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Electromagnetic radiation decays with 1/r in three dimensional space, while the non radiating

Coulomb field decays faster with 1/r2. The general expressions for any dimension are 1/r(d−1)/2

for the Radiation and 1/r(d−1) for the Coulomb field respectively, where d is the number of spatial
dimensions. This means that there is a dimensional dependent ratio between the two, and one should
expect, due to the 1/rn nature, to be able to measure imprints of any propagation through higher
dimensional structures at arbitrary scale down to Planck’s scale. We present the rules for radiation
resulting from the motion of charged objects at any dimension, checked by extensive numerical
simulations. These rules are quite different from the 3d case and provide a toolset to analyze
higher dimensional structures. We further present a very useful operator to transform any arbitrary
propagator in an x-dimensional space into the corresponding propagator in any y-dimensional space.

I. INTRODUCTION

We will first present the exact and full expressions of the
photon propagators in space-time of any dimension: The
Fourier transforms of 1/q2. The use of a numerical lat-
tice simulator has been of invaluable help here: It was
used to study the higher order derivatives of the Dirac
function which occur in the higher dimensional photon
propagators, to cross-check analytically derived normal-
ization constants, and, last but not least, to provide the
figures in this document. The simulations can be re-
stricted to a 1+1 dimensional lattice with the use of the
radial form of the d’Alembertian:
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Where d is the number of spatial dimensions. Static solu-
tions of the d’Alembertian, with ∂2

t φ = 0, are the electro
static potentials and fields:
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Where the gamma function Γ(n) = (n + 1)! The electro
static potentials Vd(r) do satisfy the radial d’Alembertian
at each and every point except for the point r = 0 where
there is a singularity which we associate with the electric
charge. (or the current in the case of the vector poten-
tials) The components of the electro static fields also sat-
isfy (1) except for r = 0 where we now find dipole Dirac
functions: The spatial derivatives of the Dirac function
representing the charge.

The fields are normalized by dividing them with the sur-
face Sd of the d-dimensional hypersphere, so that the

integral of εoE through the surface represents the elec-
tric charge ρ enclosed by it. This is just Gauss’s Law
extended to higher dimensions. The potentials take up
another factor of 1/(d− 2) as a result of the integration,
except for the two dimensional case where the potential
becomes a log function. We have used the same scheme
to normalize the propagators since the potentials can be
derived from the propagators by applying them to a con-
stant charge at rest.

Space-time Photon propagators
in higher dimensions.

dimension space-time propagators
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What does the 1/r in 3D suggest about the possible dimensionality of 1/r^2? Could this suggest that the 1/r^2 is alos a slice of 4D just as 1/r is a slice of 3D?
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II. THE PROPAGATORS

The propagators are the vacuum’s response on the
disturbance by a (charged) Dirac-pulse at t=r=0.

We have found, both analytically and numerically,
that the general expression for the photon propagator in
a d-dimensional vacuum is given by:

General Photon Propagator in Space-Time:

Pd(t, r) =
1
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Where a is (d − 1)/2, the function H is the Heaviside
step function and s2 is t2 − r2. All the propagators are
derivatives of the Heaviside step function, either whole,
or half (semi-) derivatives. The Heaviside step function
represents the one dimensional photon propagator.

The higher dimensional photon propagators are obtained
via the differential operator. We will demonstrate further
on that this operator is generally applicable to derive
higher dimensional propagators from any arbitrary 1d
propagator. For instance the Klein Gordon propagator
for massive particles in space-time, where J0 is the Bessel
function of the first kind of zero order:
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If we look at fig 1, then we see that some of the prop-
agators are zero everywhere except on the light cone
(d = 3, 5, 7..) These are the result of whole derivatives).
Others are non zero inside the light cone, (d = 2, 4, 6..)
coming from the fractional derivatives. We can find the
fractional derivatives with the help of the formula for
fractional integration.

D−ν f(t) =
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Where ν is the (fractional) order by which we want to in-
tegrate or differentiate. We start from the first derivative
of H, which is the dirac function δ(ξ). This eliminates
the integral since the only value of ξ where the function
is non-zero is ξ = 0.
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This gives us the correct description of the behav-
ior inside the light-cone. The functions satisfy the
d’Alembertian in (1), and they produce the right value
for d when inserted in (1) with a given a. However, one
must carefully interpret the division by zero (t2 = r2) to
retrieve the important Dirac function derivatives on the
light-cone.

