and van der Waerden one year later [166] a better knowledge of the new representations
of the Lorentz group spread out. Ehrenfest, in 1932, still complained261:

“Yet still a thin booklet is missing from which one could leasurely learn spinor- and
tensor-calculus combined.”262 ([68], p. 558)

259Although the name “spinor” seems to have been suggested by Ehrenfest, Cartan first used the concept in 1913.
260Scholz uses the expression “semi-vectors” which is reserved here for the objects of Einstein and Mayer with

same name (cf. Section 7.3).
261Ehrenfest had uttered much the same complaint to van der Waerden who had tried to answer to it by this paper,

obviously without satisfying Ehrenfest but nevertheless laying the ground for other physicists’ understanding.
262“Noch immer fehlt ein dünnes Büchlein, aus dem man gemütlich die Spinorrechnung mit der Tensorrechnung

vereinigt lernen könnte.”
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In 1933, three publications of the mathematician Veblen in Princeton on spinors added to the de-
velopment. He considered his first note on 2-spinors “a sort of geometric commentary on the paper
of Weyl” [378]. Veblen had studied Weyl’s, Fock’s, and Schouten’s papers, and now introduced a
“spinor connection of the first kind” ΛABα, α = 1, . . . , 4, with the usual transformation law under
the linear transformation ψ̄A = TADψ

D (A,D = 1, 2) changing the spin frame:

Λ̄CDα =
(

ΛABαt
B
D +

∂tAD
∂xα

)
TCA , (188)

where tBD is the inverse matrix T−1. TAD corresponds to AAB of Equation (75); however, the transfor-
mation need not be unimodular. Thus, Veblen took up Schouten’s concept of “spin density” [306]
by considering quantities transforming like ψ̄A = tN TADψ

D (A,D = 1, 2), with t := det tBD. Then,
the covariant derivative of a spinor of weight N , ψA is considered; the expression263

∂ψA

∂xα
+ ΛABαψ

B −NΛBBαψ
A = ∇αψA (189)

gives “the components of a geometric object which transforms like those of a spinor of weight
N with respect to the index A and like those of a projective tensor with respect to α”. In his
first paper [378], a further generalisation is introduced including “gauge-transformations” in an
additional variable x0: ψ̄A = ekx

0
fA (A,D = 1, 2), with the gauge transformations

x0 = x0′ − log ρ(xk
′
), xk = xk(xl

′
), (190)

k is called the “index” of the spinor. In order to deal with 4-spinors Veblen considered a complex
projective 3-space and defined 6 real homogeneous coordinates Xσ, with σ = 0, . . . , 5, through
Hermitian forms of the 4-spinor components. The subspace X0 = 0, X5 = 0 of the quadratic
(X0)2 + (X1)2 + (X2)2 + (X3)2 − (X4)2 − (X5)2 = 0 is then tangent to the Minkowski light cone
([377], p. 515).

Veblen imbedded spinors into his projective geometry [380]:

“[...] The components of still other objects, the spinors, remain partially indeterminate
after coordinates and gauge are fixed and become completely determinate only when
the spin frame is specified. There are several ways of embodying this invariant theory
in a formal calculus. The one which is here employed has its antecedents chiefly in the
work of Weyl, van der Waerden, Fock, and Schouten. It differs from the calculus arrived
at by Schouten chiefly in the treatment of gauge invariance, Schouten (in collaboration
with van Dantzig) having preferred to rewrite the projective relativity in a formalism
obtainable from the original one by a sort of coordinate transformation, whereas I
think the original form fits in better with the classical notations of relativity theory.
[...] The theory of spinors is more general than the projective relativity and is reduced
to the latter by the specification of certain fundamental spinors. These spinors have
been recognised by several students (Pauli and Solomon, Fock) of the subject but their
role has probably not been fully understood since it has quite recently been thought
necessary to give special proofs of invariance.” [380]

The transformation law for spinors is the same as before264:

ψ̄ = ekx
0
tN TABψ

B , A,B = 1, . . . , 4. (191)

263While Veblen denoted the covariant derivative of ψA by ψA
,α, we are using the nabla-symbol.

264Unfortunately, in his paper, in contrast to his previous and our notation, Veblen now used N for the index and
k for weight.
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In part, he also takes over van der Waerden’s notation (dotted indices.) As to Veblen’s papers
on 2- and 4-spinors, my impression is that, beyond a more detailed presentation, alas with a
less transparent notation, they do not really bring a pronounced advance with regard to Weyl’s,
Fock’s, van der Waerden’s, and Pauli’s publications (cf. Sections 7.2.2 and 7.2.3). Veblen himself
had a different opinion; for him the homogeneous coordinates used by Pauli seemed “to make
things more complicated” (cf. the paragraphs on projective geometry in Section 2.1.3). Veblen’s
inhomogeneous coordinates xi, (i = 1, 2, 3, 4) and the homogeneous coordinates Xµ, with µ =
0, . . . , 4, are connected by

X0 = exp(x0), xi = exp(x0xi). (192)

According to Veblen,

“In a five-dimensional representation the use of the homogeneous coordinates (X0, . . . , X4)
amounts to representing the points of space-time by the straight lines through the ori-
gin, whereas the use of x1, . . . , x4, and the gauge variable amounts to using the system
of straight lines parallel to the x0-axis for the same purpose. The transformation (192)
given above carries the system of lines into the other.” [382]

7.2.2 General relativistic Dirac equation and unified field theory

After Tetrode and Wigner, whose contributions were mentioned in Section 6.4.5, Weyl also gave
a general relativistic formulation of Dirac’s equation. He gave up his original idea of coupling
electromagnetism to gravitation and transferred it to the coupling of the electromagnetic field to
the matter (electron-) field: In order to keep quantum mechanical equations like Dirac’s gauge
invariant, the wave function had to be multiplied by a phase factor [407, 408]. Actually, Weyl
had expressed the change in his outlook, so important for the idea of gauge-symmetry in modern
physics ([424], pp. 13–19), already in 1928 in his book on group theory and quantum mechanics
([406], pp. 87–88). We have noted before his refutation of distant parallelism (cf. Section 6.4.4).
In his papers, Weyl used a 2-spinor formalism and a tetrad notation different from Einstein’s and
Levi-Civita’s: He wrote ep(k̂) in place of hp

k̂
, and o(l; kj) for the Ricci rotation coefficients γjkl;

this did not ease the reading of his paper. He partly agreed with what Einstein imagined:

“It is natural to expect that one of the two pairs of components of D i r a c’s quantity
belongs to the electron, the other to the proton.”265

In contrast to Einstein, Weyl did not expect to find the electron as a solution of “classical” spinorial
equations:

“For every attempt at establishing the quantum-theoretical field equations, one must
not lose sight [of the fact] that they cannot be tested empirically, but that they pro-
vide, only after their quantization, the basis for statistical assertions concerning the
behaviour of material particles and light quanta.”266 ([407], p. 332)

For many years, Weyl had given the statistical approach in the formulation of physical laws an
important role. He therefore could adapt easily to the Born–Jordan–Heisenberg statistical inter-
pretation of the quantum state. For Weyl and statistics, cf. Section V of Sigurdsson’s dissertation
([325], pp. 180–192).

At about the same time, Fock in May 1929 and later in the year wrote several papers on the
subject of “geometrizing” Dirac’s equation:
265“Es ist naheliegend, zu erwarten, dass von den beiden Komponentenpaaren der D i r a c schen Grösse das eine

dem Elektron, das andere dem Proton zugehört.”
266“Bei jedem Versuch zur Aufstellung der quantentheoretischen Feldgleichungen muss man im Auge haben, dass

diese nicht direkt mit der Erfahrung verglichen werden können, sondern erst nach ihrer Quantisierung die Unterlage
liefern für die statistischen Aussagen über das Verhalten der materiellen Teilchen und Lichtquanten.”
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“In the past two decades, endeavours have been made repeatedly to connect physical
laws with geometrical concepts. In the field of gravitation and of classical mechanics,
such endeavours have found their fullest accomplishment in E i n s t e i n’s general rel-
ativity. Up to now, quantum mechanics has not found its place in this geometrical
picture; attempts in this direction (Klein, Fock) were unsuccessful. Only after Dirac
had constructed his equations for the electron, the ground seems to have been prepared
for further work in this direction.”267 ([135], p. 798)

In another paper [134], Fock and Ivanenko took a first step towards showing that Dirac’s
equation can also be written in a generally covariant form. To this end, the matrix-valued linear
form ds = γkdx

k (summation over k = 1, . . . , 4) was introduced and interpreted as the distance
between two points “in a space with four continuous and one discontinuous dimensions”; the
discrete variable took only the integer values 1, 2, 3, and 4. Then the operator-valued vectorial
quantity γku

k with the vectorial operator uk and its derivative ds
dτ = γkv

k immediately led to
Dirac’s equation by replacing vk by 1

m ( h
2πi

∂
∂xk + e

cAk), where Ak is the electromagnetic 4-potential,
by also assuming the velocity of light c to be the classical average of the “4-velocity” vk, and by
applying the operator to the wave function ψ. In the next step, instead of the Dirac γ-matrices
with constant entries γ(0)

l , the coordinate-dependent bein-components γk̂ := h l
k̂
γ

(0)
l are defined;

ds2 then gives the orthonormality relations of the 4-beins.
In a subsequent note in the Reports of the Parisian Academy, Fock and Ivanenko introduced

Dirac’s 4-spinors under Landau’s name “half vector” and defined their parallel transport with
the help of Ricci’s coefficients. In modern parlance, by introducing a covariant derivative for the
spinors, they in fact already obtained the “gauge-covariant” derivative ∇kψ := ( ∂

∂xk − 2πi
h

e
cAk)ψ.

Thus δψ = 2πi
h

e
cAkdx

kψ is interpreted in the sense of Weyl:

“Thus, it is in the law for the transport of a half-vector that Weyl’s differential linear
form must appear.”268 ([134], p. 1469)

In order that gauge-invariance results, ψ must transform with a factor of norm 1, innocuous for
observation, i.e., ψ → exp(i 2πh

e
c σ) if Ak → Ak + ∂σ

∂xk . Another note and extended presentations
in both a French and a German physics journal by Fock alone followed suit [133, 131, 132]. In the
first paper Fock defined an asymmetric matter tensor for the spinor field,

T jk =
ch

2πi

[
ψ̄γj

(
∂ψ

∂xk
− Γkψ

)
− 1

2
∇k
(
ψ̄γjψ

)]
, (193)

where Γk =
∑
l̂ el̂αl̂hkl̂Cl̂ is related to the matrix-valued spin connection in the expression for the

parallel transport of a half-vector ψ:

δψ =
∑
l̂

el̂Cl̂dsl̂ψ. (194)

The covariant derivative then is Dk = ∂
∂xk − Γk. Fock made clear that the covariant formulation

of Dirac’s equation did not need the special geometry of Einstein’s theory of distant parallelism:

267“In den letzten zwei Jahrzehnten sind wiederholt Bestrebungen zum Ausdruck gekommen, die physikalischen
Gesetze geometrischen Begriffen zuzuordnen. Im Gebiet der Gravitation und der klassischen Mechanik und haben
diese Bestrebungen in E i n s t e i n s allgemeiner Relativitätstheorie ihre höchste Vollendung gefunden. Bisher hat
aber die Quantenmechanik im geometrischen Bilde keinen Platz gefunden; Versuche in dieser Richtung (Klein, Fock)
hatten keinen Erfolg. Erst nachdem Dirac seine Gleichungen für das Elektron aufgestellt hat, scheint der Boden zur
weiteren Arbeit in dieser Richtung geschaffen zu sein.”
268“C’est donc dans la loi du déplacement d’un demi-vecteur que doit figurer la forme différentielle lineaire de

