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1 Preface

The idea of believing in and looking for a unique source to existence have
been one of the oldest continuously posed questions in the history of man
kind. The idea goes back to at least to the Sumero-Semitic syncretism of the
3rd millennium BC, when the process of identification (unification) of deities
had already taken place before the majority of records were written. The
concept of having a mother-creator goddess, Tiamat, is documented in the
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Babylonian Creation story “Enuma Elish” more than four thousand years
ago.3

A search for simplification in understanding an obviously sophisticated
and detailed phenomena happening in mother Nature is, in many senses, a
search for identification (unification), and vise versa. Many of the human
species named under physicists believe in this equivalence.

The first step towards a better “understanding” was by introducing the
concept of a cause of an action, which was eventually translated by Newton
(1665) into the more concrete concept of force.4 To date we are aware of
the presence of four kind of distinct forces in Nature at very low energies;
the electromagnetic, weak, strong, and gravitational forces. The attempt to
unify these forces at higher energies (though not the only interesting problem
of physics today) by deriving their equations of motion from a single simple
renormalizable action was pursued by realizing the covariance of their phys-
ical laws under certain symmetries. Those symmetries reduce the number of
free parameters in the theory and therefore enhance its predictivity; this is
one aspect of the simplification sought after.

The present Standard Model (SM) of elementary particles (Abdus-Salam,
Glashow, and Weinberg; Nobel Prize 1979) succeeded very well in unifying
the strong and electroweak interactions under the gauge group SU(3)C ×
SU(2)L × U(1)Y at energy scales around 100 GeV.

No understanding of a similar unification of gravity with the other forces
at accessible energies to accelerators is achieved to date. The only promising
quantum theory of gravity, so far, is superstring/M theory and its mathe-
matical consistency requires the space-time to have ten/eleven dimensions.
The low energy field theoretical description of string theory can be used in
order to explain our four-dimensional world using the standard Kaluza-Klein
compactification of the extra dimensions explained in the proceeding chap-
ters.

Coming back to the SM; its main building blocks are: Action principle,
Quantum Field Theory, Poincaré and gauge invariances, and the justified
assumption of living in (3 + 1)-dimensional space-time.

The community of modern theoretical particle physicists is clearly im-
pressed by this model (for an obvious reason that its predictions fit the exper-
imental data with an impressive precision [2]), and believes the assumptions

3A translation of Enuma Elish (before 2000 BC) can be found in [1].
4Thanks to gauge theories, now we also know the cause of a force!.
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under which it is made are to be valid at low energies and the concepts it is
based on are to be generalized to theories where gravity is included.

Despite the experimental success5 of the standard model as a theory de-
scribing the strong and electroweak interactions of elementary particles, this
model is not theoretically satisfactory for various reasons. There are two
main sources of theoretical dissatisfaction; the first has to do with the model
itself (when it comes to explaining, flavor, and charge quantization, for ex-
ample), and the second arises when the standard model is discussed within a
more general context where the fourth fundamental force of nature, gravity,
is present; leading subsequently to an instability of the weak scale at the
quantum level (caused by the quadratic divergences in the Higgs (mass)2).

Therefore, there are obvious urges to go beyond the standard model: the
need to explain neutrino oscillations (for instance), quantum instability of
the electroweak scale, and the hope for a quantum theory of gravity to unify
with the standard model (or its extension). Further simplification is yet to
be worked for.

The electroweak quantum instability, known as the hierarchy problem
between the electroweak and gravity scales, was the main motivation to start
searching for new physics beyond the standard model. These searches lead to
the birth of many hoping-to-be-physical 6 theories like technicolor [6], grand
unified theories [7], supersymmetry [8], and recently models with large extra
dimensions [9].

By coincidence,7 also the most promising theory to quantize gravity and
unify it with the other gauge forces (through superstring/M theory) seem to
require both extra dimensions, beyond the known four, and supersymmetry
as crucial ingredients for its consistency.

This strongly hints to that, hoping for a unique theory, the hierarchy
problem may be solved in a theory in higher dimensions than 4 with broken

5In the recent past there has been dissatisfaction from the experimental point of view,
as well, since the standard model is in shortage of explaining, for instance, neutrino oscilla-
tions [3] and the recent data of g−2 of the Muon [4]. Furthermore, there is no hint for the
existence of an elementary scalar field in Nature, while the Higgs sector is very essential
in the SM (see [5] for possible future detection of the standard model Higgs particle).

6I mean by a “physical” theory here the one which is able to fit with present exper-
imental data, to reproduce all what the standard model is able to reproduce at energies
∼ 100GeV, and not to contradict with the standard cosmological scenario after Big Bang
Nucleosynthesis. In addition, it should have some extra predictive power to SM preferably
testable at LHC.

7It may be realized in the future that it is not a mere coincidence. Who knows?.
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supersymmetry.
This thesis concerns itself to a good extent with solving the hierarchy

problem within the context of extra dimensions.
In string theory, the extra six-dimensional space is squeezed and pressed

(or compactified) into a manifold of a tiny volume. The original compactifica-
tion scale of this theory is of order M−1

P which is extremely small and it would
be impossible for any machine to detect a modification of the gravitational
law at such energies. With such a scale, the world will definitely appear
four-dimensional without any hint to the presence of dimensions beyond the
known four. Inspired by string theory, though not as mathematically rigor-
ous, a recent interest in extra-dimensional models has been revived by Dvali
et al [9, 10],8 who pointed out that the modification to Newton’s low by in-
troducing large extra dimensions could be a valid possibility since no tests
of gravity has been carried out to distances much below 1 millimeter (see for
instance [16, 17, 18]).

The activities so far fall into two categories: models as [9] based on the
original idea of Kaluza and Klein [19, 20] which consider a tensor product
(factorizable metric) of the four-dimensional world with the compact internal
space; and alternatives to compactification which consider non-compact ex-
tra dimensions, [21], with warped (non-factorizable) metric as in [13, 22]. The
new proposals were all aimed at a solution to the hierarchy problem by lower-
ing the gravity scale from 1019GeV down to few TeV. In Kaluza-Klein (KK)
like models, the particles are free to propagate inside the internal compact
space which should be small enough not to lead to phenomena contradicting
the present knowledge of particle physics and big bang nucleosynthesis [23].
There is an infinite number of images of the internal space at each point of
the four-dimensional world. When the extra dimensions are non-compact,
the only way to avoid long-range observable effects is to localize the fields on
a thin three-dimensional wall (brane). In this case, there will not be infinite
images of the brane world, and in principle one can have only one single
brane on which ordinary matter is localized.9

In both categories, it turns out that lowering the gravity, or the funda-

8 Credits of associating a physical meaning to extra dimensions prior to [9] go to [11]-
[15].

9A special case of only one image of the 4-dimensional space-time can also be considered,
within the context of Kaluza-Klein compactification, if ordinary matter fields are forced
to be localized around a specific point in the internal space [9]. We will not discuss this
possibility here.
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mental, scale of the theory does not by itself solve the problem. It rather
addresses it in a different way as it introduces other sources of fine-tuning into
the theory like for instance explaining the size of the manifold made by the
extra dimensions or the mechanism which traps the matter fields and gauge
forces on a brane. Let alone that there is again a huge difference between
few TeV and MP . However, as we shall explain later, the hierarchy problem
is not having a low energy cutoff close to the weak scale, but rather having
no quadratic or significant quantum correction to the classically computed
physical quantities.

There are generic difficulties which face models with extra dimensions as
upon compactifying down to four dimensions one may in general get new
degrees of freedom added to the spectrum of the Standard Model. The new
states can be purely from the gravitational sector, or have Standard Model
Kaluza-Klein excitations in addition (depending on whether the SM inter-
actions are written directly in four dimensions, using the induced metric,
or written fully in D dimensions). In any case, the new states might lead
to detectable modifications of the existing accelerator data and cosmological
observations [24]. This leads to imposing judicious bounds on the parameters
of these theories. Whether these bounds are implemented or not, the theories
with large extra dimensions experience difficulties in realizing complementary
scenarios like the standard cosmological one. For instance, imposing an up-
per bound on the reheating temperature in order to avoid overproduction of
Kaluza-Klein modes of the graviton, and discrete symmetries in order to pre-
vent a fast proton decay make it difficult to construct a baryogenesis model.
In addition, recovering the standard Friedmann-Robertson-Walker Universe
in 4 dimensions starting from higher-dimensional Einstein’s equations is not
straightforward whether the compactification is standard or warped.

In both factorizable geometry and non, it is important that the internal
space has no effects interfering with the SM precision tests. This of course
does not happen naturally, and, as mentioned above, bounds on the param-
eters of the model should be imposed.

So far no full and consistent model has been constructed, neither in ten-
sor compactification nor in the warp one, however the phenomenological and
cosmological implications have been studied extensively, and attempts to-
wards creating a theoretically appealing model persist. In this report we will
review the tools and basic concepts in constructing Kaluza-Klein theories
and Brane world scenarios.
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Plan of the thesis work

This article is organized as follows: In chapter 2 an introduction to the
Kaluza-Klein theory is presented including the very basic concepts on which
the Kaluza-Klein picture and Brane-world scenarios are based. It is far from
being a complete review, neither in topics covered nor in list of references,
however it is meant to serve as a background material mainly for Chapter 5.

In Chapter 3, the idea of warped extra dimensions and localization of
matter fields on a hyperspace in 4 + d dimensions is reviewed with the help
of some examples taken from the literature.

Chapter 4 discusses some of the physical implications of theories with
extra dimensions, mainly the modification of the Cosmological evolution of
the Universe and the fast proton decay. The last part of this chapter contains
an example of generating baryon number violation in theories with extra
dimensions and low gravity scales.

Chapter 5 is devoted to a solution to the hierarchy problem, where an
understanding of a single source responsible for both electroweak symmetry
breaking and standard model fermion chirality is provided.

Unfortunately, it was not possible to refer to all the interesting and im-
portant papers written in this subject due to the limitation of space and
time allowed for writing and submitting this dissertation. Therefore, only
“samples” of such contributions to the literature could be provided.

2 Kaluza-Klein Picture

2.1 Historical remark

Although having seven heavens is not a particularly new idea, the first to
be published in a scientific journal, proposing our observed world to be an
effective theory of a fundamental theory existing in more than four dimen-
sions, was Nordström’s [25] back in 1914. Having no general relativity at that
time, Gunnar Nordström wrote down Maxwell’s equations in 5 dimensional
space-time, and by wrapping the fifth dimension on a circle, he reduced the
equations to Maxwell-Nordström electromagnetic-gravitational theory in 4
dimensions.