It is the factor (−a)! which separates the propagators into
several different groups. It becomes infinite for whole
numbers of a, which is the case with d = 3, 5, 7, 9....
These propagators become zero everywhere inside the
light-cone: They propagate only on the light-cone itself.
The factor (−a)! is positive in half of the fractional cases
of a corresponding to d = 2, 6, 10, 14..., while it becomes
negative for the other half (d = 4, 8, 12, 16...). It is finite
and positive for the exceptional case of a = 0 correspond-
ing to the one dimensional propagator.

FIG. 1: Simulated photon propagators

III. THE PROPAGATORS AS OPERATORS

The Dirac source used in the simulator has the form
δr(r)δt(t). This allows us to define specific (finite) pro-
files for both the radial and time components. The deltas
used are sharp, typically Gaussian, pulses to obtain the
propagator. Here however, we use the time dependent
profile to represent any time dependent source function.
Such a source function would be just a constant for a
particle with charge ρ but it can be arbitrary shaped in
the case of the vector potential depending on the motion
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of the particle. The source function can be specifically
shaped in order to visualize and analyze the effects of the
higher derivatives on such a profile.

fig. 2 shows the response on a δt(t) profile which con-
sist out of three parabolic segments. It appears perfectly
smooth but has discontinuities in the third order deriva-
tive. As expected, in three dimensions we see the profile
itself propagating. In the nine dimensional case however
we see the discontinuities revealed as Dirac pulses.

FIG. 2: Simulated propagator response on a source profile
constructed with parabolic segments. (see the 3d response)

The 5d propagator is the derivative of a Dirac functions
which acts as a differential operator, producing a trian-
gular shaped response. The 7d and 9d propagators are
2nd and 3rd order derivatives of the Dirac function. The
9d response shows Gaussian shaped Dirac pulses. This
shape and its width come from the δr(r) profile used as
source function. The same Gaussian curve is also visible
at the edges of the rectangles.

The simulation shots of fig. 2 are taken sufficiently far
from the center to make sure that what we see is mostly
from the slowest decaying term. We will see that there
are multiple terms from which the Coulomb field term
is the fastest decaying term. If the source input is con-
stant, corresponding to a particle at rest, then we will see
a static Coulomb field at any dimension, even though the
propagators represent differential operators. The reason
that a constant input is not 100% canceled by the differ-
ential propagators is because the propagators, having s2

as argument, decrease with increasing t. They therefor
deviate from the exact derivatives in t.

IV. DERIVATION OF THE PROPAGATORS

We derive the photon propagators by starting with the
1d propagator which is particular simple to derive. The
general result is then obtained with the help of our inter
dimensional operator:

Pd(t, r) =
1
πa

∂a

∂(s2)a
P1(t, r),

�
a = d−1

2

�
(9)

We will prove this operator in the next section where
we also will show why and how it works. Now for the
derivation of the one dimensional propagator we use co-
ordinate systems which are 45o rotated: (t− r, t+ r) and
(E − p, E + p).

FIG. 3: 1+1d propagator
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2
(10)

The product in momentum space becomes a convolution
in configuration space via the convolution theorem. The
two factors in configuration space are both half-lines, one
on the line t=r and the other on the line t=-r. Both half-
lines start on t=r=0. The process can also be envisioned
as follows:

We start in configuration space with a Dirac pulse at
t=r=0. We integrate over the t-r line which gives us a
half-line starting at t=r=0. This is the Fourier trans-
form of the first factor in momentum space. A second
integration over the t+r line gives a 45o rotated quadrant
which gives us our propagator in configuration space, the
Fourier transform of the propagator in momentum space.

The argument used for the propagator (s2), is the correct
one with the remark that there is no propagation for t < 0
as is clearly shown by the derivation. To be complete we
could write:

P1(t, r) =
1
2
H(t)H(s2) (11)
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Generally we will however take the causal propagation at
positive time only as understood. The general expression
for any dimension takes derivatives along the s2 lines.
These lines, together with the lines where s2 is constant
form an orthogonal coordinate system u,v with:

u = t2 − r2, v = 2tr (12)

FIG. 4: s2 coordinate system: u = t2 − r2 and v = 2tr

We may consider this coordinate system as the ”square”
of the Cartesian coordinate system in the sense of:

u + iv = (t + ir)2 (13)

We are interested in the propagators behavior in terms
of t and r rather than in s2. Specifically in how they
work as operators on a time dependent function φt. The
derivatives in s2 are taken over lines orthogonal to the
light-cone. The propagator in 3d is a Dirac pulse δ(s2).
The ”volume” of this pulse decreases with increasing r
because the derivative of the argument s2 increases with
time: ∂rs

2 = −2r. The argument goes faster through
zero, the Dirac pulse becomes thinner and its volume
decreases. We can write for the 3d propagator:

P3(t, r) =
1
2π

δ(s2) =
1

4πr
δ(t− |r|) (14)

Where the volume of the Dirac function δ(t−|r|) is inde-
pendent of t and r. It produces the standard 3d potential
when operating on a constant charge ρ/εo.