Weyl.”
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“By help of the concept of parallel transport of a half-vector, Dirac’s equations will
be written in a generally invariant form. [...] The appearance of the 4-potential φl
besides the Ricci-coefficients γikl in the expression for parallel transport, on the one
hand provides a simple reason for the emergence of the term pl − e

cφl in the wave
equation and, on the other, shows that the potentials φl have a place of their own in
the geometrical world-view, contrary to Einstein’s opinion; they need not be functions
of the γikl.”269 ([131], p. 261, Abstract)

For his calculations, Fock used Eisenhart’s book [119] and “the excellent collection of the most
important formulas and facts in the paper of Levi-Civita” [206]. Again, Weyl’s “principle of gauge
invariance” as formulated in Weyl’s book of 1928 [406] is mentioned, and Fock stressed that he
had found this principle independently and earlier270:

“The appearance of Weyl’s differential form in the law for parallel transport of a half
vector connects intimately to the fact, observed by the author and also by Weyl (l.c.),
that addition of a gradient to the 4-potential corresponds to multiplication of the ψ-
function with a factor of modulus 1.”271 ([130], p. 266)

The divergence of the complex energy-momentum tensor W i
k = T ik + iU ik satisfies

∇jT jk = eJ lFlk, ∇jU jk =
hc

4π
J lRlk, (195)

with the electromagnetic field tensor Fik, the Ricci tensor Rik, and the Dirac current Jk. The
French version of the paper preceded the German “completed presentation”; in it Fock had noted:

“The 4-potential finds its place in Riemannian geometry, and there exists no reason for
generalising it (Weyl, 1918), or for introducing distant parallelism (Einstein 1928). In
this point, our theory, developed independently, agrees with the new theory by H. Weyl
expounded in his memoir ‘gravitation and the electron’.”272 ([132], p. 405)

In both of his papers, Fock thus stressed that Einstein’s teleparallel theory was not needed for the
general covariant formulation of Dirac’s equation. In this regard he found himself in accord with
Weyl, whose approach to the Dirac equation he nevertheless criticised:

“The main subject of this paper is ‘Dirac’s difficulty’273. Nevertheless, it seems to us
that the theory suggested by Weyl for solving this problem is open to grave objections;
a criticism of this theory is given in our article.”274

269“Mit Hilfe des Begriffs der Parallelübertragung eines Halbvektors werden die Diracschen Gleichungen in allge-
mein invarianter Form geschrieben. [...] Das Auftreten des Viererpotentials φl neben den Riccikoefficienten γikl in
der Formel für die Parallelübertragung gibt einerseits einen einfachen geometrischen Grund für das Auftreten des
Ausdrucks pl − e

c
φl in der Wellengleichung und zeigt andererseits, dass die Potentiale φl, abweichend von Einsteins

Auffassung, einen selbständigen Platz im geometrischen Weltbild haben und nicht etwa Funktionen der γikl sein
müssen.”
270Fock referred to his paper of 1926 [130].
271“Das Auftreten der Weylschen Differentialform im Gesetz der Parallelverschiebung eines Halbvektors steht in

enger Beziehung mit der vom Verfasser und auch von Weyl (l.c.) bemerkten Tatsache, dass die Addition eines Gradi-
enten zum Viererpotential der Multiplikation der ψ-Funktion mit einem Faktor vom absoluten Betrag 1 entspricht.”
272“Le potentiel-vecteur trouve sa place dans la géométrie de Riemann, et on n’a pas besoin de la généraliser

(Weyl, 1918) ou d’introduire le parallélisme à distance (Einstein 1928). Dans ce point notre théorie – développée
indépendamment – s’accorde avec la nouvelle théorie de H. Weyl exposée dans son mémoire ‘Gravitation et
Électron’.”
273By ‘Dirac’s difficulty’ we must understand the existence of negative energy states of the electron and the non-

vanishing probability that a change of electrical charge occurs.
274“L’objet principal de ce mémoire est la ‘difficulté de Dirac’. La théorie proposée par Weyl pour résoudre cette

difficulté nous semble, cependant, ouverte à de graves objections; une critique de cette théorie est donnée dans notre
article cité au debut [this is [135]].”
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Weyl’s paper is seminal for the further development of the gauge idea [407].
Although Fock had cleared up the generally covariant formulation of Dirac’s equation, and

had tried to propagate his results by reporting on them at the conference in Charkow in May
1929275 [168], further papers were written. Thus, Reichenbächer, in two papers on “a wave-
mechanical 2-component theory” believed that he had found a method different from Weyl’s for
obtaining Dirac’s equation in a gravitational field. As was often the case with Reichenbächer’s work,
after longwinded calculations a less than transparent result emerged. His mass term contained a
square root, i.e., a ± two-valuedness, which, in principle, might have been instrumental for helping
to explain the mass difference of proton and electron. As he remarked, the chances for this were
minimal, however [276, 277].

In two papers, Zaycoff (of Sofia) presented a unified field theory of gravitation, electromagnetism
and the Dirac field for which he left behind the framework of a theory with distant parallelism used
by him in other papers. By varying his Lagrangian with respect to the 4-beins, the electromagnetic
potential, the Dirac wave function and its complex-conjugate, he obtained the 20 field equations
for gravitation (of second order in the 4-bein variables, assuming the role of the gravitational
potentials) and the electromagnetic field (of second order in the 4-potential), and 8 equations of
first order in the Dirac wave function and the electromagnetic 4-potential, corresponding to the
generalised Dirac equation and its complex conjugate [426, 427].

In another paper, Zaycoff wanted to build a theory explaining the “equilibrium of the electron”.
This means that he considered the electron as extended. At this occasion, he fought with himself
about the admissibility of the Kaluza–Klein approach:

“Recently, repeated attempts have been made to raise the number of dimensions of the
world in order to explain its strange lawfulness (H. Mandel, G. Rumer, the author et
al.). No doubt, there are weighty reasons for such a seemingly paradoxical view. For it
is impossible to represent Poincaré’s pressure of the electron within the normal space-
time scheme. However, the introduction of such metaphysical elements is in gross
contradiction with space-time causality, although we may doubt in causality in the
usual sense due to Heisenberg’s uncertainty relations. A multi-dimensional causality
cannot be understood as long as we are unable to give the extra dimensions an intuitive
meaning.”276 [433]

Rumer’s paper is [284] (cf. Section 8). In the paper, Zaycoff introduced a six-dimensional manifold
with local coordinates x0, . . . , x5 where x0, x5 belong to the additional dimensions. His local 6-
bein comprises, besides the 4-bein, four electromagnetic potentials and a further one called “eigen-
potential” of the electromagnetic field. As he used a “sharpened cylinder condition, ” no further
scalar field is taken into account. For x0 to x4 he used the subgroup of coordinate transformations
given in Klein’s approach, augmented by x5′ = x5.

Schouten seemingly became interested in Dirac’s equation through Weyl’s publications. He
wrote two papers, one concerned with the four-dimensional and a second one with the five-
dimensional approach [306, 307]. They resulted from lectures Schouten had given at the Mas-
sachusetts Institute of Technology from October to December 1930 and at Princeton University
275During a discussion with Frenkel, he also insisted that, in Kaluza’s approach, the meaning of the fifth coordinate

is to be seen in the “preservation of invariance against adding a gradient to the [electromagnetic] vector potential”
(p. 651).
276“Es sind kürzlich wiederholt Versuche gemacht worden (H. Mandel, G. Rumer, Verfasser u. a.), die Dimension-

szahl der Welt zwecks Deutung ihrer sonderbaren Gesetzlichkeit zu erhöhen. Es gibt zwar gewichtige Gründe zu
einer solchen augenscheinlich paradoxen Anschauung. Denn es ist gar nicht möglich, den Poincaréschen Druck des
Elektrons in dem üblichen Raum-Zeitschema darzustellen. Aber die Einführung derartiger metaphysischer Elemente
steht in grobem Widerspruch mit der raumzeitlichen Kausalität, obwohl wir andererseits nach der Heisenbergschen
Unschärferelation eine Kausalität im üblichen Sinne bezweifeln dürfen. Ein mehrdimensionaler Determinismus ist
jedoch unbegreiflich, solange wir nicht in der Lage sind, den überschüssigen Dimensionen einen anschaulichen Sinn
beizulegen.”
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from January to March 1931; Weyl’s paper referred to is in Zeitschrift für Physik [407]. Schouten
relied on his particular representation of the Lorentz group in a complex space, which later at-
tracted Schrödinger’s criticism. [305]. His comment on Fock’s paper [131] is277:

“Fock has tried to make use of the indetermination of the displacement of spin-vectors
to introduce the electromagnetic vector potential. However the displacement of con-
travariant tensor-densities of weight +1

2 being wholly determined and only these vector-
densities playing a role, the idea of Weyl of replacing the potential vector by pseudo-
vectors of class +1 and −1 seems much better.” ([306], p. 261, footnote 19)

Schouten wrote down Dirac’s equation in a space with torsion; his iterated wave equation, besides
the mass term, contains a contribution ∼ − 1

4R if torsion is set equal to zero. Whether Schouten
could fully appreciate the importance of Weyl’s new idea of gauging remains open. For him an
important conclusion is that

“by the influence of a gravitational field the components of the potential vector change
from ordinary numbers into Dirac-numbers.” ([306], p. 265)

Two years later, Schrödinger as well became interested in Dirac’s equation. We reproduce a
remark from his publication [318]:

“The joining of Dirac’s theory of the electron with general relativity has been under-
taken repeatedly, such as by Wigner [419], Tetrode [344], Fock [131], Weyl [407, 408],
Zaycoff [434], Podolsky [258]. Most authors introduce an orthogonal frame of axes at
every event, and, relative to it, numerically specialised Dirac-matrices. This procedure
makes it a little difficult to find out whether Einstein’s idea concerning teleparallelism,
to which [authors] sometimes refer, really plays a role, or whether there is no depen-
dence on it. To me, a fundamental advantage seems to be that the entire formalism
can be built up by pure operator calculus, without consideration of the ψ-function.”278

([318], p. 105)

The γ-matrices were taken by Schrödinger such that their covariant derivative vanished, i.e.,
γl‖m = ∂γl

∂xm − Γrlm(g)γr + γlΓm − γmΓl = 0, where Γl is the spin-connection introduced by
ψ‖l = ∂ψ

∂xl − Γlψ. Schrödinger took γ0, γ
i, with i = 1, 2, 3, as Hermitian matrices. He intro-

duced tensor-operators T iklm such that the inner product ψ∗γ0T
ik
lmψ instead of ψ∗T iklmψ stayed real

under a “complemented point-substitution”.
In the course of his calculations, Schrödinger obtained the wave equation

1
√
g
∇k
√
g gkl∇l −

R

4
− 1

2
fkls

kl = µ2, (196)

where µ = 2πmc/h, fkl is the electromagnetic field tensor, and skl := 1
2γ

[kγl] with the γ-matrices
γk, i.e., the spin tensor. As to the term with the curvature scalar R, Schrödinger was startled:

277Pseudo-tensors of class k are defined by help of an auxiliary variable ξ0 transforming like ξ0
′