In 1918, Hermann Weyl introduced the concept of gauge invariance [26]
in the first attempt to unify electromagnetism and gravitation in a geometric
context.
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Three years later, in 1921, the mathematician Theodor Kaluza proposed
[19] obtaining a four dimensional Einstein-Maxwell theory starting from Ein-
stein’s gravity equations in five dimensions. Assuming the five-dimensional
manifold, W , to be a product of a 4-dimensional space-time M4 and a circle
S1, W = M4 × S1, the fifteen components of the metric can be decomposed
from a four-dimensional point of view into 10 describing the gravity tensor,
four forming the components of a U(1) gauge field, and one degree of free-
dom representing a scalar field. By Fourier expanding those fields, retaining
only the zero modes, and integrating along the circle S1 one obtains a theory
in four dimensions which is invariant under both four-dimensional general
coordinate transformations, and a U(1) gauge transformations.

In his original work, Kaluza assumed the zero mode of the scalar field to
be constant, φ0 = 1. In any case, the value of φ0 had to be positive in order
to insure the proper relative sign of the Einstein and Maxwell terms so that
the energy is positive. This, in turns, means that the fifth dimension must be
space like. This can also be easily understood in terms of causality; clearly
a compact time-like dimension would lead to closed time-like curves. The
abelian gauge symmetry arising in four dimensions upon compactification
originates from the isometry of the circle. Those last two point, the require-
ment that the extra dimensions must be space-like, and that the isometry
of the compact space results in a gauge symmetry (generally non-abelian) of
the effective action are general arguments [27].

Seven years later, Oskar Klein used Kaluza’s idea in an attempt [20] to ex-
plain the underlying quantum mechanics of Schrödinger equation by deriving
it from a five-dimensional space-time in which the Planck constant is intro-
duced in connection with the periodicity along the closed fifth dimension. In
this paper he also discusses the size of the compactified circle, getting closer
to giving the extra dimensions a physical meaning than his predecessors did.
In a separate work [28], still in 1926, Klein proposed10 a relativistic general-
ization of Schrödinger’s equation by starting from a massless wave equation
in five dimensions and arriving at four-dimensional Klein-Gordon equation
for individual harmonics.

Afterwards, many people adopted Klauza’s idea, starting from Einstein
early last century and continuing by several physicists today. During this
period, the idea of having new dimensions to propagate in inspired many

10Credit to this approach goes also to V. Fock and H. Mandel, though others worked
for and achieved the same aim as well [29].
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to write the first complete models for Lagrangians unifying Yang-Mills and
gravity theories [30], supergravity in 11 dimensions [31], and superstring
theories which has to be considered in 10 dimensions for the theory to be
anomaly free and hence consistent at the quantum level.

Supergravity in eleven dimensions is special for at least three reasons: it
is unique, the maximum number of additional dimensions to four on which a
supergravity theory can be used to construct is seven (otherwise the theory
would contain massless particles of spin greater than two [32]), and moreover
seven extra dimensions is the minimum number for having the standard
model gauge group SU(3)×SU(2)×U(1) generated from the isometry group
of the internal space (which could, for instance, be the so called Witten space
CP 2 × S2 × S1).

In 1975, Sherk and Schwarz [11] attempted to put string theory (which
is consistent only in ten dimensions) in contact with the four-dimensional
world by assuming that the six extra dimensions are curled up into a tiny
small size which renders them unobserved. An alternative to compactification
was introduced in 1983 by Rubakov and Shaposhnikov, [14], and others [21,
33, 34, 35]. The idea of considering non-compact internal spaces was used
by Wetterich in [21] to propose a possible solution to the chirality problem
[36, 37] in the context of Kaluza-Klein theories.

2.2 Introduction

In the original Kaluza-Klein framework, the particles are free to move in
the compact space, as well as the 4-dimensional one, and hence the volume
of the new dimensions should be small in order not to undesirably inter-
fere with the present observations and existing experimental data, since the
new idea of 4 + d dimensions has a strong potential to naturally modify the
expansion of the Universe and the cross sections of elementary particle in-
teractions. Upon compactification, the eigenvalues of the Laplacian (or the
Dirac operator) on the internal space will have the interpretation of masses
in four dimensions. An illustrative example is the case of a product of a
four-dimensional Minkowski space and a circle M4 × S1. The wave function
of a scalar field can be expanded in Fourier series along S1,

φ(x, y) =
∑

n∈Z
ein

y
Rφn(x) ,
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Figure 1: Kaluza-Klein large extra dimensions versus Brane world.

where y is the coordinate on S1, of radius R, and n is the eigenvalue of the
one-dimensional angular momentum operator. The Klein-Gordon equation
of a massless φ can therefore be written as

pµpµ = −p2
0 + p2 = − n

2

R2
,

where pµ is the 4-dimensional momentum. Clearly, from a M4 point of view,
each Kaluza-Klein mode φn(x) is seen as a separate particle with mass2 equal
to n2/R2. Below energy scales 1/R, only massless modes with n = 0 can
be excited and hence the low energy physics is effectively four-dimensional.
This is just a näıve conclusion, and we will see later on that there are various
bounds and conditions which apply to realistic Kaluza-Klein type scenar-
ios in order to indeed achieve phenomenologically acceptable models in four
dimensions.

As discussed in the introduction, the modern interest in having extra
dimensions is more concerned with finding a solution to the hierarchy problem
than searching for detectable hints to string theory at low scales. If the
volume of the compactified extra space is characterized by a scale larger than
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M−1
p , the (4 + d)-dimensional gravity scale, will be automatically lowered,

could even be few TeV, and the difference between the fundamental gravity
and electroweak scales will be smaller. As usual, the 4-dimensional Planck
scale, MP = 1019GeV, is related to the fundamental gravity scale, M , of the
(4 + d)-dimensional space via the volume, Vd, of the internal space. Having
the gravity action in 4 + d dimensions and integrating over the coordinates
of the internal space,

S =
1

κ2

∫
d4+dz

√
−g(z)R ⇒ Seff =

Vd
κ2

∫
d4x
√
−g4(x)R4 , (1)

where κ2 = M−d−2 and R is the (4 + d)-dimensional Ricci scalar, we get

M2
P = VdM

d+2 . (2)

Vd is usually proportional to the radius of compactification, Vd ∝ Rd.11

Having a fundamental gravity scale in 4 + d dimensions much different
from MP means, according to (1), that Newton’s low for gravity should be
modified at small distances r � R to be

V (r) =
m1m2

Md+2

1

r1+d
,

where for larger distances, r � R, the potential recovers its usual 1/r de-
pendence

V (r) =
m1m2

Md+2Rd

1

r
.

As can be deduced from (2), or equivalently

R = 10−17+ 30
n (

1TeV

M
)1+ 2

n cm ,

achieving M ∼ 1TeV requires assuming bigger compactification radii than
the ones used in string theory, i.e. R � 10−19GeV−1. Having lowered the
fundamental gravity scale M to few a TeV, the gauge hierarchy problem will
be re-addressed as the problem explaining the size of the internal space.

For M ∼TeV, this radius can be as big as 1013GeV−1 for two extra dimen-
sions, 108GeV−1 for three, 105GeV−1 for four, and so on. However, the radius

11 This relation is not generic to all manifolds, although it is very common. For example,
for a compact hyperbolic manifold, there will be an additional exponential dependence of
the volume on the radius of compactification.
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should not exceed the millimeter since we do have tests of Newton’s low up to
this scale [17, 18]. The case of one extra dimensions for a Kaluza-Klein type
scenario is excluded for low M since it requires the compactification radius
to be very big, 109Km!. This problem becomes milder as the number of extra
dimensions increases, however it may be desirable to avoid this shortcoming
even for a small number of them. The primary problem is not explaining
the smallness of these radii, which is obviously a fine-tuning problem, but
rather avoiding their undesirable contributions to well studied observables
(the masses of the KK excitation can be very light).

As said above, the Kaluza-Klein idea is that there is a multi-dimensional
world of the low energy physics which could be responsible for the internal
symmetries that we observe. The scale of this structure is assumed to be
small enough to render it unobservable at present energies; below 103GeV.
The motivation is to obtain a geometric interpretation of internal quantum
numbers, as electric charge, and to consider them conceptually the same as
the energy and momentum.

In these theories the starting point is a (4 + d)-dimensional space-time
and the assumption of general coordinate invariance, in other words adopting
(4 + d)-dimensional Ricci scalar with perhaps some covariant coupling to
“matter”, as the Lagrangian.

One argues then that the ground state values of the fields (including
the metric tensor) must solve the classical field equations and must have
as much symmetries as possible.12 The goal is to find a suitable ground
state configuration. This ground state should hence have the geometry of a
product space M4×K, where M4 is a 4-dimensional space of a Minkowskian
signature, and K is a d-dimensional compact space of an Euclidean signature
and a small size. Both M4 and K should admit groups of motion.

In the case of M4 being a Minkowski space, its group of motion is the
Poincaré group in four dimensions. The internal space K should admit a
compact group G.

The masses of the bosonic particle (or fermionic) will be determined by
the eigenvalues of the Laplacian (or Dirac) operator on K, since the operator
can be written as a direct sum of the operators on M4 and K.

The zero modes of those operators, if any, would correspond to massless
particles and these are important from the four-dimensional point of view

12 Since we know from experience that more symmetrical states tend to have lower
energies.
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since they will represent the low energy effective Lagrangian. The modes (ex-
citations) which involve propagation on K will generally have large masses,
proportional to the scale to which the size of K corresponds.

All excitations of any particle will be classified in irreducible represen-
tations of the ground state symmetry. If this symmetry is smaller than the
Lagrangian symmetry, we end up with spontaneous symmetry breaking.

Finding the eigenvalues of the Laplacian ∇2 (or those of D/ ) is not a
straightforward problem. In fact, there is no analytic expression for the
eigenvalues of these two operators on a generic compact manifold (although
lower and upper bounds on these values exist for a large number of them,
see [38]). However, things can be made simpler when a specific choice for K
is considered.

In this chapter the basic concepts on which the Kaluza-Klein idea is based
are briefly reviewed. Topics cover harmonic expansion on coset spaces, effec-
tive Lagrangians, stable compactification, and the issue of chiral fermions.
The chapter is concluded with a remark on possible geometric estimates for
masses of Kaluza-Klein fields on a generic compact space.

2.3 Coset spaces

Here we will focus on the most symmetrical category of compact manifolds,
the coset spaces G/H, 13 where G is the group (here a Lie group) of motion of
K (which leave the metric invariant) and H is a subgroup ofO(d) (the tangent
space group) [39].An example of a coset space G/H is S2 = SU(2)/U(1). The
Kaluza-Klein reduction procedure for a generic manifold has been worked out
in [40]-[42].

Let G be generated by

[Qâ, Qb̂] = Câb̂
ĉQĉ ,

where Qâ = {Qā, Qa}, Qā being the generators of H. Note that,
d ≡ dim(G/H) = dimG− dimH.