The five dimensional propagator is given by the first
derivative of the Dirac pulse: ∂s2δ(s2), which is effec-
tively two Dirac pulses with opposite magnitude. The
effect we did see for increasing s2, when the propaga-
tor works as an operator, occurs twice here: The pulses
become thinner and they sample less of the source they

operate on. The pulses also get spaced less apart: the
difference they sample becomes less. The result is that
the propagator decays with the square of the distance.

Another effect is that the 5d propagator gets two terms.
The two opposite Dirac pulses do not have exactly the
same absolute value as a result of the decay. They deviate
from the ideal first order differentiator. This deviation
can be expressed by a single Dirac pulse and the magni-
tude is given by the first order approximation of the 1/r2

decay: Its derivative. This term is responsible for the 5d
Coulomb field which decays with 1/r3.

Decay rate of the slowest decaying term:

1d: H(s2) ∗ φt = H(t− |r|) ∗ φt

3d: δ(s2) ∗ φt = 1
t+|r| δ(t− |r|) ∗ φt

5d: ∂δ(s2)
∂s2 ∗ φt = 1

(t+|r|)2
∂δ(t−|r|)
∂(t−|r|) ∗ φt + O

7d: ∂2δ(s2)
∂(s2)2 ∗ φt = 1

(t+|r|)3
∂2δ(t−|r|)
∂(t−|r|)2 ∗ φt + O

9d: ∂3δ(s2)
∂(s2)3 ∗ φt = 1

(t+|r|)4
∂3δ(t−|r|)
∂(t−|r|)3 ∗ φt + O

(15)

Higher dimensions get increasingly more terms. The 9d
propagator has four terms for instance. If we express
these terms in t and r then we find the general expression:

Vd =
1

2πa

a−1∑
n=0

(
Γ(a + n)

Γ(n + 1)Γ(a− n)
1

(2r)a+n

∂bφt

∂tb

)
(16)

(With b = d − 2 − n). This expression has been nu-
merically verified by simulations in up to thirteen spatial
dimensions. If we write it down explicitly for the 1+9d
case we get:

V9 = P9 ∗φt =
1

2π4
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1
r7

φt (17)

The last term corresponds to the Coulomb field. If we
replace φt with a constant ρ/εo representing a charge ρ
at rest, then we obtain for the static Coulomb field by
differentiating with respect to r:
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Coulomb field in 1+9d space:

E9 = − ∂

∂r
V9 = − ∂

∂r

(
P9 ∗

ρ

εo

)
=

105
32π4

ρ

εor8
(18)

Where the normalization factor is one over the surface
of a 9-dimensional hypersphere. From here we can write
down the general form of the normalization constant and
in doing so we recover the surface of an hyper sphere in
any dimension:

1
2πa

Γ(d− 1)
Γ(a)

1
2d−1

=
Γ(d/2)
2πd/2

=
(
Sd

)−1

(19)

V. THE INTER DIMENSIONAL OPERATOR

We will prove here our inter-dimensional operator which
derives any propagator in d-dimensional space from the
corresponding propagator in 1+1 dimensional space:

Pd(t, r) =
1
πa

∂a

∂(s2)a
P1(t, r),

�
a = d−1

2

�
(20)

More generally it can be used to transform an arbi-
trary propagator in an x-dimensional space into the cor-
responding propagator in any y-dimensional space.