= σξ0; in their
transformation law the multiplicative factor σk occurs. σ is a function of the coordinates involved in the tensor
transformation law.
278“Die Vereinigung der Diracschen Theorie des Elektrons mit der allgemeinen Relativitätstheorie ist schon

wiederholt in Angriff genommen worden, [...]. Die meisten Autoren führen in jedem Weltpunkt ein orthogonales
Achsenkreuz und in bezug auf dieses numerisch spezialisierte Diracsche Matrizen ein. Bei diesem Verfahren ist es
ein bisschen schwer, zu erkennen, ob die Einsteinsche Idee des Fernparallelismus, auf die teilweise Bezug genommen
wird, wirklich hereinspielt oder ob man davon unabhängig ist [...]. Ein grundsätzlicher Vorzug scheint es mir, dass
sich der ganze Apparat fast vollständig durch reinen Operatorenkalkül aufbauen lässt, ohne auf die ψ-Funktion
Bezug zu nehmen.”
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“To me, the second term seems to be of considerable theoretical interest. To be sure, it
is much too small by many powers of ten in order to replace, say, the term on the r.h.s.
For µ is the reciprocal Compton length, about 1011 cm−1. Yet it appears important
that in the generalised theory a term is encountered at all which is equivalent to the
enigmatic mass term.”279 ([318], p. 128)

The coefficient − 1
4 in front of the Ricci scalar in Schrödinger’s (Klein–Gordon) wave equation differs

from the 1
6 needed for a conformally invariant version of the scalar wave equation280 (cf. [255],

p. 395).
Bargmann in his approach, unlike Schrödinger, did not couple “point-substitutions [linear coor-

dinate transformations] and similarity transformations [in spin space]”[6]. He introduced a matrix
α with α+ α† = 0 such that (αγl)† = (αγl), with l = 0, . . . , 3.

Levi-Civita wrote a letter to Schrödinger in the form of a scientific paper, excerpts of which
became published by the Berlin Academy:

“Your fundamental memoir induced me to develop the calculational details for obtain-
ing, from Dirac’s equations in a general gravitational field, the modified form of your
four equations of second order and thus make certain the corresponding additional
terms. These additional terms do depend in an essential way on the choice of the or-
thogonal tetrad in the space-time manifold: It seems that without such a tetrad one
cannot obtain Dirac’s equation.”281 [207]

The last, erroneous, sentence must have made Pauli irate. In this paper, he pronounced his
anathema (in a letter to Ehrenfest with the appeal “Please, copy and distribute!”):

“The heap of corpses, behind which quite a lot of bums look for cover, has got an
increment. Beware of the paper by Levi-Civita: Dirac- and Schrödinger-type equations,
in the Berlin Reports 1933. Everybody should be kept from reading this paper, or from
even trying to understand it. Moreover, all articles referred to on p. 241 of this paper
belong to the heap of corpses.”282 ([251], p. 170)

Pauli really must have been enraged: Among the publications banned by him is also Weyl’s well-
known article on the electron and gravitation of 1929 [407].

Schrödinger’s paper was criticised by Infeld and van der Waerden on the ground that his
calculational apparatus was unnecessarily complicated. They promised to do better and referred
to a paper of Schouten’s [306]:

“In the end, Schouten arrives at almost the same formalism developed in this pa-
per; only that he uses without need n-bein components and theorems on sedenions283,

279“Das zweite Glied scheint mir von erheblichem theoretischen Interesse. Es ist freilich um viele Zehnerpotenzen
zu klein, um etwa das Glied rechter Hand ersetzen zu können. Denn µ ist die reziproke Compton-Wellenlänge,
ungefähr 1011 cm−1. Immerhin scheint es bedeutungsvoll, dass in der verallgemeinerten Theorie überhaupt ein mit
dem rätselhaften Massenglied gleichartiges angetroffen wird.”
280For arbitrary dimension D ≥ 2 of the manifold MD, the coefficient in the conformally invariant equation is
D−2

4(D−1)
.

281“Ihre grundlegende Abhandlung hat mich veranlasst, die Rechnungseinzelheiten zu entwickeln, um von den
Diracschen Gleichungen im allgemeinen Schwerefeld die modifizierte Form ihrer vier Gleichungen zweiter Ordnung
zu gewinnen und so die entsprechenden Zusatzglieder festzustellen. Diese Zusatzglieder hängen in wesentlicher Weise
von der Wahl des orthogonalen Vierbeines der Raumzeitmannigfaltigkeit ab: ein solches Bein scheint unentbehrlich
zu sein, um die Diracschen Gleichungen zu bekommen.”
282“Der Leichenberg, hinter dem allerlei Gesindel Deckung sucht, hat einen Zuwachs erfahren. Es wird gewarnt

vor der Arbeit von Levi-Civita: Diracsche und Schrödingersche Gleichungen, Berliner Berichte 1933. Alle sollten
abgehalten werden, diese Arbeit zu lesen oder gar zu versuchen, sie zu verstehen. Ferner gehören sämtliche auf
S. 241 dieser Arbeit zitierten Arbeiten dem Leichenberge an.”
283Sedenions or quadri-quaternions form a system of 16 elements of an associative algebra; they are formed by the

unit element 1, four elements Ei with EiEi = 1; EiEj = −EjEi and their products.
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while afterwards the formalism is still burdened with auxiliary variables and pseudo-
quantities. We have taken over the introduction of ‘spin densities’ by Schouten.”284

([167], p. 4)

Unlike Schrödinger’s, the wave equation derived from Dirac’s equation by Infeld and Waerden
contained a term +1

4R, with R the Ricci scalar.
It is left to an in-depth investigation, how this discussion concerning teleparallelism and Dirac’s

equation involving Tetrode, Wigner, Fock, Pauli, London, Schrödinger, Infeld and van der Waerden,
Zaycoff, and many others influenced the acceptance of the most important result, i.e., Weyl’s
transfer of the gauge idea from classical gravitational theory to quantum theory in 1929 [407, 408].

7.2.3 Parallelism at a distance and electron spin

Einstein’s papers on distant parallelism had a strong but shortlived impact on theoretical physicists,
in particular in connection with the discussion of Dirac’s equation for the electron,(

iγk
∂

∂xk
+ µ

)
ψ = 0, (197)

where the 4-spinor ψ and the γ-matrices are used. At the time, there existed some hope that
a unified field theory for gravitation, electromagnetism, and the “electron field” was in reach.
This may have been caused by a poor understanding of the new quantum theory in Schrödinger’s
version: The new complex wave function obeying Schrödinger’s, and, more interestingly for rela-
tivists, Dirac’s equation or the ensuing Klein–Gordon wave equation, was interpreted in the spirit
of de Broglie’s “onde pilote”, i.e., as a classical matter wave, not – as it should have been – as
a probability amplitude for an ensemble of indistinguishable electrons. One of the essential fea-
tures of quantum mechanics, the non-commutativity of conjugated observables like position and
momentum, nowhere entered the approaches aiming at a geometrization of wave mechanics.

Einstein was one of those clinging to the picture of the wave function as a real phenomenon
in space-time. Although he knew well that already for two particles the wave function no longer
“lived” in space-time but in 7-dimensional configuration space, he tried to escape its statistical
interpretation. On 5 May 1927, Einstein presented a paper to the Academy of Sciences in Berlin
with the title “Does Schrödinger’s wave mechanics determine the motion of a system completely or
only in the statistical sense?”. It should have become a 4-page publication in the Sitzungsberichte.
As he wrote to Max Born:

“Last week I presented a short paper to the Academy in which I showed that one can
ascribe fully determined motions to Schrödinger’s wave mechanics without any statisti-
cal interpretation. Will appear soon in Sitz.-Ber. [Reports of the Berlin Academy].”285

([103], p. 136)

However, he quickly must have found a flaw in his argumentation: He telephoned to stop the
printing after less than a page had been typeset. He also wanted that, in the Academy’s protocol,
the announcement of this paper be erased. This did not happen; thus we know of his failed attempt,
and we can read how his line of thought began ([182], pp. 134–135).

284“Schouten kommt am Ende nahezu zum gleichen Formalismus, der in dieser Arbeit entwickelt wird; nur benutzt
er zur Einführung dieses Formalismus unnötigerweise n-Beinkomponenten und Sätze über Sedenionen, während der
Formalismus nachher noch durch Hilfsvariable und Pseudogrössen belastet wird. Die Einführung von ‘Spinordichten’
haben wir von Schouten übernommen.”
285“Vorige Woche habe ich der Akademie eine kleine Arbeit eingereicht, in der ich zeigte, dass man der Schrödinger

Wellenmechanik ganz bestimmte Bewegungen zuordnen kann, ohne jede statistische Deutung. Erscheint baldigst in
den Sitz.-Ber.”
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Each month during 1929, papers appeared in which a link between Einstein’s teleparallelism
theory and quantum physics was foreseen. Thus, in February 1929, Wiener and Vallarta stressed
that

“the quantities shλ286 of Einstein seem to have one foot in the macro-mechanical world
formally described by Einstein’s gravitational potentials and characterised by the index
λ, and the other foot in a Minkowskian world of micro-mechanics characterised by the
index s. That the micro-mechanical world of the electron is Minkowskian is shown by
the theory of Dirac, in which the electron spin appears as a consequence of the fact
that the world of the electron is not Euclidean, but Minkowskian. This seems to us the
most important aspect of Einstein’s recent work, and by far the most hopeful portent
for a unification of the divergent theories of quanta and gravitational relativity.” [416]

The correction of this misjudgement of Wiener and Vallarta by Fock and Ivanenko began only one
month later [134], and was complete in the summer of 1929 [134, 133, 131, 132].

In March, Tamm tried to show

“that for the new field theory of Einstein [84, 88] certain quantum-mechanical features
are characteristic, and that we may hope that the theory will enable one to seize the
quantum laws of the microcosm.”287 ([341], p. 288)

Tamm added a torsion term ih̄
√

(SiSi)χ to the Dirac equation (197) and derived from it a general
relativistic (Schrödinger) wave equation in an external electromagnetic field with a contribution
from the spin tensor coupled to a torsion term288 α[iαk]S l

ik . As Tamm assumed for the torsion
vector Sk = ± ie

h̄c φk, his tetrads had to be complex, with the imaginary part containing the
electromagnetic 4-potential φk. This induced him to see another link to quantum physics; by
returning to the first of Einstein’s field equations (170) and replacing ε in Equation (169) by i ec h̄
in the limit h̄ → 0, he obtained the laws of electricity and gravitation, separately. From this he
conjectured that, for finite h, Einstein’s field equations might correctly reproduce the quantum
features of “the microcosm” ([341], p. 291); cf. also [340].

What remained after all the attempts at geometrizing the matter field for the electron, was the
conviction that the quantum mechanical “wave equations” could be brought into a covariant form,
i.e., could be dealt with in the presence of a gravitational field, but that quantum mechanics, spin,
and gravitation were independent subjects as seen from the goal of reaching unified field theory.