We assume that G/H is reductive, i.e.

[Qā, Qb] = Cāb
cQc ,

13Since, after all, the purpose of Kaluza-Klein picture is to explain internal symmetries
in terms of the symmetry of the compactified space.
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and symmetric;
[Qa, Qb] = Cab

c̄Qc̄ .

Let yi parameterize the coordinates on K = G/H, and let Ly be the repre-
sentative of each equivalence class (coset) of G with respect to its subgroup
H (for example one can choseLy = ey

aQa).
A generic transformation by G carries Ly into Ly′

gLy = Ly′h , h ∈ H .

This equation can be solved unambiguously for y′ and h as a function of y
and g.

To find the d-bein on K, let us construct the 1-form L−1
y dLy which nec-

essarily belongs to the Lie algebra of G and hence can be expanded as

L−1
y dLy = ea(y)Qa + eā(y)Qā .

Knowing how Ly transforms under G, one can derive, in a straight forward
way, the the transformation rule for ea(y) and show that they are the vielbeins
on G/H and that eā(y) are the connection form on H. They are [43]

ea(y′) = eb(y)Da
a(h−1) + (g−1dg)b̂Db̂

a(Lyh
−1) (3)

eā(y′) = eb̄(y)Db̄
ā(h−1) + (hdh−1)ā

+ (g−1dg)b̂Db̂
ā(Lyh

−1) . (4)

Firstly, note that dyg = 0, and hence ea(y) satisfies the requirement for an in-
variant d-bein. Later on we shall show that the x-dependent g-transformations
of G/H will give rise to the Kaluza-Klein local gauge transformations. For
the time being, we will assume that g is independent of coordinates. The
equation 3 indicates an ordinary tangent space rotation of the ea’s, provided
H is embedded in SO(d), the tangent space group of G/H.

In Kaluza-Klein theory, g can depend on the coordinates of M4, and
therefore generally dxg 6= 0. To understand the second term in (3) one has
to take into account the fluctuations of the ground state. Among these there
will be a Yang-Mills vector, Aâ, which undergoes the usual inhomogeneous
transformations of a gauge potential. It turns out that the second term in
(3) is canceled precisely by the inhomogeneous term in the transformations
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of Aâ [39] (see the next section). 14

Similarly, the last term in (4) is canceled by the transformations of Aā,
and hence (4) indicates that eā is a connection form on G/H.

In many cases of interest, the (4 + d)-dimensional metric is coupled to a
gauge field associated with a group U . When it is possible to embed H into
U , this gauge fields generally acquire non zero, but G invariant, values on
G/H.

Let qc̄ denote the image of Qc̄ in the Lie algebra of U . Then on can
construct the 1-form potential

A =
1

ρ
ec̄qc̄ .

It can be shown that its associated field strength,

F =
1

2ρ
ea ∧ ebCabc̄qc̄ ,

satisfied the Yang-Mills equation [40]. The 2-form F is invariant under the
left translations of G/H associated with the gauge transformations corre-
sponding to the embedding of H in U .

Example: S4 = SO(5)/SO(4)

Let S4 be parametrized by coordinates

um(y) = a
2ym

1 + y2
; m = 1, 2, 3, 4

u5(y) = a
1− y2

1 + y2
,

where y2 = (y1)2 + ...+ (y4)2, umum + u5u5 = a2.
One can chose Ly, the 5 × 5 orthogonal matrix to be [44]

Ly =

(
δmn − 2ynym

1+y2
2ym

1+y2

− 2ym

1+y2
1−y2

1+y2

)
.

14The metric on K can be expressed as usual in terms of the d-beins, gmn(y) =
eam(y)ean(y) (n,m; a = 1, ...d). The d-beins form a set of linearly independent 1-forms
ea(y) = dymeam(y). When the space admits a group of motionG (leaving gmn invariant), to
each element g ∈ G there corresponds a transformation y → y′ such that ea(y′) = eb(y)Db

a

where D ∈ O(d).
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Now we can construct L−1
y dLy, which is a 5 × 5 antisymmetric matrix in

the Lie algebra of SO(5) by decomposing it into a convenient basis. Chose
{Qb5, Qbc}, b, c = 1, ..., 4 such that {Qbc} are the generators of SO(4). Then

L−1
y dLy = ebQb5 +

1

2
AbcQbc ,

where

eb =
2a

1 + y2
dyb , (5)

Abc = y[bec] . (6)

The SO(5) invariant metric of S4 can be derived from (5) by identifying the
4-beins em

b as the coefficients of dyb. It is

gmn =
4a2

(1 + y2)2
δmn .

It is worthwhile to note that projecting the self-dual part of Abc in (6)
yields to the SU(2) instanton configuration [44]

Ai = −1

2
ηibcA

bc = −2ηibmy
b

1 + y2
dym , i = 1, 2, 3 , (7)

ηibc being the ’t Hooft symbols [45]. Ai is an instanton on an S4 of radius
a. This instanton can be shown to be a solution of the Einstein-Yang-Mills
equations of motion in a background metric M4 × S4 [44]. We will be using
examples of similar instanton/monopole backgrounds later on.

2.4 Harmonic expansion

A generic function φj(g) on G which belongs to a unitary irreducible repre-
sentation of it can be represented by the expansion

φj(g) =
∑

n

∑

p,q

√
dnD

n
jpq(g)φnqp . (8)

Dn
pq(g) is a unitary matrix of dimension dn, and the sum is over all irreducible

representations of G.15

15This is a generalized form of Fourier transform.
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Now for functions on a coset space G/H, the expansion is less general,
and hence subject to some restrictions. The concern here is with multiplet
of functions, φi(g), which have the property

φi(hg) = Dij(h)φj(g) ,

where h ∈ H and D is some definite representation of H. So, for the case of
G/H, only the terms in (8) which satisfy

Dn(hg) = D(h)Dn(g)

should be included. In other words, one should keep those representations
of G which upon restriction to H they produce the representation D of H.
Moreover, in Kaluza-Klein theories, the coefficients of expansion φnqp generally
depend on the coordinates of M4.

The formula for expanding a function on G/H is hence [39, 43]

φj(x, y) =
∑

n

∑

p,q

√
dn
dD
Dn
jpq(L

−1
y )φnqp(x) ,

where dD is the dimension of D. The notation means that from the matrix
Dn
ipq we take only the rows which satisfy

Dn
ipq(hL

−1
y ) = Dij(h)Dn

jpq(L
−1
y ) .

To see how the four-dimensional fields transform, and hence to find out
the internal symmetry of the 4-dimensional effective action, we should look
at the transformations of φnqp(x). Under the transformation y → y′ induced
by the G-action on G/H,

φj(x, y)→ φ′j(x, y
′) = Dji(h)φi(x, y) .

Using Ly transformations we find that

φnqp(x)→ φ′
n
qp(x) = Dn

jpq(g)φnqp(x) .

Therefore the 4d fields transform under G, which is the Kaluza-Klein
gauge group (referred to by physicists as the isometry group)

17



2.5 Effective Lagrangians

First of all, let us fix the notations which we will use here onwards, unless
otherwise indicated. We denote the coordinates in 4 + d dimensions by

zM = (xµ, ym) ,

where the Greek middle alphabet indices take the values 0,1,2,3 and their
Latin counterparts take the values 4,5,...d. The internal space is parametrized
by ym, and the four-dimensional one by xµ. The tangent space metric is
ηAB = diag(−1, 1, 1, ..., 1).

The metric in 4 + d dimensions is

gMN(z) = EM
A(z)EN

B(z)ηAB ,

where EM
A are the vielbeins.

To see how the isometry group result in an internal gauge symmetry of
the effective action, let us start with the following ansatz for the vielbeins in
4 + d dimensions [46, 47]

EM
A(x, y) =

(
eµ
α(x) −Aµ

b̂(x)Db̂
a(Ly)

0 em
a(y)

)
.

This ansatz is compatible with the 4-dimensional general coordinate trans-
formations xµ → x′µ, and the Yang-Mills transformations ym → y′m with the
associated frame rotations Da

b

eµ
α(x′) =

∂xν

∂x′µ
eν
α(x) ,

Eµ
a(x′, y′) =

(
∂xν

∂x′µ
Eν

b(x, y) +
∂yn

∂x′µ
en
b(y)

)
Db

a(h−1) , (9)

em
a(y′) =

∂yn

∂y′m
en
b(y)Db

a(h−1) ,

eµ
α(x) and en

b(y) are the vielbeins on M4 and K = G/H respectively. The
equation (9) implies, in the view of the ansatz above,

−A′b̂µ(x′)Db̂
a(Ly′) =

(
− ∂x

ν

∂x′µ
Aĉ
ν(x)Dĉ

b(Ly) +
∂yn

∂x′µ
en
b(y)

)
Db

a(h−1) . (10)
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Extracting the coefficient of dy′m and dx′µ from the formulae (3) and (4)
one gets

∂ym

∂xµ
= −(g−1∂µg)b̂Kb̂

m(y) ,

where Kb̂
m(y) is the Killing vector defined by [43]

Kb̂
m(y) = Db̂

c(Ly)ec
m(y) .

After finding the transformation rule for K, it is simple to derive the formula
for ∂y′m/∂xµ

∂y′m

∂xµ
= −(g−1∂µg)b̂Kb̂

m(y′) .

Going back to (10) one finds that

A′µ(x′) =
∂xν

∂x′µ
(
gAν(x)g−1 − g−1∂νg

)
,

where Aµ = Aµ
âQâ. This is precisely the transformation rule to be expected

for a Yang-Mills potential.
Now we arrive to the point where we derive the effective four-dimensional

gravitational action in 4 + d dimensions,

S =

∫
d4+dz det e(x, y) R ,

where R is the Ricci scalar curvature of the (4 + d)-dimensional space-time.
Upon substituting the metric ansatz into R (in the case of a zero torsion) we
get

R = R4 −
1

4
Fαβ

âFαβ
b̂Dâ

c(Ly)Db̂
c(Ly) +Rd ,

where R4 is the usual 4-dimensional Ricci scalar, and Rd is the constant
curvature of G/H. Upon integrating over the internal space, the conventional
Yang-Mills term emerges since

1

Vd

∫
ddy det[e(y)] Dâ

c(Ly)Db̂
c(Ly) = d δâb̂

and therefore we get massless Yang-Mills fields and graviton.
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2.6 Compactification & Stability

As said earlier, Scherk and Schwarz first attempted in [11] to put string theory
in contact with the observed world by compactifying the extra dimensions.
The important factor at this point was to actually show that the product
of a four-dimensional Minkowsky space-time with a compact internal space
is a solution to the equations of motion. This was done again by Scherk
and Schwarz [48] by proposing the concept of spontaneous compactification.
Until then, compactification seemed an arbitrary condition imposed on the
Kaluza-Klein picture.