First we want to look some more at the interrelation of
the propagators in different dimensions. We can in gen-
eral derive, in a d-dimensional space, all the propagators
of lower dimensionality by using objects which extend
from minus infinity to plus infinity for all the dimensions
we want to collapse. The propagator in a d-dimensional
space must therefor produce the right 3d propagator or
any other lower-d propagator: The propagators of all di-
mensions are interrelated. We see the same reflected in
the Fourier transformation:

The Fourier transform to momentum space is a, spheri-
cally symmetrical, convolution with plane waves. Rather
than performing a series of 1d fourier transforms for each
dimension to obtain the d-dimensional propagator, we
can for instance also integrate first over the constant
plane of the plane wave, collapsing all spatial dimensions
into one, and then do a 1+1d Fourier transform to ob-
tain a result in E and p1. In this case we derive the 1d
propagator.

We can derive the n dimensional propagator by first in-
tegrating over (d-n) dimensions of the (d-1) dimensional
plane of the plane wave, followed by an 1+n-dimensional
Fourier transform.

As stated above: ”We can derive, in a d-dimensional
space, all the propagators of lower dimensionality by us-
ing objects which extend from minus infinity to plus in-
finity for all the dimensions we want to collapse”

Here we find the origin of these derivatives in s2 or, going
from higher to lower dimensions: the integral over s2 for
each step down.

The propagator describes the result of a Dirac type of
perturbation of the entire extended object. The distance
between two points in the lower dimension is only the
shortest distance to the extended object which is infinite
in size. After the first contribution has come in from
the closest point, other contributions from points further
away on the extended object will continue to come in
indefinitely.

FIG. 5: collapsing the R dimension

This is for instance the reason why the 1d and 2d prop-
agators can be non-zero inside the light-cone while in
3d there is no propagation except on the light-cone it-
self. We need to integrate all the contributions from the
extended object, to obtain the lower dimensional propa-
gator. If we collapse a single dimension like in fig.5 then
we get:

Pd(t, r) = 2
∫ Rmax

0

Pd+1

(
t,

√
r2 + R2

)
dR (21)

If we want to collapse multiple dimensions at once than
we have to integrate the contributions from an increas-
ingly larger hyper-sphere surface. We get for the general
formula:

Pd(t, r) =
2πn/2

Γ(n/2)

∫ Rmax

0

Rn−1Pd+n

(
t,

√
r2 + R2

)
dR

(22)

r =
√

x2
1 + x2

2... + x2
d (23)

R =
√

x2
d+1 + x2

d+2.... + x2
d+n (24)

We now proceed with this formula and change the inte-
grating variable to R2 instead of R. Next we limit the
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propagation speed to smaller or equal to the lightspeed so
we get an explicit expression for the maximum distance
Rmax. We obtain:

Pd(t, r) =
πν

(ν − 1)!

∫ s2

0

(R2)ν−1Pd+n

(
t,

√
R2 + r2

)
d(R2)

(25)

with the following substitutions used:

d(R2) = 2R dR
R2

max = t2 − r2 = s2

ν = n/2

(26)

We can already recognize the shape here of the formula
for fractional integration (29). Using s2 and S2 as explicit
arguments for the propagators we can write:

Pd(s2) =
πν

(ν − 1)!

∫ s2

0

(s2−S2)ν−1Pd+n

(
S2

)
d(s2−S2)

(27)

with the propagator argument substitutions used:

Pd(t, r) = Pd(t2 − r2) = Pd(s2)
Pd+n(t,

√
r2 + R2) = Pd+n(t2 − r2 −R2) = Pd+n(S2)

(28)

This formula is, except for a factor πν , equal to the
formula for fractional integration we have used earlier,
where ν denotes the factor by which we want to inte-
grate or differentiate:

∂−ν

∂t−ν
f(t) =

1
(ν − 1)!

∫ t

0

(t− ξ)ν−1 f(ξ) dξ (29)

We used the substitutions s2 → t and S2 → ξ here. The
replacement d(t− ξ) → dξ changes the sign twice since it
also causes the integration boundaries to be exchanged
and thus does not change the net result.

FIG. 6: ν-th order integration via convolution

A νth order integration is simply a convolution with a
(ν − 1)th order kernel, see fig.6. If we replace −ν with
’a’ then we finally retrieve our inter-dimensional operator
(20).

VI. THE VECTOR POTENTIALS

We can use our simulator for dynamic effects as long
as the perturbation of the position of the charge away
from r=0 is small enough. This is indeed the preferable
procedure since large displacements will introduce much
more complicated effects which only obscure the basic
laws we want to visualize.

FIG. 7: Vector potential of a vertically perturbed charge.

The higher order derivatives also determine the relation
between the magnetic vector potential and the motion of
the point charge. Concentrating on the slowest decaying
term we have:

Magnetic vector potential of a point charge.