7.2.4 Kaluza’s theory and wave mechanics

For some, Kaluza’s introduction of a fifth, spacelike dimension seemed to provide a link to quantum
theory in the form of wave mechanics. Although he did not appreciate Kaluza’s approach, Re-
ichenbächer listed various possibilities: With the fifth dimension, Kaluza and Klein had connected
electrical charge, Fock the electromagnetic potential, and London the spin of the electron [275].
Also, the idea of relating Schrödinger’s matter wave function with the new metrical component g55
was put to work. Gonseth289 and Juvet, in the first of four consecutive notes submitted in August
1927 [150, 148, 149, 147] stated:

286The symbol shλfor the tetrad field is due to Weitzenböck.
287“dass für die neue Einsteinsche Feldtheorie gewisse quantenmechanische Züge charakteristisch sind und dass

man hoffen darf, dass die Theorie die Erfassung der Quantengesetze des Mikrokosmos ermöglichen wird.”
288For the alpha-matrices, cf. Equation (88).
289Ferdinand Gonseth (1890–1975). Born in Sonvilier, Switzerland. Mathematician teaching first at the University

of Bern and then at the Federal Institute of Technology (ETH) Zurich. His interest were in the foundations of
mathematics, geometry and in problems of space and time. With G. Bachelard and P. Bernays he founded the
philosophical review journal Dialectica.
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“The objective of this note is to formulate a five-dimensional relativity whose equations
will give the laws for the gravitational field, the electromagnetic field, the laws of motion
of a charged material point, and the wave equation of Mr. Schrödinger. Thus, we will
have a frame in which to take the gravitational and electromagnetic laws, and in which
it will be possible also for quantum theory to be included.”290 ([150], p. 543)

It turned out that from the R55-component of the Einstein vacuum equations Rαβ = 0, α, β =
1, . . . , 5, with the identification g55 = ψ made, and the assumption that ψ, ∂ψ∂xi be “very small”,
while ψ, ∂ψ∂x5 be “even smaller”, the covariant d‘Alembert equation followed, an equation that was
identified by the authors with Schrödinger’s equation. Their further comment is:

“We thus can see that the fiction of a five-dimensional universe provides a deep reason
for Schrödinger’s equation. Obviously, this artifice will be needed if some phenomenon
would force the physicists to believe in a variability of the [electric] charge.”291 ([149],
p. 450)

In the last note, with the changed identification g55 = ψ2 and slightly altered weakness assumptions,
Gonseth and Juvet gained the relativistic wave equation with a non-linear mass term.

Interestingly, a couple of months later, O. Klein had the same idea about a link between the
g55-component of the metric and the wave function for matter in the sense of de Broglie and
Schrödinger. However, as he remarked, his hopes had been shattered [188]. Klein’s papers were of
import: Remember that Kaluza had identified the fifth component of momentum with electrical
charge [180], and five years later, in his papers of 1926 [184, 183], Klein had set out to quantise
charge. One of his arguments for the unmeasurability of the fifth dimension rested on Heisenberg’s
uncertainty relation for position and momentum applied to the fifth components. If the elementary
charge of an electron has been measured precisely, then the fifth coordinate is as uncertain as can be.
However, Klein’s argument is fallacious: He had compactified the fifth dimension. Consequently,
the variance of position could not become larger than the compactification length l ∼ 10−30,
and the charge of the electron thus could not have the precise value it has. In another paper,
Klein suggested the idea that the physical laws in space-time might be implied by equations in
five-dimensional space when suitably averaged over the fifth variable. He tried to produce wave-
mechanical interference terms from this approach [186]. A little more than one year after his first
paper on Kaluza’s idea, in which he had hoped to gain some hold on quantum mechanics, Klein
wrote:

“Particularly, I no longer think it to be possible to do justice to the deviations from
the classical description of space and time necessitated by quantum theory through the
introduction of a fifth dimension.” ([188], p. 191, footnote)

At about the same time, W. Wilson of the University of London rederived the Schrödinger equation
in the spirit of O. Klein and noted:

“Dr. H. T. Flint has drawn my attention to a recent paper by O. Klein [188] in which an
extension to five dimensions similar to that given in the present paper is described. The
corresponding part of the paper was written some time ago and without any knowledge
of Klein’s work [...].” ([420], p. 441)

290“L’object de cette note est de formuler une relativité à cinq dimensions dont les équations fourniront les lois
du champ gravifique, du champ électromagnétique, les lois du mouvement d’un point matériel chargé et l’équation
des ondes de M. Schrödinger. Nous aurons ainsi un cadre dans lequel entreront les lois de la gravitation et de
l’électromagnétisme, et où il sera possible de faire entrer aussi la théorie des quanta.”
291“On voit ainsi que la fiction d’un univers à cinq dimensions permet de donner une raison profonde à l’équation

de Schrödinger. Il est clair que cet artifice deviendrait nécessaire si quelque phénomène obligeait les physiciens à
croir à la variabilité de la charge.”
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Even Eddington ventured into the fifth dimension in an attempt to reformulate Dirac’s equation
for more than one electron; he used matrix algebra extensively:

“The matrix theory leads to a very simple derivation of the first order wave equation,
equivalent to Dirac’s but expressed in symmetrical form. It leads also to a wave equation
which we can identify as relating to a system containing electrons with opposite spin.
[...] It is interesting to note the way in which the existence of electrons with opposite
spins locks the ‘fifth dimension,’ so that it cannot come into play and introduce the
absolute into a world of relation. The domain of either electron alone might be rotated
in a fifth dimension and we could not observe any difference.” ([61], pp. 524, 542)

Eddington’s “pentads” built up from sedenions later were generalised by Schouten [307].
J. W. Fisher of King’s College re-interpreted Kaluza–Klein theory as presented in Klein’s

third paper [186]. He proceeded from the special relativistic homogeneous wave equation in five-
dimensional space and, after dimensional reduction, compared it to the Klein–Gordon equation
for a charged particle. By making a choice different from Klein’s for a constant he rederived the
result of de Broglie and others that null geodesics in five-dimensional space generate the geodesics
of massive and massless particles in space-time [127].

Mandel of Petersburg/Leningrad believed that

“a consideration in five dimensions has proven to be well suited for the geometrical
interpretation of macroscopic electrodynamics.” ([220], p. 567)

He now posed the question whether this would be the same for Dirac’s theory. Seemingly, he also
believed that a tensorial formulation of Dirac’s equation was handy for answering this question
and availed himself of “the tensorial form given by W. Gordon [151], and by J. Frenkel”292 [140].
Mandel used, in five-dimensional space, the complex-valued tensorial wave function Ψik = ψ γik +
Ψ[ik] with a 5-scalar ψ. Here, he had taken up a suggestion J. Frenkel had developed during
his attempt to describe the “rotating electron,” i.e., Frenkel’s introduction of a skew-symmetric
wave function proportional to the “tensor of magneto-electric moment” mik of the electron by
mikψ = m0ψik [141, 140]. Ψik may depend on x5; by taking Ψ periodic in x5, Mandel derived
a wave equation “which can be understood as a generalisation of the Klein–Fock five-dimensional
wave equation [...].” He also claimed that the vanishing of ψ made M5 cylindrical (in the sense
of Equation (109) [220]). As he had taken notice of a paper of Jordan [172] that spoke of the
electromagnetic field as describing a probability amplitude for polarised photons, Mandel concluded
that the amplitude of his Ψ-field might then represent polarised electrons as its quanta. However,
he restricted himself to the consideration of classical one-particle wave equations because

“in some cases one can properly speak of a quasi-macroscopical one-body problem –
think of a beam of monochromatic cathod-rays in an arbitrary external force-field.”293

In a later paper, Mandel came back to his wave equation with a skew-symmetric part and gave it
a different interpretation [221].

Unlike Klein, Mandel tried to interpret the wave function as a new discrete coordinate, an idea
going back to Pauli [246]. He took “Dirac’s spin variable” ζ and the spatial coordinate x5 as a pair
of canonically-conjugate operator-valued variables; ζ is linked to positive and negative elementary
charge (of proton and electron) as its eigenvalues. In Mandel’s five-dimensional space, the fifth
coordinate, as a “charge” coordinate, thus assumed only 2 discrete values ±e.
292Gordon has not given a tensorial form of Dirac’s equation but his well-known decomposition of the Dirac current

into a conduction and a polarisation part.
293“in manchen Fällen kann wohl eigentlich von einer quasi-makroskopischen Betrachtung des Einkörperproblems

die Rede sein, man denke etwa an ein Bündel von monochromatischen Kathodenstrahlen.”
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“This completely corresponds to the procedure of the Dirac theory, with the only
difference that for Dirac the coordinate ζ could assume not 2 but 4 values; from our
point of view this remains unintelligible.”294 ([221], p. 785)

In following Klein, Mandel concluded from the Heisenberg uncertainty relations that

“[...] all possible values of this quantity [x5] still remain completely undetermined such
that all its possible values from − inf to + inf are of equal probability.”

This made sense because, unlike Klein, Mandel had not compactified the fifth dimension. His
understanding of quantum mechanics must have been limited, though: Only two pages later he
claimed that the canonical commutation relations [p,q] = h̄

i 1 could not be applied to his pair of
variables due to the discrete spectrum of eigenvalues. He then essentially went over to the Weyl
form of the operators p, q in order to “save” his argument [221].

Another one of the many versions of “Dirac’s equation” was presented, in December 1930,
by Zaycoff who worked both in the framework of Einstein’s teleparallel theory and of Kaluza’s
five-dimensional space. His Lagrangian is complicated295,

M = −iψ̃γρ ∂ψ
∂xρ

+
i

2
SmJm +

1
24
SklmJklm + afmJm +

1
8
FkmJkm + µJ0, (198)

where summation is implied and S m
kl is the torsion tensor, fm the electromagnetic vector potential,

and fik the electromagnetic field. Note that the Dirac current Jm := ψ̃γmψ couples to both the
torsion vector and the 4-potential. The remaining variables in (198) are Jml := iψ̃γmγ

†
l γ0ψ, with

k 6= l, and Jklm := iψ̃γkγ
†
l γmψ, with k 6= l 6= m [434].

While Zaycoff submitted his paper, Schouten lectured at the MIT. and, among other things,
showed “how the mass-term in the Dirac equations comes in automatically if we start with a
five-dimensional instead of a four-dimensional Riemannian manifold” ([306], p. 272). He proved a
theorem:

The Dirac equations for Riemannian space-time with electromagnetic field and mass
can be written in the form of equations without field or mass αb∇bψ = 0 in an R5.

Here αb is the set of Dirac numbers defined by α(aαb) = gab, (αaαb)αc = αa(αbαc) with a, b, c =
0, . . . , 4, and ∇b the covariant spinor derivative defined by him.