Spontaneous compactification, proposed in [11, 48], occurs when the
ground state of an Einstein gravity theory coupled to some matter fields
(could be Yang-Mills fields [49, 50], non-linear sigma models [51], or anitsym-
metric tensor gauge fields [52]) is described by a product of a four-dimensional
space-time of a constant curvature, with a two-dimensional sphere in the pres-
ence of a magnetic monopole background. In this solution, the field strength
of the Yang-Mills potential contributes to the stress-energy tensor in the
right-hand side of the six-dimensional Einstein equations and generates the
curvature of S2.

Remarkably, it has been long realized that topological considerations are
central to the question of stability.

The existence of the solution is again not enough to consider it physical.
It should be moreover stable, in the sense that there should not be tachyons
or ghosts in small fluctuations around the background solution. The issue
of classical stability of the (4 + d)-dimensional Einstein-Yang-Mills theories
with an arbitrary gauge group was explored by Randjbar-Daemi, Salam and
strathdee [53] and Schellekens [54].

All stable compactifications on d-dimensional spheres Sd = SO(d+1)/SO(d)
with a symmetric topologically non-trivial classical gauge field which is em-
bedded in an H-subgroup (here SO(d)) of the Yang-Mills gauge group have
been classified by Schellekens in [55] and they occur only for d =2,4,5,6,8,9,10,12,
and 16.

In the following we briefly review [56] which provides a explanation of
the procedure used to probe the classical stability through an example of
spontaneous compactification of a six-dimensional Einstein-Maxwell theory.
More general treatment of spontaneous compactification on generic symmet-
ric coset spaces and Yang-Mills theories is provided in [40].

The procedure for checking the classical stability of compactification
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against small perturbations, in words, is done by

- checking if the ansatz of the desired form M4 ×K is a solutions of the
bosonic equations of motion.

- performing small perturbations around the background solution, and
computing the physical states (the ones which couple to conserved cur-
rents).

- showing that the spectrum does not contain tachyons or negative metric
states.

There may be other ways, however we restrict ourselves in this section to the
above one.

More discussion regarding the size of the internal space is in section 4.5.

2.6.1 The vacuum solution

Consider an action of gravity in D dimensions coupled to an U(1) gauge field,
FMN , and a cosmological constant, Λ,

S =

∫
dDx
√
−G

(
1

κ2
R− 1

2g2
TrF 2 + Λ

)
, (11)

where κ2 = M−d−2 is the d-dimensional Newton’s constant. The field equa-
tions of (11) are

1

κ2
RMN =

1

g2
TrFMRFN

R − 1

D − 2
GMN

(
1

2g2
TrF 2 + Λ

)
, (12)

∇MF
MN = 0 . (13)

Now consider solutions in D = 6 of the form M4 ×K, where M4 is the flat
4-dimensional Minkowski space and K is a compact manifold. Throughout
this section K will be taken to be S2. Furthermore we shall assume that
the gauge field configuration A will be non-vanishing only on K. One can of
course think of many other choices for K.

The flatness of the Minkowski space implies

1

2g2
TrF 2 + Λ = 0 ,

Rmn =
κ2

g2
TrFmrFn

r , (14)
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where m, n are indices in K. Our problem is now to find solutions of Yang-
Mills equations in K which also solve the Einstein equation (14).

The ansatz for solutions to (14), for the case K = S2, are

ds2 = ηµνdx
µdxν + a2

(
dθ2 + sinθ dϕ2

)
, (15)

where a is the radius of S2 to be determined, and

Āϕ = −n
2

(cosθ ∓ 1) . (16)

Here n ∈ Z, because of the proper patching on the upper and lower hemi-
spheres, and −(+) indicate the expression on the upper (lower) hemispheres.
(θ, ϕ) are the coordinates on S2.

Substituting the ansatz back into (14) reduces the equations into algebraic
equations between κ, a, g, and Λ:

g2 =
1

8
n2κ4Λ ,

a2 =
1

8
n2κ

2

g2
. (17)

2.6.2 Fluctuations and gauge fixing

The spectrum of the four-dimensional theory is obtained by looking at the
small fluctuations around the backgrounds (15) and (16),

gMN(x, y) = ḡMN + κhMN (x, y) ,

AM = ĀM + VM (x, y) ,

where ḡMN should be read off (15), and ĀM is (16).
To study the stability of the above configuration, one must study the

response of the system to some external physical disturbance. This is usually
done by coupling the perturbations hAB and VA to appropriate sources TAB
and JA respectively. The sources are constrained to respect the symmetries
of (11). The new action (11) is

S ′ = S +

∫
d6z
√−ḡ{1

2
TABhAB + JAVA} .
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The constraints on the sources read

∇BTAB − κF̄ABJB = 0 , DAJA = 0

We chose the gauge fixing

∇B(hAB −
1

2
ηABhCC ) = 0 , DAVA = 0 .

The next step is to solve the linearized equations of motion, taking into
account the constraints on the sources and the gauge fixing, for hAB and VA
in terms of the sources TAB and JA.

The linearized equations of motion then take the form [56]

∇2hAB −
1

4
ηAB∇2hCC + R̄BChAC + R̄AChBC

+κF̄BC∇[AVC] + κF̄AC∇[BVC] − κηABF̄CD∇[CVD] + TAB = 0 ,

∇2VA + R̄ABVB + κ∇C(hABF̄BC + F̄ABhBC +
1

2
hBBF̄CA) + JA = 0 .

2.6.3 Solutions to the linearized equations

To find the solutions for the above equations, it is useful to expand the
fluctuations and sources in spherical harmonics of S2 using the procedure
given in section 2.4.

Firstly, all fields should be decomposed into irreducible representations
of the H-subgroup, in this case represented by the SO(2) rotations (or a
U(1)). Those representations are labeled by the λ (named isohelicity [56]).
Let φλ(x, θ, ϕ) be a typical one.

φλ(x, θ, ϕ) =
∑

l≥|λ|

√
2l + 1

∑

m

Dl
λm(L−1

θϕ )φlλm(x) ,

where Dl
λm belong to the (2l + 1)-dimensional unitary irreducible represen-

tation of SU(2). λ can be an integer or half an integer, and m = −λ, ...,+λ.

One can chose Lθϕ = e
i
2
ϕσ3e

i
2
θσ2e−

i
2
ϕσ3 ∈ SU(2) (σ1,2,3 are Pauli matrices),

in other words

L−1
θϕ =

(
cos θ

2
−eiϕsin θ

2

e−iϕsin θ
2

cos θ
2

)
. (18)
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To see an example of how the summation in the harmonic expansion is
done, consider the representation l = 1/2. The coefficients of φ

l/2
1/2,−1/2, for

instance, can be read from (18) and it is −eiϕsin θ
2
. The general rule have

been explained in section 2.4.
Now we are left with the search for tachyons or negative norm states.

Among the fields hAB and VA there will be following fields (the SO(2) irre-
ducible pieces) which have a definite isohelicity:

h++ = 1
2
(h55 − h66 − 2ih56) λ = 2,

h+− = 1
2
(h55 + h66) λ = 0,

hµ+ =
√

1
2
(hµ5 − ihµ6) λ = 1,

V+ =
√

1
2
(V5 − iV6) λ = 1,

hµν , Vµν λ = 0,
h−− = h∗++, h−+, ...etc.

The non-zero masses are the following labeled by their spin 0, 1, 2 ( the
technical details of the calculations were neatly worked out in [56]),

M2
0 = (l− 1)(l + 2)/a2, l ≥ 2

M2
0± = [2l(l+ 1) + 1 +±

√
1 + 12l(l + 1)]/2a2, l ≥ 0

M2
1± = [l(l+ 1) +±

√
2l(l+ 1)]/a2, l ≥ 1

M2
2 = l(l+ 1)/a2, l ≥ 0

and it can be checked that no tachyons are present in this model, and hence
it is expected to be stable against small perturbations. There will be in
addition six massless states; the graviton (λ = ±2), a massless “photon”
(λ = ±1), and a Yang-Mills triplet (λ = ±1, l = 1).

It is worthwhile to emphasis as a final point in this section that there is a
mixing of the six-dimensional metric and Maxwell fields as pointed out in [56].
This mixing is contrary to the common assumption that Kaluza-Klein gauge
fields originate purely from the metric. This argument is expected to hold
whenever matter fields which participate in the spontaneous compactification
carry the appropriate quantum numbers [56].

2.7 Chiral fermions

Upon compactifying a Kaluza-Klein type theory with fermions, one expects
in general three kinds of difficulties. In order for the resulting fermions in
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4 dimensions to be chiral, they should be massless to start with. Hence the
first requirement for the Dirac operator on the compact internal manifold
is to have at least one zero mode, while not all manifolds admit harmonic
spinors. Secondly, the index of the Dirac operator is often (not always) zero
and hence the 4-dimensional theory will be non-chiral.

Moreover, the irreducible spin representation in 4 + d (d ≥ 1) dimensions
is always, greater than the irreducible one in four dimensions.16 Also the
number of zero modes, though finite [57], can lead to more massless fermions
than desired in four dimensions. So, one generally expects more degrees
of freedom, than the ones present in the standard model, to result in the
four-dimensional effective action after compactification. Many of those ex-
tra degrees of freedom can be eliminated once the issue of achieving chiral
fermions is settled.

One way to eventually achieve a chiral Lagrangian in four dimensions
stemming from a Kaluza-Klein field theory (another way is be by using by
orbifold compactification) is by coupling the fermions in 4 + d dimensions to
a stable non-trivial background, like a magnetic monopole, as was proposed
by Randjbar-Daemi, Salam and Strathdee [56, 58]. The problem of obtaining
left-right asymmetry of fermion quantum numbers was discussed by Witten
[37].

The necessity for a non-trivial background to get chiral fermions from
extra dimensions can be explained in the following simple example. Consider
a manifold, W , in 6 dimensions where W = M4 × S2. The Dirac equation
on a generic manifold is

D/ Wψ(x, y) = 0 .

With the appropriate choice of Dirac matrices, the above equation can be
written as

D/ 4ψ(x, y) +D/ S2ψ(x, y) = 0 .

In the absence of a background gauge field

- D/ S2ψ = 0 has no regular solutions.

- IndexD/ S2 = 0.

The first point can be understood easily, with and without going into
explicit computations, since, according to Lichnerowicz’s [59] theorem, all

16Which is 2
n
2 for n ∈ 2Z and 2

n−1
2 for n ∈ 2Z+ 1 .
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positively curved smooth compact manifolds, including S2, do not admit
harmonic spinors. In order for the resulting fermion in 4 dimensions to be
chiral, it should be massless to start with. Hence the first requirement for
the Dirac operator on the compact internal manifold is to have at least one
zero mode. The existence of fermion zero modes by couplings to gauge fields
with non-trivial topology was pointed out in [49, 60]. Also, the index of the
Dirac operator is often (as in the case of S2), however not always, zero.