~A =
1

2(2π)a ra

∂a~x

∂ta
+ O where a = d−1

2
(30)

The behavior of the magnetic vector potential of a point
charge in higher dimensions is simply an extension of
what we already know from 1d, 2d vector-potentials de-
rived in 3d using classical electrodynamics, for example:

The vector potential, in 3d, on a fixed distance of an infi-
nite plane carrying a constant current keeps rising linear
indefinitely according to classical electrodynamics, sim-
ply because contributions from points on the plane fur-
ther away keep coming in indefinitely. The contributions
stay constant over time since they come from an ever in-
creasing circle on the plane and the 3d propagator decays
with 1/r.

If the current is a Dirac function δ(t), corresponding to an
instantaneous displacement x̄d of a charged infinite plane
at t = 0, then the vector potential is given by a Heaviside
step-function where the height of the step is proportional
to the displacement x̄d. This Heaviside step-function is
nothing but the 1d photon propagator

For the response of higher-d propagators we have a look
at fig. 2 again. In this case the responses represent the
vector potential resulting from a charge which is dis-
placed over a small distance dy at t=0. The velocity
during the displacement is defined by parabolic curves.
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The 3d vector potential is proportional to the velocity,
the 5d vector potential is proportional to the accelera-
tion while the 9d vector potential at the bottom of the
figure is proportional to the 2nd order derivative of the
acceleration.

More general we can write for the magnetic vector po-
tential in 1+9d for a charge ρ making small pertubative
movements away from r=0:

Magnetic vector potential in 1+9 dimensions:

~A9 =
ρ

εo
P9 ∗~vt =

ρ

2π4εo

(
3!

0!3!
1
24

1
r4

∂4~x

∂t4

+
4!

1!2!
1
25

1
r5

∂3~x

∂t3

+
5!

2!1!
1
26

1
r6

∂2~x

∂t2

+
6!

3!0!
1
27

1
r7

∂~x

∂t

)
(31)

Where the last (fastest decaying) term corresponds with
the classical 3d magnetic vector potential. This last term
presents the EM radiation dependent on the acceleration
of the charge, while the others terms represent EM radi-
ation dependent on higher order derivatives of the accel-
eration. (Note that we still have used c=1 here).

VII. CONCLUSION

We found that there are dimensional dependent ratios
between the EM radiation and Coulomb field, and one
should expect, due to the 1/rn nature, to be able to
measure imprints of any propagation through higher di-
mensional structures at arbitrary scale down to Planck’s
scale. One should be able to do so with table top equip-
ment rather than with LHC scale experiments. We fur-
ther found that the slowest decaying EM radiation term
does not depend, as it does in 3d, on the acceleration of

the charge but on higher time derivatives of the accel-
eration. This provides an extra means to determine the
specific dimensionality.

This work has implications for propagators other than
the photon as well, like the similar graviton propagators
but also for the propagators of non-zero mass particles.
It may have implications for the inertial properties
of mass itself, in higher dimensional spaces, if we use
classical arguments which relate radiation reaction with
inertial mass. That is, inertial mass would not only
depend on acceleration but also on the derivatives of the
acceleration.

Work with the simulator is ongoing. One result, with
regard to massive propagators, is that we have not found
any propagation outside the light cone whatever. Not
in any dimensional space. This contradicts with often
heard arguments that the propagators ”leak” outside the
lightcone within a range of m−1 . (Note that this range
would be infinite in the limit case of massless particles!)
Zee (I.23) or Peskin & Schroeder (2.52). The latter use
an anti-particle argument to cancel out the propagation
outside the light-cone.

We can follow these claims back to Feynman’s 1949
landmark paper ”The theory of positrons” where he
found the Hankel function in the tables as a solution
of the propagator in configuration space. This is how-
ever a complex combination of the two real functions:
H

(2)
1 (ms) = J1(ms)−iY1(ms), the Bessel functions. This

is the ”Bessel equivalent” of the complex exponential
exp (−ims) = cos (ms)− i sin (ms) The Hankel function
is complex inside the light-cone for real masses but be-
comes real for imaginary masses or outside the lightcone.

It is this, exponentially decaying function, which is re-
sponsible for the supposed ”leaking” outside the light-
cone. This leaking however does never occur in our sim-
ulations. One can hardly blame somebody, in the pre-
computer days of 1949, taken into account that the work
in this paper would never have succeeded without the use
of extensive numerical simulations.