As we mentioned above (cf. Section 6.3.2), another approach to the matter within projective
geometry was taken by Pauli with his student J. Solomon [252]. After these two joint publications,
marred by a calculational error, Pauli himself laid out his version of the projective theory in two
installments with the first, as a service to the community, being a pedagogical presentation of the
formalism connected with projective geometry [248]. The second paper, again, has the application
to Dirac’s equation as a prime motivation:

“The following deductions are intended to show [...] that the unifying combination
of the gravitational and the electromagnetic fields, by projective differential geometry
with the aid of five homogeneous coordinates, is a general method whose range reaches
beyond classical field-physics and into quantum theory. Perhaps, the hope is not unjus-
tified that the method will stand the test as a general framework for the laws of physics

294“Das entspricht vollständig dem Verfahren der Diracschen Theorie, nur mit dem Unterschied, dass bei Dirac
die Koordinate ξ nicht zwei, sondern vier Werte haben konnte, was von unserem Standpunkt aus unverständlich
bleibt.”
295Although Zaycoff does not say it, he takes ψ̃ as the complex-conjugate transposed function.
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also with regard to a future physical and conceptual improvement of the foundations
of Dirac’s theory.”296 ([249], pp. 837–838)

Pauli started with the observation that the group of orthogonal transformations in five-dimensional
space had an irreducible, four-dimensional matrix representation satisfying

αµαν + αναµ = 2gµν · 1, µ, ν = 1, . . . , 5, (199)

where αµ are 4 × 4 matrices given at the end of section 2.1.5 in a different representation αµ =(
σµ 0
0 −σµ

)
with µ = 1, 2, 3, α4 =

(
1 0
0 1

)
, and augmented by α5 =

(
0 1
1 0

)
. This had been known

also to Eddington [61] and Schouten [303]. He then introduced projective spinors depending on five
homogeneous coordinates without using bein-quantities. He followed the methods of Schrödinger
and Bargmann [318, 6], i.e., used the existence of a matrix A such that Aαµ is Hermitian. The
transformation laws of 4-spinors Ψ and matrices αµ are coupled:

ψ′ = S−1Ψ, (200)
α′µ = S−1αµS, (201)

A′ = S†AS. (202)

For transformations in the space of homogeneous coordinates X ′µ = aµνX
ν such that αν = aµνα

′
µ,

the quantity aµ := Ψ?AαµΨ transforms, for fixed αµ, under changes of the spin frame, Equa-
tion (200), as a covariant vector297.

Pauli criticised an analogous attempt at formulating Dirac’s equation with the help of five homo-
geneous coordinates by Schouten and van Dantzig [316, 308, 309] as being “difficult to understand
and less than transparent”298. A projective spinor is defined via

Ψ = ψF l, (203)

where ψ is a normal (“affine”) spinor (degree of homogeneity 0) and F a real scalar of (homogeneity)
degree 1, i.e., F = Xµ ∂F

∂Xµ . There exist two (related) spin-connections Λk for projective spinors Ψ

and
R

Λk for spinors ψ.
Pauli’s Dirac equation, derived from a Lagrangian, looked in five dimensions like

αµ(Ψ;µ + kXµΨ) = 0, (204)

with k = − imc
h − ie

hc
c√
κ

1
r , and l = + ie

hc
c√
κ

1
r . The covariant derivative is formed with the spin

connection Λk. An involved calculation leads to Dirac’s equation in four dimensions:

αk
(
∂ψ

∂xk
+

R

Λk ψ −
ie

hc
Φkψ

)
− i

mc

h
α0ψ +

r

8

√
κ

c
Fkl α0 α

[kl] ψ = 0, (205)

with the numerical factor r, the electrical 4-potential Φk, and the electromagnetic field tensor Fkl;
furthermore, αµν = α[µαν].

Pauli succeeded also in formulating a five-dimensional energy-momentum tensor containing,
besides the four-dimensional energy-momentum tensor, the four-dimensional Dirac current vector.
At the end of his paper Pauli stressed the
296“Die folgenden Ausführungen sollen [...] zeigen, dass die einheitliche Zusammenfassung des Gravitations- und

des elektromagnetischen Feldes durch die projektive Differentialgeometrie mittels fünf homogener Koordinaten eine
allgemeine Methode ist, deren Tragweite über die klassische Feldphysik hinaus- und in die Quantentheorie hinein-
reicht. Vielleicht ist es nicht unberechtigt, zu hoffen, dass die Methode als allgemeiner Rahmen der physikalischen
Gesetze sich auch gegenüber einer künftigen physikalisch-begrifflichen Verbesserung der Grundlagen der Diracschen
Theorie bewähren wird.”
297Ψ? is the complex conjugate and transposed object.
298“schwer verständlich und unübersichtlich”
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“more provisional character of his 5-dimensional-projective form of Dirac’s theory. [...]
In contrast to the joinder of the gravitational and electromagnetic fields, a direct logical
coupling of the matter-wave-field with these has not been achieved in the form of the
theory developed here.”

7.3 Einstein, spinors, and semi-vectors

Ehrenfest, even after van der Waerden’s paper on spinor analysis [368], in 1932 pressed Einstein to
think about a simple geometric interpretation of spinors. To this end Einstein responded, together
with his assistant Mayer, by introducing the concept of semi-vector seemingly more natural to him
than a spinor, and also more general:

“In spite of the great importance which the spinor concept, as introduced by P a u l i and
D i r a c, has obtained in molecular physics, one cannot claim that the analysis of this
concept up to now satisfies all justified demands. Our efforts have lead to a derivation
corresponding, according to our opinion, to all demands for clarity and naturalness and
avoiding completely any not so transparent artifice. Thereby, [...] the introduction of
novel quantities was shown to be necessary, the ‘semi-vectors’, which include spinors but
possess a clearly more transparent transformation character than spinors.”299 ([110],
p. 522)

In this first publication on the subject, Einstein and Mayer explicitly referred to the paper by
Infeld and van der Waerden, of which they had received a copy several months before publication
([166], and [110], p. 25, footnote). Apparently, Einstein found the reconstruction of the spinor
concept in his paper more “clear and natural” than Infeld and van der Waerden’s. Nevertheless,
the approach and notation of Infeld and van der Waerden became the accepted one by physicists.

About three months before the first paper on semi-vectors was published, Einstein wrote to
Besso:

“I work with my Dr. Mayer on the theory of spinors. We already could clear up the
mathematical relations. A grasp on the physics is far away, farther than one thinks at
present. In particular, I still am convinced that the attempt at an essentially statistical
theory will fail.”300 ([327], p. 291)

Besides the aspired-to clarity and simplicity, Einstein’s main hope was that, with his semi-
vector system of equations replacing Dirac’s equation, it might be possible to explain the existence
of elementary particles with opposite charge and unlike mass, i.e., of electron and proton. As
noted before, he had not been able to solve this problem by his affine field theory of 1923 (cf.
Section 4.3.2), nor by the approaches to unified field theory that followed. As it turned out, the
positron was discovered at about the same time, and the problem dissolved while Einstein and
Mayer began to reformulate the spinor concept. Einstein again seems to have been fully convinced
that his new concept of “semi-vector” was superior to the spinor concept. On 7 May 1933, he
wrote to De Haas:
299“Bei der grossen Bedeutung, welche der von P a u l i und D i r a c eingeführte Spinor-Begriff in der Moleku-

larphysik erlangt hat, kann doch nicht behauptet werden, dass die bisherige mathematische Analyse dieses Begriffs
allen berechtigten Ansprüchen genüge. [...] Unsere Bemühungen haben zu einer Ableitung geführt, welche nach
unserer Meinung allen Ansprüchen an Klarheit und Natürlichkeit entspricht und undurchsichtige Kunstgriffe völlig
vermeidet. Dabei hat sich [...] die Einführung neuartiger Grössen, der ‘Semi-Vektoren’, als notwendig erwiesen,
welche die Spinoren in sich begreifen, aber einen wesentlich durchsichtigeren Transformationscharakter besitzen als
die Spinoren.”
300“Ich arbeite mit meinem Dr. Mayer an der Theorie der Spinoren. Wir haben die mathematischen Zusam-

menhänge schon klären können. Von einer Erfassung des Physikalischen ist man noch weit entfernt, viel weiter,
als man gegenwärtig denkt. Besonders bin ich nach wie vor davon überzeugt, dass der Versuch einer wesentlich
statistischen Theorie scheitern wird.”
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“Scientifically Mayer and I have found one very natural generalisation of Dirac’s equa-
tion which makes it comprehensible, that there are two understandable elementary
masses, while there is only one electric charge.” [69]

In the first paper in the reports of the Berlin Academy, the mathematical foundations of the
semi-vector formalism are developed [110]. The basic idea of Einstein and Mayer is the possibility
of a decomposition of any (proper) Lorentz transformation described by a real matrix D into a
product BC of a pair of complex-conjugate, commuting matrices301 B and C. The transformations
represented by B or C form a group isomorphic to the Lorentz group. In terms of infinitesimal
Lorentz transformations given by an antisymmetric tensor ωik, this amounts to the decomposition
into a self-dual and an anti-selfdual part: ωik = 1

2 (ωik + iω∗ik) + 1
2 (ωik − iω∗ik), with the dual302

defined by ω∗ik := 1
2

√
gεijkl ω

kl.
Contravariant semi-vectors of the first and second kind now are defined by their transformation

laws: ρi
′

= bikρ
k and σi

′
= cikσ

k, where bik, c
i
k are the components of B, C. For real Lorentz

transformation D, b̄ik = cik must hold. As B, C are both also Lorentz transformations,

“the metric tensor gik is also a semi-vector of 1st kind (and of 2nd kind) with transformation-
invariant components.”

Thus it can be used for raising and lowering indices of semi-vectors ([110], p. 535).
The system of equations intended as a replacement of the Dirac equation appears only in the

second publication [111]. A Lagrange function for the semi-vector is found and the generalised
Dirac equations for the semi-vectors ψ, χ look like303:

Erστ
(
∂ψσ
∂xr

− iεψσφr

)
= C̄τρχρ, E?rστ

(
∂χτ
∂xr

− iεχτφr

)
= −Cρσψρ, (206)

where φr is the electromagnetic 4-potential and Erστ a numerically invariant tensor depending on
4 constants a(r):

Erst = grsa(t) + grta(s) − gsta(r) −
√
g ηrstwa

(w); a(w) = gwta(t). (207)

Contrary to his idea of what a “real” unified field theory should look like, Einstein just added the
Lagrangian for the semi-vector fields to the Lagrangians for the gravitational and electromagnetic
fields.

In his “Spencer Lecture” of 10 June 1933 in Oxford, Einstein embedded his point of view into
the development of field theory:

“[...] Louis de Broglie guessed the existence of a wave field that could be used for the
interpretation of certain quantum properties of matter. With the spinors, Dirac found
novel field quantities whose simplest equations permitted the derivation of the proper-
ties of the electron to a great extent. With my collaborator, Dr. Walther Mayer, I now
found that these spinors form a special case of a type of field, linked to four-dimensional
space, which we called ‘semi-vectors’. The simplest equations to be satisfied by such
semi-vectors provide a key for the understanding of the existence of two elementary
particles with different ponderable mass and like, but opposite, charge. These semi-
vectors are, besides the usual vectors, the simplest mathematical field-objects possible

301Two matrices B and C are called commuting if [B,C] := BC−CB = 0.
302εijkl, the components of which are either ±1 or 0, is the totally antisymmetric (Levi-Civita) tensor density

keeping its components fixed under any coordinate transformation (cf. Section 2.1.5).
303All indices run from 1 to 4.
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in a four-dimensional metrical continuum; it appears that they naturally describe es-
sential properties of the electrical elementary particles.”304 ([99], p. 117)

That semi-vectors are in close connection with spinors and not always the simplest objects,
had been noted by Schouten in a paper submitted to Zeitschrift für Physik on 15 April 1933, even
before Einstein’s Spencer lecture:

“The space of semivectors of first and second kind is the manifold of two simple bivectors
in the local space-time-world, which lie on the null cone in two planes of the first and
second system of planes, respectively. [...] In the not-projective theory as well as in the
projective without an electromagnetic field, semi-vectors have an advantage, [...]. As
soon as an electromagnetic field is present, in the projective theory, calculation with
spinvectors is simpler than calculation with semivectors.”305 [309]