Now let us couple ψ(x, y) to a magnetic monopole background described
in equation (16). 17 Consider the coupled Dirac operator on S2

D/ S2 = ΓmEα
m(∂α −

1

2
ωα[k,l]Σ

kl − iĀα(y)) .

As can be seen from (16), the background solution is proportional to the spin
connection ωα (ωθ = 0, and ωϕ = −(cosθ − 1)).

Now let ψ(x, y) be a Weyl spinor in 6 dimensions. Using the chirality
matrix, γ5, in four dimensions, ψ can be written as:

ψ =
1 + γ5

2
ψ +

1− γ5

2
ψ = ψR + ψL . (19)

The Dirac equation in a monopole background on the upper hemisphere
hence simplifies to

(
∂θ +

i

sinθ
− n+ 1

2sinθ
+
n+ 1

2
ctgθ

)
ψR = 0 ,

(
−∂θ +

i

sinθ
− n− 1

2sinθ
+
n− 1

2
ctgθ

)
ψL = 0 .

It can be easily checked that regular solutions exist only for one of the
chiralities, which is here ψL for n > 0, and for n 6= 0.18

2.8 Mass estimates for KK excitations

As we mentioned in the introduction, the eigenvalue problem of the Lapla-
cian, ∇2, is not known on a generic compact space. However, we know that

17For simplicity, we will do the computations on the upper hemisphere only, while taking
into account the consistent patching.

18And vise versa for n < 0.
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the spectrum of ∇2 on a compact Riemannian manifold is discrete, bounded
from below, and the eigenvalues (counted with multiplicity) are ordered:
0 = λ0 ≤ λn ≤ λn+1. In the mathematics literature there are many re-
sults on the lower bounds on the first eigenvalue, λ1, of the Laplace-Beltrami
operator,

∇2 ≡ 1√
g
∂m(
√
ggmn∂n),

(Laplacian acting on scalars) on a compact manifold.19

These general bounds can be helpful in estimating the masses of Kaluza-
Klein excitations, mainly of the graviton and scalar fields, in the cases where
it is difficult to perform explicit computations of the specturm.

The lower bounds on the first eigenvalue of the Laplacian translate into
lower bounds on the 4-dimensional tree-level masses of the bosonic particles
arising from compactification.

Lichnerowicz theorem enables us to to impose similar lower bounds on
fermion masses, and also to exclude tree level massless fermions, unless cou-
pled to a non-trivial background (as explained in section 2.7), for positively
curved internal spaces.

The lower bound on the first non-zero eigenvalue of ∇2 acting on scalars,
∇2
Kφn = −λnφn, on a generic compact manifold of a scalar curvature bounded

from below by (d− 1)ζ (ζ ∈ R) is [61]

λ1 + max{−(d− 1)ζ, 0} ≥ π2

4L2
, (20)

where L is the diameter of the manifold (the longest distance). The
fundamental parameter for masses arising from compactification is hence
L (this can be understood by observing that it is possible to change the
spectrum of the Laplacian by deforming the manifold, and yet keeping its
volume fixed). Usually L is greater or equal than the characteristic scale of
the volume of K (see for example [62]), and hence the estimates of the Kaluza-
Klein excitations depending on mere dimensional analysis (on complicated
manifolds where explicit computations can not be done) has to be somehow
lowered.

19 Upper bounds on those eigenvalues have also been worked out (for a review see [38]
and references thererin), however these are not much of a physical relevance since the
upper bounds depend generally on the level of excitation.
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In most cases, specially for a space of a constant curvature, one can relate
L to the volume of the manifold, and hence rewrite the bounds in terms of
the volume instead (e.g. in Sd and compact hyperbolic manifolds). The
inequality (20) translates effectively into a statement about the bounds on
the 4-dimensional masses of the lowest excitations, m2

1. It is obvious that
when the Ricci curvature, Rd, of K is non-negative, then one recovers the
standard scenario:

λ1 ≥
π2

4L2
,

where in the standard Kaluza-Klein scenario, as in [9], L is identified with
the compactification radius, R (e.g. for a circle, L = 2πR).

When Rd < 0,

λ1 ≥
π2

4L2
− (d − 1)|ζ| , (21)

the lower bound may not in this case always hold [63], specially if some
particular tuning between L and the volume scale of K is needed (in order
to address the hierarchy problem, for instance [62]).

The observed massless fermions in four dimensions are nothing but the
zero modes of D/ K (which lie in kerD/ K). The argument is based on the
relation between the squared Dirac operator and the scalar curvature,

D/ 2
K = ∇∗∇+

1

4
Rd , (22)

where∇∗∇ is the connection Laplacian and is a positive operator. It has been
pointed out by Lichnerowicz [59] using (22) that manifolds with a positive
curvature do not admit harmonic (massless) spinors. This can be easily seen
by sandwiching (22) for D/ 2 = 0 inside an complete orthonormal set of wave
functions and considering a constant curvature case, one gets

|∇ψ(y)|2 +
1

4
Rd|ψ(y)|2 = 0 ,

obviously the above equation has no solutions forRd > 0 on a compact space.
As it is the case for the Laplacian, the eigenvalues of the Dirac operator

on a compact space are discrete. Therefore, the eigenvalues of the squared
Dirac operator are discrete and positive, and in addition any eigenvalue, ν2

q ,is
bounded from below by the curvature [64], including ν2

1 ,

ν2
1 ≥

d

4(d − 1)
λ′1 , (23)
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where λ′1 is the first eigenvalue of the Yamabe operator,

L ≡ 4(d − 1)

d− 2
∇2
K +Rd .

with ∇2
K being the positive Laplacian acting on functions. This means that

the lower bounds on the massive spin 0 and spin 1/2 excitations are related.
For constant curvature Rd = (d − 1)ζ ≥ 0

ν2
1 ≥

(
d

d − 2

)
π2

4L2
+

d

4(d − 1)
Rd,

and for Rd < 0

ν2
1 ≥

d

d − 2

π2

4L2
− d(5d − 6)

4(d − 1)(d − 2)
|Rd|.

3 Warped Non-compact Extra Dimensions

3.1 Introduction

The notion of warped product of Riemannian manifolds was first introduced
by Bishop and O’Neill in 1969 [65], and it was shown that such solutions can
be of a physical relevance in [14, 21, 33, 34, 35], and was recently revived in
[22, 66, 67]. The recent literature is rich of new scenarios in non-compact
spaces [68]-[77].20

The non-direct product spaces (non-factorizable geometry) of relevance
are solutions to the equations of motion in which the metric of space-time is
a product of an internal space and a scalar function of the extra coordinates
(the warp factor), and the metric ansatz representing the space M ⊗f K is

ds2 = f(y)2gµνdx
µdxν + gmn(y)dymdyn ,

where the warp factor, f , is a smooth positive function f : K → R+. The
Ricci scalar is:

R =
1

f2

{
Rn −

n

2
f∇2f − n

4
(n− 1)|∇f |2

}
+Rd , (24)

20For recent reviews see [78, 79, 80].
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where Rn and Rd are the intrinsic curvatures of M and K respectively.
n ≡ dimM and is usually taken to to be equal to 4.

The space M is hence an (n− 1)-dimensional extended object inside the
full mother manifold with a tension λ and has generally the action

SM = λ

∫

M

dnx
[
−det(∂µz

M (x)∂νz
N(x)ηMN)

] 1
2 .

The warping space is usually taken to be non-compact with an infinite vol-
ume. 21

However, using a damping warp factor as a solution of the equations of
motion leads to a finite volume of the internal non-compact space [35] by
“effectively” changing the measure as we shall see later on (as in [22, 66]).
Therefore, it is perhaps more natural to use warped geometry in the presence
of non-compact internal spaces.

The idea [12, 13, 14] of living on a distributional brane source embed-
ded in a five-dimensional (or higher) manifold with non-compact transverse
direction has in principle a welcoming environment in superstring theory,
D-branes [81]. A D-brane is a BPS state carrying Ramond-Ramond charge,
nicely stable, being the lowest energy state, and naturally admits localized
modes on its world-volume. There are also BPS flat domain wall solutions
[82]-[89], as well as curved [90, 91], in five-dimensional gauged supergravity.

A classification of all (non D-brane) possible generalizations of Green-
Schwarz superstring action to p-dimensional extended objects is given in
[92] where it was also shown that topological extenions may arise in the
p-brane supersymmetry algebra [93]. In performing the classification, the
symmetries of the world-volume of the p-brane (reparametrization invariance
and Sigel symmetry) were used in order to show that gauge fixed version
of the brane world-volume action coupled to a (p + 1)-form field will have
some amount of supersymmetry of the mother manifold, depending on the
dimension of the embedding space and the number p. In this classification
the supersymmetric 3-brane (4-dimensional world-volume) can occur only in
2 and 4 extra dimensions. The supermultiplets will certainly be confined to
the brane. Making a non-supersymmetric gauge theoretical analogy to such

21A topological space is said to be non-compact if it can not be represented by a union
of a countable number of compact subsets. A compact subset is a set which is closed
(contains the limits of all its convergent sequences), and bounded (is contained in a sphere
of Rd). Non-compact spaces can also have a finite volume.
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a classification is obviously a difficult task, however it remains desirable until
proven impossible!.

This chapter discusses some examples of warped solutions to Einstein
and Einstein-Yang-Mills systems, as well as the conventional methods for
localizing gravity and fermions on a domain wall with a warped non-compact
transverse space.

3.2 Junction conditions

Consider a simple case of one extra dimension d = 1,

S =

∫
d4x dy

√
g(x, y)

(
1

κ2
R5 + Λ

)
+ λ

∫
d4xdy

√
ḡ(x, y)δ(y) , (25)

where the last term represents a δ-function like co-dimension 1 sources, the
simplest form of a brane, which is a hypersurface in 5-dimensions character-
ized by the equation y = 0. The brane has the induced metric ḡ(x)µν =
gµν(x, y = 0), and a tension λ. The ansatz for the background solution is
M4 × R as in [22]

ds2 = e−2σ(y)ηµνdx
µdxν + dy2 . (26)

Einstein equations of this system are

RMN −
1

2
gMN(R− 2

M3
Λ) =

1

4M3

√
−ḡ(x)ḡµν(x)δµMδ

ν
Nδ(y) ,

where R is parametrized by y ∈ (∞,+∞).
Away from the origin, the above equations are just the standard 5-

dimensional Einstein equations with a cosmological constant, and they reduce
to

RMN =
Λ

(d + 2)Md+2
gMN .