In a previous paper, Schouten had geometrically explained the two approaches to spinor analysis
followed by van der Waerden [368], Laporte and Uhlenbeck [202], and by himself. In the first
approach, the vectors of the two invariant planes in spin space were identified; in the second, i.e.,
in Schouten’s, they were taken as the basis for a four-dimensional vector space [308]. Schouten
had been corresponding with Pauli who “was so friendly as to allow me to quote this theorem
from a not yet published manuscript.”306 In his second paper, Schouten placed the semi-vectors of
Einstein and Mayer into his geometrical setting. He showed that there exist two different complex-
conjugated three-dimensional representations of the real Lorentz group as a 6-parameter subgroup
of the four-dimensional orthogonal group. With the help of these he constructed four

“building blocks: the special spin vectors of 1st and 2nd kind of spin space, which at the
same time are special semi-vectors in the two preferred invariant planes in semi-space.
In both cases, always two vectors are joined which belong to different invariant planes,
for semi-vectors two with same transformation law, for spin vectors two with conjugate
complex transformations.” ([309], p. 106)

As Schouten used group theory, quaternions, sedenions, projective geometry – all not very
familiar to physicists – Pauli must have thought of a much simpler disentanglement of semi-vectors
and spinors. In fact, as Pauli pointed out in his letter to Einstein of 16 July 1933, a semi-vector
does not form an irreducible representation of the rotation group while a spinor does307 (see
[251], p. 189). In this regard, the semivector concept is less “natural” than the spinor concept.
In contrast to what Schouten had shown, in his book on spinors Cartan flatly disclaimed any

304“[...] Louis de Broglie erriet die Existenz eines Wellenfeldes, das zur Deutung von gewissen Quanteneigenschaften
der Materie verwendbar war. Dirac fand in den Spinoren neuartige Feldgrössen, deren einfachste Gleichungen die
Eigenschaften des Elektrons weitgehend abzuleiten gestatten. Ich fand nun mit meinem Mitarbeiter, Dr. Walther
Mayer, dass diese Spinoren einen Spezialfall einer, mathematisch mit dem Vierdimensionalen verknüpften Feldart
bilden, die wir als ‘Semivektoren’ bezeichneten. Die einfachsten Gleichungen, welchen solche Semivektoren un-
terworfen werden können, geben einen Schlüssel für das Verständnis der Existenz von zweierlei Elementarteilchen
verschiedener ponderabler Masse und gleicher, aber entgegengesetzter Ladung. Diese Semivektoren sind nach den
gewöhnlichen Vektoren die einfachsten mathematischen Feldgebilde, die in einem metrischen Kontinuum von vier
Dimensionen möglich sind, und es scheint, dass sie zwanglos wesentliche Eigenschaften der elektrischen Elemen-
tarteilchen beschreiben.”
305“Der Raum der Semivektoren erster bzw. zweiter Art ist die Mannigfaltigkeit der Systeme von zwei einfachen

Bivektoren der lokalen Raumzeitwelt, die in zwei Ebenen des ersten bzw. zweiten Ebenensystems auf dem Nullkegel
liegen. [...] In der nicht projektiven Theorie sowie in der projektiven bei fehlendem elektromagnetichen Feld haben
die Semivektoren einen Vorzug, [...]. Sobald in der projektiven Theorie ein elektromagnetisches Feld auftritt, ist die
Rechnung mit Spinvektoren einfacher als die mit Semivektoren.”
306Schouten referred to Pauli several times ([308], pp. 406, 414, 416–417).
307In his letter to Einstein, Pauli had also mentioned his papers to be published in Annalen der Physik and

discussed in Section 7.2.3.
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geometric definition for semivectors308. Pauli then set his doctoral student V. Bargmann on the
problem of comparing Einstein’s semivector approach to the spinor calculus as developed by van
der Waerden. Bargmann acknowledged Schouten’s paper [309], “with which our presentation has
quite a few points of contact”. He then proved that

“to each semi-vector two 2-component spinors correspond, which both satisfy the same
transformation law.” ([7], p. 68)

and that the generalised Dirac equations of Einstein and Mayer (206)

“decompose into two separate 4-component systems of Dirac’s type, which are distin-
guished only by the mass values.” ([7], p. 78)

This means that only one of these two systems is needed, and that it describes particles with
opposite charge and the same mass. Thus, as van Dongen states curtly:

“It is evident from Bargmann’s analysis that the most general semi-vector Dirac system
of Einstein and Mayer is nothing more than just a linear superposition of two indepen-
dent Dirac spinor systems and thus cannot give insight into the fundamental nature of
electrons and protons.” ([371], p. 88, and [372])

In his letter to Einstein, Pauli had also mentioned his papers to be published in Annalen der
Physik and discussed here in Section 7.2.3. Two more papers were written by Einstein and Mayer
before Einstein quietly dropped the subject. The last paper considered semi-vectors as “usual
vectors with a different differentiation character” [112, 113].

It seems that Einstein at the time had not followed quantum field theory intensively enough
to be able to compete with that theory – leaving aside his rejection of “the statistical fad”. By
continuing to pair “electron and proton” while others speculated already about “electron and its
antiparticle”309 or “proton and its antiparticle”, he was bound to run into a dead end. About one
year after the Spencer lecture, when Einstein was still publishing about semi-vectors, Pauli and
Weisskopf quantised the scalar relativistic wave equation with an external field using Bose–Einstein
statistics:

“Without further hypothesis the existence follows of particles with opposite charge
and same rest mass, which can be produced or annihilated by absorption or emission
of electromagnetic radiation. The frequency of these processes is shown to be of the
same magnitude as the one for particles with the same charge and mass following from
Dirac’s hole theory.”310 ([254], Abstract)

Of course, Einstein’s problem was quickly solved; at about the same time the electron’s antiparticle
was observed.

308This reference to Cartan is taken from van Dongen’s dissertation ([371], p. 86, footnote 70). After all, Cartan
had discovered spinors in 1913 in the context of his classification of simple Lie algebras [370].
309Dirac had made an antiparticle to the electron appear in his theory as early as in 1930 [55].
310“Dabei ergibt sich ohne weitere Hypothese die Existenz von zueinander entgegengesetzt geladenen Teilchen

gleicher Ruhmasse, die unter Absorption bzw. Emission von elektromagnetischer Strahlung paarweise erzeugt bzw.
vernichtet werden können. Die Häufigkeit solcher Prozesse erweist sich als von derselben Grössenordnung wie die
für Teilchen derselben Ladung und Masse aus der Diracschen Löchertheorie folgende.”
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8 Less Than Unification

During the time span considered here, there also were those who did not adhere to the program of
unified field theory, or changed their mind about it. The mathematician G. D. Birkhoff belonged
to the first group. Instead of removing the matter tensor in favour of some general geometry,
he just remained in the old setting of Einstein’s theory: To the energy-momentum tensors of a
perfect fluid and of the electromagnetic field on the r.h.s. of Einstein’s field equations, he added
a contribution, named the “atomic potential tensor” describing a scalar wave function ψ à la
Schrödinger: Aij = ψ gij with the “potential” ψ. He proposed to apply this theory

“to the consideration of the small oscillations of the proton and single electron forming
the hydrogen atom.” [18, 17].

Another one was the Russian physicist G. Rumer, whose somewhat exotic suggestion, within a
framework of Kantian philosophy, was to remain in Riemannian geometry and keep to Einstein’s
vacuum field equations but raise the number of the dimension of the underlying manifold. He named
such a manifold an Fn and considered a three-dimensional Riemannian subspace V3 embedded,
locally and isometrically, into Fn. Then, by use of the Gauss–Codazzi and Ricci–Codazzi equations,
he decomposed the Ricci tensor of Fn into its part in V3 and the rest. His classification went as
follows:

“We have seen that the V3 itself is either an F3 (in this case it is empty), or a subspace
of an F4 (thus it contains a gravitational field), or a subspace of F5 (then also an
electrical field is present). In the case in which ‘something’ exists which is neither a
gravitational nor an electrical field, the V3 must be a subspace of Fn (n ≥ 6). However,
geometry shows that every V3 is a subspace of a particular F6, i.e., the Euclidean
or pseudo-Euclidean space. This shows us that transition to F6 is the final step.”311

([284], p. 277)

The unidentified parts in the decomposition of the Ricci tensor into its piece in V3 and the rest
Rumer ascribed to “matter.” He acknowledged Born’s

“[...] stimulation and his interest extended toward the completion of this paper.”312

Born himself was mildly skeptical313:

“[...] a young Russian surfaced here who brought with him a 6-dimensional relativity
theory. As I already felt frightened by the various 5-dimensional theories, and had little
confidence that something beautiful would result in this way, I was very skeptical.”314

After Lanczos had (mildly) criticised Einstein’s parallelism at a distance [200], he seemed to
have lost confidence in Einstein’s program for unification and became a “renegade”. He developed
a theory by which

311“Wir haben gesehen dass ein V3 entweder selbst ein F3 ist (dann ist er leer) oder ein Unterraum von F4

(dann ist in ihm ein Gravitationsfeld vorhanden), oder ein Unterraum von F5 (dann ist in ihm auch ein reines
Elektrizitätsfeld vorhanden). Wo also noch ‘etwas’ ist, das weder Gravitationsfeld noch Elektrizitätsfeld ist, muss
der V3 ein Unterraum in Fn (n ≥ 6) sein. Nun zeigt aber die Geometrie, dass jeder V3 ein Unterraum eines speziellen
F6, nämlich des euklidischen oder pseudo-euklidischen Raumens ist. Das zeigt uns, dass der Übergang zum F6 auch
der letzte Schritt ist.”
312“[...] Anregungen und das Interesse, das er dem Werden dieser Arbeit entgegenbrachte.”
313Born tried to support Rumer in various ways, as can be seen from his correspondence with Einstein [103].
314“[...] tauchte hier ein junger Russe auf, der eine 6-dimensionale Relativitätsheorie mitbrachte. Da ich bereits

vor den verschiedenen 5-dimensionalen Theorien Angstgefühle empfand und wenig Zuversicht, dass auf diesem Wege
etwas Schönes herauskommen könnte, war ich sehr skeptisch.”
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“[...] the basic properties of the electromagnetic field may be derived effortlessly from
the general properties of Riemannian geometry by use of a variational principle char-
acterised by a very natural demand.”315 ([201], p. 168)

For his Lagrangian, he took L = RikR
ik +C(Rkk)

2, with C being a constant. He first varied with
respect to the metric gik and the Ricci tensor Rik as independent variables, and then expressed
the variation δRik with δgij . The resulting variation is then set equal to zero. In the process
“spontaneously” a

“free vector appears for which, later, a restraining equation of the type of the equation
for the [electromagnetic] potential results – as a consequence of the conservation laws
for energy and momentum.”

Also Rainich’s approach [264] mentioned in Section 6.1, which, in the case of Maxwell’s equa-
tions without sources, and for non-null electromagnetic fields, did substitute a set of algebraic
conditions on the Einstein tensor for Maxwell’s equations, might be seen as an alternative for the
unification of gravity and electromagnetism. According to L. Witten:

“The only criterion for a unified field theory that these equations do not satisfy is that
they are not derived from a variational principle by means of a Lagrange’s function
involving geometric quantities alone.” ([422], p. 397)

Finally, van Dantzig’s program after 1934, which we briefly met in Section 1, might be consid-
ered. It aimed at showing, eventually, that the

“metric should turn out finally to be a system of some statistical mean values of certain
physical quantities.” ([363], p. 522)

This meant turning upside down Einstein’s geometrization program for matter.

315“[...] aus den allgemeinen Eigenschaften der Riemannschen Geometrie, unter Zugrundelegung eines durch eine
sehr natürliche Forderung ausgezeichneten Wirkungsprinzips, ohne jeden besonderen Kunstgriff die Grundeigen-
schaften des elektromagnetischen Feldes zwanglos abgeleitet werden können.”
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9 Mutual Influences Among Mathematicians and Physicists?

A most interesting task far beyond this review would be to reconstruct, in detail, the mutual
influences among researchers in the development of the various strands of unified field theory. An
interesting in-depth-study for the case of Weyl has already been made [325].

It seems safe to say that the mathematical development of differential geometry in the direction
of affine and metric-affine geometry received its original impetus from Einstein’s general relativity
and Weyl’s extension of it (see statements by Hessenberg 1917, Schouten 1922, Cartan 1922). Al-
though a mathematician, Weyl understood some of his work to be research in physics proper. In
this, he was criticised by Pauli, who gave in only when Weyl shifted his gauge idea from coupling
electromagnetism to gravitation to coupling electromagnetism to the quantum mechanical state
function for an electron. Weyl’s influence was prominent among both parties, mathematicians
(Cartan, Schouten, Struik, Eisenhart, Hlavaty, Wiener, etc.) and physicists (Eddington, Einstein,
Reichenbächer, Mandel, Fock, Zaycoff, et al). In the review on differential geometry by the math-
ematician Berwald316, Weyl plays a prominent role while Einstein is mentioned only in passing
in connection with “Einstein-manifolds” (Einstein-spaces) ([13], p. 163). Berwald discusses Ed-
dington’s affine theory as the most modern development with, again, Einstein’s papers [77, 74, 76]
noted without comment. Astonishingly, while being more or less silent on Einstein, Berwald refers
to the book on general relativity by von Laue [386] and to Pauli’s article in the Encyclopedia of
Mathematical Sciences [242]. He notes papers by Bach (alias Förster) [4] and G. Juvet [179] on
Weyl’s theory, and a paper of Kretschmann [195]. Unlike Berwald, Weitzenböck in his review
article on the theory of invariants mentions Einstein directly:

“In recent years, due to their use in modern physical theories, the theory of differential
forms (tensors) was elaborated extensively. We mention Ricci, Levi-Civita, Hessenberg,
Einstein, Hilbert, [Felix] Klein, E. Noether, Weyl.”317 [392]

Einstein is mentioned as the only theoretical physicist among seven mathematicians. The develop-
ment of projective geometry did profit from the mathematician Kaluza’s idea of a five-dimensional
space as the arena for unified field theory. It enticed physicists such as Pauli, O. Klein, Mandel,
Fock, Infeld, and inspired mathematicians such as Veblen, Schouten, van Dantzig, Cartan, and
others.

Of course, in terms of co-authorship and mutual reference, the interactions both inside the group
of mathematicians, e.g., between Delft and Paris, Delft and the MIT, Delft and Prague, Delft and
Leningrad, Princeton and Zürich, and the group of physicists (Einstein–Pauli–Eddington, Klein–
de Broglie, Einstein–Reichenbächer, Einstein–Mandel) was more intensive than the interaction
between mathematicians and physicists (Weyl–Einstein, Einstein–Cartan, Eddington–Schouten,
Kaluza–Einstein, Weyl–Pauli, Schouten–Pauli). Mathematicians often used unified field theory
as a motivation for their research. Within the communications-net of mathematicians and the-
oretical physicists contributing to unified field theory, Schouten played a prominent role. It was
unknown to me that he and Friedman in Petersburg, the discoverer of exact solutions of Einstein’s
equations describing an expanding universe, wrote a joint paper on a unified field theory with
vector torsion, as we would say today. Schouten published also in a physics journal, the Zeitschrift
für Physik. From the mutual references to their papers, among mathematicians Weyl, Cartan,
Schouten, Eisenhart, Veblen, T. Y. Thomas, J. M. Thomas, Levi-Civita, Berwald, Weitzenböck,
316Ludwig Berwald (1883–1942). Born in Prague. Studied mathematics in Munich and became a full professor at

the German Charles University in Prague. His scientific work is mainly in differential geometry, notably on Finsler
geometry and on spray geometry, i.e., path spaces. He died in Poland after having been deported by the German
authorities just because he was Jewish.
317“Die Theorie der Differentialformen (Tensoren) hat mit Rücksicht auf ihre Verwendung in modernen physikalis-

chen Theorien in den letzten Jahren eine ausführliche Bearbeitung erfahren. Wir erwähnen Ricci, Levi-Civita,
Hessenberg, Einstein, Hilbert, [Felix] Klein, E. Noether, Weyl.”
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and later Hlavatý and Vranceanu stand out. In the following, we give a few examples of interaction
among mathematicians. From Schouten’s acknowledgment,

“I owe thanks to Mr. L. Berwald in Prague, with whom I had an intensive exchange
of ideas from September 1921, and who was so friendly as to give me his manuscripts
before they went into print.”318 [299]

we note that he had intensive contact with Berwald in Prague. Later, while working on spinors,
Schouten interacted with Veblen in Princeton, such that the latter referred to him:

“[This note] suggested itself as a possible basis for a geometrical interpretation of
Eddington’s theory of the interaction of electric charges [61] and was proposed to
Prof. Schouten during his visit to America as a possible geometrical interpretation
of the theory of spin-quantities which he was then developing.” ([306]; Schouten had
Hlavaty as a co-author [312])

Among Schouten’s correspondents were theoretical physicists as well, such as Pauli. In a paper
on “space time and spin space” Schouten acknowledged that

“Mr. Pauli was so friendly as to permit me to quote this theorem from an unpublished
manuscript.”319 ([308], p. 406, footnote 4)

and

“A correspondence with Mr. Pauli induced me to investigate this invariance.”320 ([308],
p. 414, footnote 1)

We also noticed in Section 5 that Schouten wrote his papers on the classification of linear connec-
tions [297, 296] with the explicit intention of attracting readers from physics.

On the one hand, Einstein must have been best informed by receiving papers, books, and the
latest news, or even visits from many of his active colleagues. On the other, he rarely referred
to these papers and books; as far as I am aware his extended correspondence included Eisen-
hart, Eddington, Kaluza, Mandel, Pauli, Veblen, A. Wenzl, Weyl, and Zaycoff, but not Schouten,
J. M. Thomas, T. Y. Thomas, O. Klein, not to speak of Reichenbächer. In terms of his scientific
output in the area of unified field theory, a more precise description of the balance between Ein-
stein’s being at the receiving end and his stimulating and creative role will have to be given in the
future.

318“Herrn L. Berwald in Prag, mit dem ich seit September 1921 in regem Gedankenaustausch stand und der mir
seine Manuskripte schon vor der Drucklegung freundlichst zur Verfügung stellte, schulde ich Dank.”
319“Herr Pauli hatte die Freundlichkeit, zu erlauben, diesen Satz aus einem noch nicht publizierten Manuskript zu

zitieren.”
320“Eine Korrespondenz mit Herrn Pauli veranlasste mich, diese Invarianz zu untersuchen.”
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10 Public Reception of Unified Field Theory at the Time

We must distinguish between the acceptance of unified field theory in academic circles and its
reverberations in the general press. Of course, Weyl could further his own theory through his well
received book [396]. His unification of electricity and gravitation was also given room in Eddington’s
monograph “Space, Time, and Gravitation” of 1920 [57]. In German scientific handbooks on physics
and monographs on relativity theory at the time, there are long articles on special and general
relativity, but unified field theory is mentioned only in passing, and with the names of Weyl,
Eddington, and Kaluza stressed instead of Einstein’s ([193], pp. 576–579, and [9], pp. 378–383).
Perhaps, it was too early for Born to mention Weyl in his book on Einstein’s relativity theory of
1920 [19]. In the third edition of 1922, he entered a single sentence after he had lauded Einstein
for his derivation of the field equations of general relativity:

“Hilbert, Klein [i.e., Felix Klein] and other mathematicians have taken part, have
researched in depth and illuminated the formal structure of Einstein’s formulas.”321

([20], p. 248)

After Pauli’s handbook article, Weyl hardly could have been overlooked. Nevertheless, the 2nd
volume of Laue’s book did not even mention Weyl’s theory, nor did Levi-Civita’s book in its
English or German versions of 1927 and 1928 [387, 204]. In contrast, Schouten’s and Eddington’s
monographs treated Weyl extensively [300, 60]. Already in 1921, Fabre’s weak presentation of “Les
théories d’Einstein” [125] had an admiring but irrelevant appendix on Weyl’s unified field theory,
while, in 1922, J. Becquerel in Paris and E. Neumann in Marburg in their books on relativity had
brief presentations of Weyl’s theory [235, 10]. One or the other philosopher of science took into
account some of the developments, mostly Weyl’s theory, as did Reichenbach in 1928 [266]. In his
book on “The present world view according to the natural sciences”, Wenzl discussed Einstein’s
theory of distant parallelism but cautioned that this theory, as a physical theory was not on the
same level as general relativity: It seemed unclear whether the new theory would predict new
phenomena that could be empirically tested [394].

As to the impact on the public at large, Einstein’s fame as the creator of the empirically tested
general relativity continued to shine over his successive attempts at unified field theory. Chan-
darsekhar reports an after-dinner chat in 1933 in which Rutherford made Eddington responsible
for Einstein’s fame; he nailed it to the headlining, in the British papers, of the meeting of the
Royal Society, at which the results of the British Solar Eclipse Expedition were reported:

“[...] the typhoon of publicity crossed the Atlantic. From that point on, the American
press played Einstein to the maximum.” ([42], p. 28)

Also, from 1930, Einstein’s yearly travels to the United States and his sojourns there brought about
increased publicity for his research on unified field theory. Thus, a “preliminary announcement for
the Josiah Macy, Jr., Foundation” of his paper with his assistant Mayer on the 5-vector formulation
of Kaluza’s theory [107] was printed in full in Science about a month before the publication
appeared [94]. However, it seems safe to say that reports on Einstein’s newest unified field theory
in the dailies, whether seen as an educational affair or as part of entertainment, must have strained
the general public’s intellectual abilities.

321“Hilbert, Klein [i.e., Felix Klein], Weyl und andere Mathematiker haben dabei mitgewirkt und die formale
Struktur der Einsteinschen Formeln tief durchforscht und aufgehellt.”
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11 Conclusion

Even a superficial survey such as the one made here shows clearly the dense net of mathematicians
and theoretical physicists involved in the building of unified field theory and of the geometric
structures underlying it. Mathematician Grossmann introduced physicist Einstein into Ricci’s
calculus; Einstein influenced many mathematicians such as Hessenberg, Weyl, Schouten, Struik,
Cartan, Eisenhart, and Veblen, to name a few. In return, some very influential ideas on Einstein’s
path within unified field theories came from these mathematicians: Förster’s asymmetric metric322,
Cartan’s distant parallelism, Kaluza’s five-dimensional space, Weyl’s, Schouten’s, and Cartan’s
completely general concept of connection, Veblen’s projective formulation.