At the origin, the solutions for the equations require proper matching at
the location of the source. This will obviously impose a relation between
the tension of the brane λ and the warp factor σ, and consequently the
cosmological constant Λ. The procedure of matching differs according to the
model, however this feature still holds.
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x+dx
x

n d = - Kdx

Σ

Figure 2: The extrinsic curvature measure the deformation of a figure (here the
brane) lying in a spacelike hypersurface, Σ, that takes place when each point in

the figure is carried out forward unit interval of proper time “normal” to the
hypersurface out into the enveloping spacetime.

The discontinuity at y = 0 is characterized by the extrinsic curvature,
Kµν , which contains information of how the hypersurface is embedded in the
higher-dimensional space-time. The extrinsic curvature is defined as

Kµν = −ηρµ∇νnρ , ⊥µν= nνnν ,

where nρ is a normal vector in the direction of the extra dimension(s), which
defines the orthogonal complement components of the induced metric on the
brane ⊥µν= gµν(x, y)− ḡµν(x).

Assuming that the extrinsic curvature varies smoothly within the neigh-
borhood [−ε,+ε] of the constant hypersurface, the discontinuity as measured
at scales larger than the thickness 2ε is given by the jump in Kµν across the
discontinuity which is described by the quantity K+

µν −K−µν or equally by

[Kµν] ≡
∫ +ε

−ε
dε nρ∂ρKµν . (27)

One can relate the normal derivatives of Kµν to the the usual (intrinsic)
curvature within the thin brane limit (the transverse derivatives are negligible
compared to the normal ones) [94] in the formula,22

K ′µν ≡ nρ∂ρKµν = ηγµη
λ
νRγλ ,

from which one can deduce that the dominant components of the background
Ricci tensor Rµν will be given by the asymptotic formula

Rµν w K ′µν +K ′ ⊥µν
22 See [98] for a generalization to a thick-wall.
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where K ′ = ⊥ρσRσ
ρ. Hence

Rµν −
1

2
gµνR w K ′µν − ηµνK ′ .

Matching at y = 0 of the equations of motion at y = 0 requires

[Kµν ] =
1

Md+2
lim
ε→0

∫ +ε

−ε
dε[(d+ 2)Tµν − gµνgργTργ] . (28)

The above condition is a higher-dimensional version of the so called Israel
matching conditions [95]. 23

The matching condition at the origin of the solutions to the equations of
motion coming from (25) reads

3σ′gµν = 4
λ

M3
gµν at y = 0 ,

where the prime refers to a derivative with respect to y. The above equation
yields to

σ(y) =
λ

12M3
|y| . (29)

The equations of motion are satisfied, in the case of a flat four-dimensional
space, when

σ′2 = − Λ

12M3
, (30)

where the additive integration constant is omitted as it just amounts to an
overall rescaling of xµ’s. Clearly, Λ has to be negative; which means that the
five-dimensional space is an AdS5.24

The equations (29) and (30) imply that the tension of the brane and the
cosmological constant are related by

λ2 = −12M3Λ .

In other words, the argument of the warp factor in (26) is [22, 66]

σ(y) =

√
−Λ

12M3
|y| . (31)

23 Further discussion can be found in [94, 96, 97].
24The notation used here, as in [56], is such that Λ < 0 indicates an anti-de Sitter space.
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This indicates a genuine singularity in the curvature, as can be seen by
substituting the warp factor (31) in (24). Therefore, this solution should be
embedded in a context where the singularity is avoided (like string theory or
by considering a thick wall, as in [13], where the thickness of the wall would
act as regulator) for it to make sense.

Apart from the singularity, proving an ansatz to be a solution for the
equations of motion is not at all enough, it should also be proved stable at
least classically.

The stability can be insured if the brane is a BPS state with exact super-
symmetry in the full space-time, and/or carries a conserved charge thorough
its coupling to a four form. In fact, the stability of the brane-models have
been questioned in some recent papers, as [101]-[106], and it is far from being
obvious.

3.3 Randall-Sundrum scenario

The Randall-Sundrum model [66] where the hierarchy problem is addressed
is an extension of the above simple example. Here is how it works. Let us add
another brane to (11) which has a tension λ′ and consider the warp ansatz
(26) of M4 × S1/Z2, where S1/Z2 has a length rc and parametrized by the
angular coordinate φ ∈ [−π, π] (related to the old coordinate by y = rcφ).

The background metric (26) would satisfy the equations of motion of the
action with the two branes

σ′2

r2
c

=
−Λ

12M3
,

σ′′

rc
=

λ

12M3
δ(φ)− λ′

12M3
δ(φ− π) ,

if similar conditions to the previously discussed are fulfilled. There is a
different way in obtaining the matching conditions here, which is coordinate
dependent, and it is done by making use of the Z2 symmetry of the internal
space. The consistency of the first equation with the orbifold symmetry
φ → −φ implies (31) and this makes sense only if Λ < 0; indicating again
that the 5-dimensional space-time between the two branes is an anti-de Sitter
space AdS5.

The second equation of motion makes sense when

λ′ = −λ =
√

3M3Λ = 6M3k ; k ≡
√
−Λ

12M3
. (32)
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φ=π

λ<0   

φ=0

λ’>0

Figure 3: A sketch of Randall-Sundrum two-brane model with a damping warp

factor towards the brane with a negative tension.

The five-dimensional gravity scale M is again linked to MP through the
“volume” of the internal space

M2
P = M3rc

∫ π

−π
dφ e−2krc |φ| =

M3

k
(1− e−2krcπ) . (33)

Assuming the bulk curvature Λ to be less than M 5, and krc � 1, one deduces
that MP depends weekly on rc, unlike the case in Kaluza-Klein type models
(2).

If we live on the brane located at φ = π, then mass scales in the 4-
dimensional theory will be lowered generally by the value of the metric at
the location which is a factor of e−krcπ. This will remove any fine tuning
in generating the hierarchy between the Planck and electroweak scales since
MP ∼ ekπrcMEW .

The masses of the KK excitations are quantized with gaps ∆m ∼ ke−krc

[66, 79, 107]. From the point of view of an observer on the brane with λ < 0,
the KK gravitons will appear to have physical masses of order ∼ k, i.e. of
order TeV, while their dimensionful couplings to the above matter will be
characterized by mass scales of order (M 3/k)1/2, which is roughly the weak
scale.

Solving the hierarchy problem by living on the brane with negative tension
does not seem to be satisfactory. The reason is that the weak energy principle
characterized by the energy momentum tensor Tµνζ

µζν ≥ 0 (for an observer
with 4-velocity ζµ) will be violated [108] and hence one may expect unphysical
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modes to appear in the spectrum, like modes with arbitrary large negative
energies [109], which puts the stability of the model under question.

There are in the literature however stable vacua with negative cosmo-
logical constant, mainly within a supersymmetry context, as then one of
Maldacena [110] for instance which is not meant to describe the world as it
is, however did shed a light on a deeper understanding of the relation between
general relativity and conformal field theory beyond the gauge principle.

The above model [22] resembles in its general setup the one in [111] of the
eleven-dimensional supergravity compactified on a manifold with boundaries,
this configuration was shown to be relevant to the strong coupling limit of
the E8 × E8 heterotic string theory [111]. In five dimensions, the effective
strongly coupled heterotic string theory is shown to be a gauged version
of N = 1 five-dimensional supergravity with four-dimensional boundaries
which are identified with a pair of 3-brane world-volumes [67]. These branes
couple to a 4-form field which is the dual of the cosmological constant. There
have been various attempts to provide a supersymmetric realization to the
Randall-Sundrum [22] scenario, 25 however no explicit link with string theory
has yet been established.

Living on the brane with positive tension has the advantage of having
a 4-dimensional localized gravity [66], and the hierarchy can be generated
when the electroweak or supersymmetry breaking is transfered to us by some
mechanism on the hidden brane of negative tension [114]. Further discus-
sion regarding anti-de Sitter/Conformal field theory correspondence in the
above two brane model is present in [127]. Aother phenomenological and
cosmological aspects of brane-world models can be found in [115]-[127].

3.4 General solutions with Yang-Mills fields

Here we present a generalization of the general solutions for spontaneous
compactification on symmetric spaces [40] to warp compactification devel-
oped in [75]. As seen in section 2.3, the coupling to Yang-Mills fields may
lead to interesting physics and could also be necessary for the consistency
of the theory. The most relevant point about the presence of a gauge fields
background configuration is that it is crucial in obtaining chiral fermions, as
well as localizing them on a brane. The case for pure gravity was worked out
in [35],

25See for example see [112, 113] as well as other references in this section.
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Consider the background ansatz,

ds2 = eA(r)ηµνdx
µdxν + eB(r)gmndy

mdyn + dr2 , (34)

for an Einstein-Yang-Mills system in D = d1 + d2 + 1 dimensions, where we
are thought to live on a d1-dimensional world-volume of a flat brane with
a d2-dimensional compact internal space, K, and another one-dimensional
non-compact space, R+.

This ansatz is fairly general since several models can be regarded as special
cases of (34) by choosing specific forms of the functions A and B. 26 Let us
also assume that K = G/H and that the Yang-Mills gauge group contains H
as explained in section 2.3. On such spaces, one can construct the solutions
[40, 75]

F a
mpF

ak
n =

eB

d2
F 2gmn ,

where F 2 = gmkgnqF a
mnF

a
kq must be constant by virtue of G-invariance.

The starting action is

S =

∫
dDx
√
−G

(
1

κ2
R− 1

2g2
TrF 2 + Λ

)
+ λ

∫
dd1x

√
ḡ(x)

where the last term represents a Dirac δ-function like simple brane-source
which depends only on r. ḡ(x)µν is the induced metric, and λ is the tension
of the d1-dimensional world-volume brane. The brane is chosen to be located
at r = 0.

Around the origin, the solutions for the equations of motion will require
relating the brane tension, λ, together with the values of A′ and B ′ in a similar
manner as presented in sections 3.2 and 3.3. More about such treatment can
be found in [69, 70].

Away from r = 0 the equations of motion are [75]

A′′ +
d1

2
A′

2
+
d2

2
A′B ′ =

4κ2

D − 2

(
−Λ +

F 2

4g2
e−2B

)
,

B ′′ +
d2

2
B ′

2
+
d1

2
A′B ′ =

4κ2

D − 2

(
−Λ− 2D − d2 − 4

d2

F 2

4g2
e−2B

)
+ ae−B ,

26 For instance the case for which d2 = 0 and A = c|r| (c < 0) is the Randall-Sundrum
model [66]; d1 and A = B = c|r| (c < 0) is [69]; d2 = 1, A = c|r| (c < 0), as well as other
higher-dimensional solutions which localize gravity [72, 70].