My greatest surprise was to learn that, in the period considered here, in the area of unified
field theories, Einstein did not assume the role of conceptual leader that he had played when
creating general relativity. In fact, in the area of unified field theories, he tended to re-invent
mathematical developments made before. The ideas most fruitful for physics in the long run came
from Weyl (“gauge concept”), Kaluza (“extension of number of space dimensions”), and O. Klein
(“compactification”)323. Vizgin states that Einstein, around 1923 to 1930,

“became the recognised leader of the investigations [in unified field theory], taking over,
as it were, the baton from Weyl, who had been the leading authority for the previous
five years.” ([385], p. 183)

This may be true, but in a sense possibly not intended by Vizgin. First, Einstein could lead
only those few unaffected by the main new topic of theoretical physics at the time: quantum
theory. Second, Einstein’s importance consisted in having been the central identification figure in
a scientific enterprise within theoretical physics which, without his weight, fame, and obstinacy,
would have been dwindling to an interesting specialty in differential geometry and become a dead
end for physicists. It is interesting, though, to note how uncritically Einstein’s zig-zagging path
through the wealth of constructive possibilities was followed by many in the (small) body of
researchers in the field.

Cartan saw it positively:

“One can see [...] the variety of aspects by which unified field theory may be envisaged,
and also the difficulty of the problems arising from it. But Mr. Einstein is not one of
those afraid of difficulties; even if his attempt does not succeed, it will have forced us to
think about the great questions at the foundation of science.”324 ([36], p. 1184/1185)

If there is an enigma left in the scientific part of Einstein’s life, then it occurs here, in the area
of unified field theory. As judged from his ambitious goals and as seen from the aspect of lasting
scientific value, not only did Einstein’s endeavours – from the affine approach to the teleparallel
theory – lead nowhere, but sometimes they were also quite behind what others knew already, as in
Kaluza–Klein theory and in the area of spinors. Einstein also was not very fruitful in developing,
conceptually, his particle model beyond the image of regular field concentrations. Einstein knew
only too well how disconnected his various unified field theories were from the possibility of them
being checked empirically. He, and everybody else working in the field, did not succeed in extracting
from one of the unified field theories an example of a new physical effect of gravito-electromagnetic
nature to be tested by experiment or observation. Unlike in his previous scientific career where
he was most ingenious and prolific in devising (thought-) experiments, now Einstein’s physical

322Förster wrote his thesis in mathematics [137].
323For the historical development of gauge theory from the point of view of physics, cf. Straumann [335, 239].
324“On voit [...] la variété des aspects sous lesquels peut etre envisagée la théorie unitaire du champ et aussi la

difficulté des problèmes qu‘elle soulève. Mais M. Einstein n’est pas de ceux à qui les difficultés font peur et, meme si
sa tentative n‘aboutit pas, elle nous aura forcés à réfléchir sur les grandes questions qui sont à la base de la science.”
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intuition seems to have been buried under formal structural thinking. Let us quote a remark he
made with regard to his theory of distant parallelism, but which could equally well stand for all
the other unified field theories he tried:

“At present, this new theory is nothing but a mathematical construct barely connected
to physical reality by very loose cords. It has been discovered by exclusively formal
considerations, and its mathematical consequences have not yet been developed suffi-
ciently for allowing a comparison with experiment. Nevertheless, to me this attempt
seems very interesting in itself; it mainly offers splendid possibilities for the [further]
development, and it is with the hope that the mathematicians get interested in it that
I permit myself to expose and analyse [the theory] here.”325 ([92], p. 1)

Then, why did he so obstinately follow this line of research and isolate himself from most of his
peers, except Schrödinger and, perhaps, de Broglie? Was it an unfailing belief that “geometrizable
fields” must play the fundamental role as compared to particles326? Just what, besides his appreci-
ation of the power of mathematics, supported his hope that, with one sweep, quantum theory and
classical field theory could be brought into a single representation? It seems that, in the second
half of his life, Einstein more and more came to think that the structure of physical theories may
be unraveled by the hypothetical-deductive approach alone, without assistance from any empirical
input:

“[...], in the end experience is the only competent judge. Yet in the meantime one
thing may be said in defence of the theory. Advances in scientific knowledge must
bring about the result that an increase in formal simplicity can only be won at the cost
of an increased distance or gap between the fundamental hypotheses of the theory on
the one hand, and the directly observed facts on the other. Theory is compelled more
and more from the inductive to the deductive method, even though the most important
demand to be made of every scientific theory will always remain that it must fit the
facts.” ([86], pp. 114–115)

It may also be that general relativity, his great and lasting success in dealing with gravitation, was
misleading him. In a report about his teleparallel geometry, after having described “the derivation
of the complicated field law of gravitation along a logical path,” Einstein went on to say:

“The successful attempt to derive delicate laws of nature, along a purely mental path, by
following a belief in the formal unity of the structure of reality, encourages continuation
in this speculative direction, the dangers of which everyone vividly must keep in sight
who dares follow it.”327 [87]

After 1926, Einstein more and more removed himself from a working knowledge of quantum
mechanics, not to speak of quantum field theory. Although he sensed his growing isolation from
the physics mainstream, he downplayed it by a good measure of self-confidence. In connection with
the field equations of his new geometry with distant parallelism, in a letter to his friend Besso,
Einstein rated his efforts this way:

325“À l’heure actuelle cette nouvelle théorie n’est qu’un édifice mathématique, à peine relié par quelques liens
très lâches à la réalité physique. Elle a été découverte par des considérations exclusivement formelles et ses
conséquences mathématiques n’ont pas pu être suffisamment développées pour permettre la comparaison avec
l’expérience. Néanmoins, cette tentative me semble très intéressante en elle-même; elle offre surtout de magnifique
possibilités de développemnet et c’est dans l’espoir que les mathématiciens s’y intéressont, que je me permets de
l’exposer et de l’analyser ici.”
326Compare with the fate of contemporaneaous (quantum-) geometrodynamics [328].
327“Das Gelingen dieses Versuches, aus der Überzeugung der formalen Einheit der Struktur des Wirklichen heraus

auf rein gedanklichem Wege subtile Naturgesetze abzuleiten, ermutigt zu einem Fortschreiten auf diesem spekulativen
Wege, dessen Gefahren sich jeder lebhaft vor Augen halten muss, der ihn zu beschreiten wagt.”
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“This looks old-fashioned, and the dear colleagues and also you, my dear, will show me
the tongue as long as they can. Because Planck’s h is not showing up in the equations.
But if the limit is clearly reached of what the statistical fad can achieve they will again
return full of repentance to the space-time picture, and then these equations will form
a starting point.”328 ([327], p. 240)

Even seventy years later, with a limit to the “statistical fad” not yet reached, Einstein’s world
fame is strong enough as to induce people to continue his path toward classical unified field theory.
They do this with only slightly changed methodology, but with a greatly enlarged technical toolbox,
and despite a lasting lack of empirical means for deciding whether such attempts of bringing
progress for the understanding of nature are valid, or not. One powerful and intriguing new
instrument in the toolbox, which was not available to Einstein, is supersymmetry. By it fermion
fields can also be “geometrized”329. The argument put forward in favor of such a continuation is
now much the same as that advanced by K. Novobatzky in 1931:

“In the present situation, neither from classical nor from quantum mechanical methods
alone ‘all’ can be expected; rather, it suits us to adopt the opinion, voiced several
times, that the field problem must be carried further on classical ground before it may
present new anchor points for quantum mechanics. Seen precisely from this angle, it is
regrettable that after these broad designs, such as the ones available in gauge theory and
distant parallelism, no further attempts in the classical direction can be noticed.”330

([238], p. 683)

It might be an interesting task to confront the methodology that helped Einstein to arrive at
general relativity with the one used by him within unified field theory. (See the contributions of
J. Renn, J. Norton, M. Janssen, T. Sauer, M. Schemmel, et al. originating from their work on
Einstein’s Zürich notebook of 1912 [278, 279].) If it is the same, then it might become harder to
draw general conclusions as to its importance for the gain in and development of knowledge in
physics.

A report on the rich further development of the field past 1933 will be given in Part II of this
review.

328“Das sieht altertümlich aus und die lieben Kollegen sowie auch Du, mein Lieber, werden zunächst einmal die
Zunge herausstrecken solange es geht. Denn in diesen Gleichungen kommt kein Planck’sches h vor. Aber wenn man
an die Leistungsgrenzen des statistischen Fimmels deutlich gelangt sein wird, wird man wieder zur zeiträumlichen
Auffassung reuevoll zurückkehren und dann werden diese Gleichungen einen Ausgangspunkt bilden.”
329My reservations hold only if the toolbox does not also contain quantum field theory.
330“Nach dem heutigen Stand der Dinge wird man weder von klassischen noch von quantentheoretischen Methoden

‘alles’ erwarten, sondern sich eher jener mehrfach geäusserten Meinung anschliessen, dass das Feldproblem auf
klassischem Boden weitergeführt werden muss, ehe es der Quantentheorie neuere Angriffspunkte zu bieten vermag.
Eben deshalb ist es bedauerlich, dass nach jenen gross angelegten Entwürfen, wie sie in der Eichungstheorie und im
Fernparallelismus vorliegen, weitere Versuche in klassischer Richtung nicht zu vermerken sind.”
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Sci. Ecole Norm. Sup., 40, 325–412, (1923). 134, 6.4.1
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[192] König, R., “Über affine Geometrie XXIV. Ein Beitrag zu ihrer Grundlegung”, Ber. Saechs.
Gesellsch. Wiss., 71, 1–19, (1919). 3.1

[193] Kopf, A., “Physik des Kosmos”, in Kopf, A., ed., Müller-Pouillets Lehrbuch der Physik,
volume 5, 2, (Vieweg, Braunschweig, 1928), 11th edition. 10

[194] Kosambi, D., “Affin-geometrische Grundlagen der einheitlichen Feldtheorie”, Sitzungsber.
Preuss. Akad. Wiss., 342–345, (1932). 157
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cazione geometrica della curvatura Riemanniana”, Rend. Circ. Mat. Palermo, 42, 173–205,
(1917). 43, 3.1

[204] Levi-Civita, T., Lezioni di calcolo differenziale assoluto, (Stock, Roma, 1925). 239, 10

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


140 Hubert F. M. Goenner

[205] Levi-Civita, T., “A proposed modification of Einstein’s field theory”, Nature, 123, 678–679,
(1929). 239

[206] Levi-Civita, T., “Vereinfachte Herstellung der Einsteinschen einheitlichen Feldgleichungen”,
Sitzungsber. Preuss. Akad. Wiss.(IX), 137–153, (1929). 239, 7.2.2
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1955). 2

[209] Lopes Gagean, D., and Costa Leite, M., “A theoria de Kaluza-Klein”, Analise (Lisboa), 5,
151–198, (1986). 161

[210] Lorentz, H.A., “The determination of the potentials in the general theory of relativity with
some remarks about the measurement of lengths and intervals of time and about the theories
of Weyl and Eddington”, in Collected Papers, volume 5, 363–382, (Nijhoff, The Hague, 1937).
Original paper in Proc. Acad. Amsterdam, 29 (1923) 383. 4.1.2, 107

[211] Ludwig, G., Fortschritte der projektiven Relativitätstheorie, (Vieweg, Braunschweig, 1951).
2
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[274] Reichenbächer, E., “Die Kopplung des Elektromagnetismus mit der Gravitation”, Z. Phys.,
44, 517–534, (1927). 161
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[276] Reichenbächer, E., “Eine wellenmechanische Zweikomponententheorie”, Z. Phys., 58, 402–
424, (1929). 275
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anten”, in Enzyklopädie der Mathematischen Wissenschaften, volume III D 10, (Teubner,
Leipzig und Berlin, 1921). 317

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-2

http://www.livingreviews.org/lrr-2004-2


150 Hubert F. M. Goenner
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