37



d1A
′′ + d2B

′′ +
d1

2
A′

2
+
d2

2
B ′

2
=

4κ2

D − 2

(
−Λ +

F 2

4g2
e−2B

)
,

where a is the scalar curvature of K. The above equations are valid every-
where apart from the region r = 0 where the brane is positioned in R+.

When K is Ricci flat a = 0 (e.g. a torus or a Calabi-Yau), the solutions
for F 2 = 0 are

A(r) = f−log[z′(r) + f+z(r)] , A(r) = s−log[z′(r) + s+z(r)] ,

where

f∓ =
2

D − 1
[1∓

√
d2(D − 2)

d1
] , s∓ =

2

D − 2
[1∓

√
d1(D − 2)

d2
] ,

and

z = Re(αeγr + βe−γr) , γ =

√
−(D − 1)κ2Λ

2(D − 2)
.

These solutions are generalizations of the ones in [14, 35, 72]. For Λ < 0
a simple solution is

A = B = −
√
− 8κ2Λ

(D − 1)(D − 2)
r .

One can also extend the fifth direction to r ∈ (−∞,+∞) for which the
solution is A = B = −c|r|, and the behavior of the solutions is similar to the
warp behavior in [66]. For a 6= 0, solutions can be be AdSd1+1×G/H (Λ < 0)
[58, 56] with A = −cr (or A = −c|r| for r ∈ (−∞,+∞)) and B = const. (as
in [72]).

The solutions of both cases a = 0 and a 6= 0, are compatible with the
symmetry of Einstein equations r → −r and lead to the localization of
gravity. The presence of the brane as a singular source is essential as a
consequence of the junction condition (28).

In section 3.5.2 we will see how these types of solutions can be used to
localize chiral fermions on the brane.

3.5 Localization of Matter

The conventional way to avoid long-range observable effects of a non-compact
internal space is to localize the fields on a thin 3-dimensional wall (brane). In
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this case, there will not be infinite images of the brane world, and in principle
one can have only one single brane on which ordinary matter is localized.

A particle will be localized if its wave function dependence on the extra
dimensions has an amplitude resembling a distribution function sharply lo-
calized around a particular point in the internal space, and this requires a
specific non-trivial dependence of this wave function on the coordinates of
the internal space.

In the direct product compactification, the zero modes are usually con-
stant functions over the extra space, unless they are coupled to a background
configuration, as in [13].27 However in the warped geometry they may have
non-trivial dependence on the transverse space through the warp factor. 28

An equivalent way to read whether a particle is “trapped” or not, is done
by looking at its propagator in the full space-time. If its pole is of a scale
much larger than the typical low energy scale on the brane, then the zero
modes (light particles) will be bound to the brane and the bulk modes will
not be excited at those low energies.

The first example of localizing gravity on a domain wall was given in [66]
fermions in [13, 128], and abelian gauge fields in [129]. The following section
will provide examples to some of these mechanisms.

3.5.1 Gravity

An interesting example of the warped solutions is to consider living on the
positive tension brane explained in section 3.3 and to push the one of neg-
ative tension to infinity by taking the limit rc → ∞. In this case, it is
convenient to parameterize the fifth dimension with y = φrc. It is inter-
esting precisely because this configuration “traps” the massless graviton on
the brane. To see this, let us write the linearized Einstein equations for the
graviton, hµν(x, y) = hµν(x)h(y), using for convenience a change of variable
z = sgn[y](ek|y| − 1); the gauge ∂µhµν = 0, hµµ = 0; and a proper normaliza-

27There are no explicitly worked out examples for localizing fermions on a hyperspace
in Kaluza-Klein field-theoretic compactification. Attempts can be found in [9].

28 It is perhaps worth mentioning that the theory of fermions in a non-trivial background
in a non-compact space with direct product can resemble a theory with warped product,
with the warp factor being the wave function of the normalized zero modes in the internal
space, see section 30.
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tion for h(y), [66]

[
−1

2
∂2
z +

15k2

8(k|z|+ 1)2
− 3k

2
δ(z)

]
h(z) = m2h(z) .

Looking at the above equation one expects 1) a single bound state supported
by the δ-function trapped at z = 0, and 2) a continuous spectrum due to
the non-compactness of the space, no mass gap, and asymptotic behavior
as plane-waves. The amplitudes of the continuum modes should be sup-
pressed near z = 0 due to the potential barrier. Further details related to
the linearized gravity in a brane scenario have been worked out in [130].

The normalized zero mode of this operator, corresponding to m2 = 0, is
[66, 107]

h0(z) =
1

k(|z|+ 1/k)3/2
,

and is trapped in the potential, representing the brane. This zero mode,
unlike in the KK picture, depends non-trivially on the extra coordinate,
luckily with a decreasing dependence. This observation will be replicated in
section 3.5 where the wave function of the localized fermion zero modes will
have similar features.

The continuum modes are

hm(z) = Nm(|z|+ 1/k)1/2

[
Y2(m(|z|+ 1/k)) +

4k2

πm2
J2(m(|z|+ 1/k))

]
,

where m is the mass of the mode, Y2 and J2 are Bessel functions, and Nm is
a normalization constant.29 The potential generated by the exchange of the
zero and continuum modes behaves as [66]

V (r) = GN
m1m2

r

(
1 +

1

r2k2

)
,

whereGN is the four-dimensional Newton’s constant. So, at scales lower than
k, the scenario mimics a brane with pure 4-dimensional gravity (it was shown,
however, that the five-dimensional gravity will again be manifest at very large
distances, and that the above potential will be a good approximation in a
finite region only [109]).

29 Further details related to the linearized gravity in a brane scenario have been worked
out in [130], and more about gravitational trapping solutions can be found in [105, 131].
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Close to the brane, the wave function of the continum modes is suppressed
by a factor

√
m/k, and hence their coupling to matter on the brane is weak

for small m and their production will be insignificant at low energies [132].
At large z, the massive KK gravitaional modes have strong coupling away

from the brane, as their wave function behaves in this limit as ∼ eimz/k. How-
ever, the overlap between the wave functions of the zero mode and the con-
tinum modes is small [66], and this will ensure that the zero mode exchange
and their self-couplings are four-dimensional and that there is no ultimate
coupling of the KK excitations back to the matter on the brane. It was
shown in [133] in an explicit way that the gravitational interaction of [66]
correspond to 4-dimensional general relativity. It was shown in [134]-[138]
that the standard Friedmann expansion of the Universe can be recovered
under certain conditions.

3.5.2 Fermions

Localizing fermion fields together with gravity, in the manner explained
above, turns out to be impossible without additional Yukawa type couplings
[139]. Equivalently, a non-trivial vacuum configuration is required. The
essence of the localization here is that the kernel of the diagonalized Dirac
operator along the fifth direction is modified in the presence of a non-trivial
background in the extra space, very much the same as explained in section
2.7. It seems that the presence of this background is equally essential in the
warped geometry as in the direct one for obtaining chiral fermions on the
brane. For example, the coupled Dirac operator to a background configura-
tion in five dimensions [13] admits two zero modes, one of them turns out to
be normalizable while the other is not. Hence, all modes which couple to the
non-renormalizable zero-mode will decouple from the action.30

30 The fermion localization procedure is very similar to the one of lattice gauge theories.
The story began with the realization that dimensional regularization explicitly violates the
chiral gauge symmetry as does the other regularization procedures as Pauli-Villars and
zeta function teachniques. A lattice regularization was seeked, however the näıve approach
suffered from a doubler problem [140] as was shown that it is impossible to formulate a
gauge theory with continuous chiral symmetry on a lattice without doubling the species
of fermions. The concept of domain wall fermions was introduced [141] in order to solve
this problem by simulating the behavior of chiral fermions in an even dimensional space,
2n, by considering a lattice theory of interacting massive fermions in 2n + 1 dimensions.
The localization mechanism in the theories of extra dimensions is not very different. For
comprehensive and analytical description of chiral fermions on lattice see [142, 143] and
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Let us first see why a Yukawa coupling to fermions is needed, in a localized
gravity context, by reviewing [139]. Consider the relatively general metric
ansatz (34). The Dirac equation on the (D = d1 + d2 + 1)-dimensional space
M4 ⊗f K ×R+ coupled to a gauge field is

ΓAEM
A (∂M − ΩM +AM)Ψ(x, y, r) = 0, , (35)

where EM
A is the vielbeins, and ΩM = 1

2
ΩM [A,B]Σ

AB is the spin connection,
ΣAB = 1

4
[ΓA,ΓB], and AM is the gauge fields of a gauge group G. The

non-vanishing components of the spin connection is

Γµ =
1

4
A′eA/2δaµΓrΓa , (36)

Γm =
1

4
A′eB/2δamΓrΓa + ωm , (37)

where Γ matrices are the constant Dirac matrices, and ωm = 1
8
ωm[a,b][Γa,Γb]

is the spin connection on K derived from the metric gmn(y) = eame
b
nδab.

Assuming a background gauge field configuration only in the internal space K
and the absence of other Yang-Mills couplings to fermions the Dirac equation
(35) becomes

{
eA/2∂/M + Γr

(
∂r +

d1

4
A′ +

d2

4
B ′
)

+ e−B/2D/ K

}
Ψ = 0 , (38)

where D/ K is the Dirac operator on K in the background gauge field Am,
which is assumed to admit zero modes (see section 2.7). Let the zero modes
of K be ψ(y), then

Ψ(x, y, r) = ψ(y)ζ(r)χ(x) ,

where ζ and χ satisfy

∂/Mχ(x) = 0 , ζ(r) = exp

[
−d1

4
A− d2

4
B

]
.

The effective action in d1 dimensions is hence

SM = χ̄(x)∂/Mχ(x)

∫
drdy

√
g(y) e−A/2ψ†(y)ψ(y) . (39)

for a recent review [144].
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On the other hand, the d1-dimensional Newton’s constant is

G−1
d1

= G−1
D Vd2

∫
dr exp

[
d1 − 2

2
A+

B

2

]
, (40)

where Vd2 is the volume of the compact manifold K. The localization of grav-
ity requires a finite Gd1 , while localizing fermions demands that (39) should
converges. However, the integrals (40) and (39) do not simultaneously con-
verge in the case of an exponential warp factor A,B ∝ −|r| so far considered
in the literature since the function ζ(r) diverges.

Now let us introduce a scalar field Φ to the model, through the Yukawa
coupling Ψ̄ΦΨ. The new Dirac equation is

{
eA/2∂/M + Γr

(
∂r +

d1

4
A′ +

d2

4
B ′
)

+ gΦ + e−B/2D/ K

}
Ψ = 0 .

For the purpose of localization, as will be seen from the example given below,
the dynamics of Φ is irrelevant. What matters is that lim|r|→∞Φ = |φ|ε(r)
where ε(r) is the sign function and φ ≡ 〈Φ〉 (i.e. behaves as a kink at ±∞).
Assuming this together with imposing the chirality condition ΓrΨ = +Ψ or
Γr = 1 (in the case when d1 + d2 is even) the Dirac equation away from the
origin becomes

∂/Mχ(x) = 0 , D/ Kψ(y) = 0 ,(
∂r +

d1

4
A′ +

d2

4
B ′ + g|φ|ε(r)

)
ζ(r) = 0 ,

which admits the solution

Ψ(x, y, r) = exp

[
−
(
d1

4
A+

d2

4
B

)
− g|φ|ε(r)

]
ψ(y)χ(x) .

The condition for having localized fermions is hence

−A
2
− 2g|φ|rε(r) < 0 . (41)

This can be achieved for large enough values of g|φ|.
The chirality of the localized (normalizable) zero modes will be deter-

mined by the solutions of D/ Kψ(y) = 0 in the presence of the background. K
will be even dimensional if M = M4, and hence the solutions to the Dirac
equation on K will have a definite chirality. Moreover, in this case ψ and χ
will have the same chirality, and the number of chiral fermions will be equal
to the index of D/ K which is the difference between the number of negative
and positive chirality zero modes.
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Figure 4: Profile of the scalar field Φ and of the fermionic field Ψ along the fifth
dimension, in the presence of the kink approximated in (57). The fermionic field

is localized where its total mass vanishes.

Rubakov-Shaposhnikov mechanism

Now let us present an illustrative example of fermion localization in the
presence of a background [13] in five dimensions. The idea of [13] is a special
case of the above with A = B = 0 and no compact space K. The condition
(41) is automatically satisfied when Ψ is in the positive region ε = +1. As
explained above, we necessarily need a scalar field Φ which acquires a non-
zero , and varying,vacuum expectation value only along the extra space.
Obviously, φ(y) breaks the full translational invariance, as it is needed to
have a preferred direction orthogonal to the wall.

The vacuum expectation value of Φ can be regarded as background gauge
field, as in [145], which has a domain-wall configuration, e.g. a kink, and this
will provide an elegant dynamical origin for the spontaneous breaking of the
5-dimensional translation invariance.

The fermionic field will localize, as will be explained below, where its
total mass

m̂0 ≡ m0 + gφ(y)

vanishes (m0 is the bare fermionic mass in the five-dimensional theory), on
a wall with three spatial dimensions characterized by a particular position y
in the transverse direction.

For definiteness, we consider the theory described by the action

S =

∫
d4xdy Ψ(x, y)

[
i∂/4 + i∂/5 +

1

M̃
1/2
0

φ(y) +m0

]
Ψ(x, y) , (42)

where the subscript “0” indicates the value of the parameter at zero temper-
ature (we will discuss finite temperature effects later on), and the fields and
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the parameters have the following mass dimensions

[φ] =
3

2
, [Ψ] = 2 , [m0] =

[
M̃0

]
= 1 .

For the time being we will ignore the dynamics of the field Φ, since the
localization mechanism is concerned only with the background configuration.
It is possible, however, that the configuration can decay due to the dynamics
of the field Φ, e.g. interaction with fermions, thermal, and other effects. We
will discuss thermal effects in section 4.7, and shall assume the stability of
the vacuum configuration regarding what follows. At this point the shape of
the configuration does not matter, what matters is that it is not constant in
y, φ′(y) 6= 0.

The coupled Dirac equation will hence be 31

(
iγµ∂µ + γ5∂5 + m̂0

)
ψ = 0 . (43)

The spinor Ψ can be decomposed, in a Lorentz non-invariant way in 5 di-
mensions, into a left and right handed fermion with respect to the chirality
matrix γ5 in four dimensions as in (19). The Fourier expansion can be carried
out 32

Ψ(x, y) =
∑

n

Ln(y)PLψn(x) +
∑

n

Rn(y)PRψn(x) ,

Ψ̄(x, y) =
∑

n

ψ̄n(x)PRL
∗
n(y) +

∑

n

ψ̄n(x)PLR
∗
n(y) , (44)

where PL,R = (1±iγ5)/2 . Since the kernel of the Dirac is equal to the kernel
of its square, let us look at the square of the equation (43) in our search for
the zero modes

(
D/ 2

4 − ∂2
5 − iγ5m̂′0 + m̂2

0

)
Ψ = 0 , (45)

where the prime again denotes a derivative with respect to y. The equation
(45) can be rewritten using (44) as

(
−∂2

5 + m̂2
0 − m̂′0

)
Ln = µ2

n,LLn , (46)(
−∂2

5 + m̂2
0 + m̂′0

)
Rn = µ2

n,RRn , (47)
31We follow here the notation of [73] concerning Dirac matrices,...etc.
32We perform a discrete expansion here in order to illustrate the idea in an easier way,

while we keep in mind that the length of the fifth dimension is to be take to infinity at
the end. One can alternatively keep the length big “enough”, and not necessarily infinite,
however this will be at the cost of introducing an inexplicably small mass scale to the
theory.
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where µn,L and µn,R are the eigenvalues of the four-dimensional Dirac oper-
ator D/ 4 related to the eigenfunctions PLψn and PRψR respectively.

Define

a ≡ ∂5 + m̂0 , a† ≡ −∂5 + m̂0. (48)

Therefore

a†a = −∂2
5 + m̂2

0 − m̂′0 ,
aa† = −∂2

5 + m̂2
0 + m̂′0. (49)

In this notation, the equation (46) and (47) can be written as

a†aLn = µ2
n,LLn, (50)

aa†Rn = µ2
n,RRn. (51)

The eigenfunctions Ln and Rn can be normalized to form two sets of or-
thonormal functions. Note that the operators aa† and a†a commute only
when φ(y) is constant in y. Also multiplying (50) by a from the left shows
that aLn is an eigenfunction of the operator aa† with eigenvalue µ2

n,L for n
different from zero. So, for n 6= 0 one can write µn,L = µn,R ≡ µn, or in other
words

Rn =
1

µn
aLn , Ln =

1

µn
a†Rn. (52)

The above relation does not hold for the zero modes L0 and R0 corresponding
to µ0 = 0. The zero mode wave functions are found by integrating the two
equations aL0 = 0 and a†R0 = 0. The solutions are

L0 ∼ exp

[
−
∫ y

ds m̂0(s)

]
,

R0 ∼ exp

[∫ y

ds m̂0(s)

]
. (53)

If, for example, φ(y) has a kink configuration as in the figure 4 and if the
extra dimension is infinite, only the left-handed mode L0 is normalizable and
is localized around the zero of its total mass mtot. R0 will not be normalizable
and its coupling to other fields will always be suppressed by the length of
the fifth direction. The effective four-dimensional theory will hence contain a
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massless chiral fermionic field (in this case left-handed). The action (42) can
now be expressed in terms of the 4-dimensional fields, using the orthogonality
of {Ln} and {Rn}, as

S =

∫
d4x

[
ψ̄0,Liγ

µ∂µψ0,L +
∞∑

n=1

ψ̄n (iγµ∂µ + µn)ψn

]
. (54)

The first two terms correspond to 4-dimensional two-component massless
chiral fermions, and arise from the zero modes of equations (50) and (51).
The third term describes an infinite tower of Dirac fermions corresponding
to the (Kaluza-Klein) modes with non-zero µn in the expansion (44). If the
extra space is sufficiently large, these modes decouple completely from the
low energy theory.

Let us now consider a specific shape for the configuration, as this will
serve for section 4.7. Let the field Φ have the following Lagrangian

LΦ =
1

2
∂MΦ∂MΦ− (−µ2

0Φ2 + λ0Φ4)δ(y) , (55)

where µ0 and λ0 have mass dimensions 1 and -1 respectively. A solution of
the equations of motion is

φ(y) =
µ0√
2λ0

tanh[µ0 y] , (56)

which can be approximated with a straight line interpolating between the
two vacua (see figure 5)

φ(y) ' µ2
0√

2λ0

y , |y| < 1

µ0

φ(y) ' ± µ2
0√

2λ0

, |y| > 1

µ0
. (57)

The localization can occur only if

m0 <
µ0√

2λ0 M̃0

, (58)

since otherwise the total fermion mass m̂ never vanishes at any specific point
y.
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Figure 5: A linearized approximation to the kink solution of (56).

It can be shown that, from the four-dimensional point of view, a left
handed chiral massless fermionic field results from the localization mecha-
nism, if the above configuration (56) is assumed for the scalar φ. The right
handed part remains instead de-localized in the whole space. This is not a
problem since it is customary to limit the Standard Model fermionic content
only to left handed fields. The right handed fields can also be localized if
a kink–antikink solution is assumed for the scalar φ. As a result, the left
fields continue to be localized on the kink, while the right ones are confined
to the antikink. If the kink and the antikink are sufficiently far apart, the
left handed and right handed fermions however do not interact and again
the model reproducing our 4-dimensional world must be built by fermions of
a definite chirality. The fermionic content of the full dimensional theory is
in this case doubled with respect to the usual one, and observers on one of
the two walls will refer to the other as to a “mirror world”. The presence of
this kink–antikink configuration may be required by stability consideration
if thermal effects are considered.

In order to give mass to the fermions, some other scalar field acting as
a Higgs in the four-dimensional theory must be considered. As it is shown
in [73], the mechanism described above could give an explanation to the
hierarchy among the Yukawa couplings responsible for the fermionic mass
matrix. If indeed one chooses different five-dimensional bare masses for the
different fermionic fields, their wave functions will only partially overlap, as
a consquence, and increasing the distance between them in the transverce
direction to the brane results in suppressing their mutual interaction.
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4 Living with Extra Dimensions

4.1 Introduction

Imagining our Universe being extended to more than four dimensions at en-
ergies around TeV may imply dramatic experimental consequences. First of
all, the force of gravity is expected to become comparable to the other gauge
forces at around TeV which would enable LHC and NLC 33 to probe the
quantum structure of gravity. This could also be checked by the new experi-
ments measuring gravity at sub-millimeter distances [16, 17]. Secondly, since
the masses of the Kaluza-Klein excitations are typically of order of inverse the
compactification scale, they will be excited by being exchanged or emitted at
such energies and will be expected to appear in collider experiments, Cosmo-
logical, and Astrophysical environments [24]. Further, a multi-dimensional
Universe will generally evolve different from the usual Friedmann-Robertson-
Walker expansion law. 34 To fit the expected contribution of the infinitely
new degrees of freedom within the known experimental and observational
data, it is necessary to bounds on the parameters of the models with extra
dimensions, both compact or non, mainly lower bounds on the fundamental
scale of gravity whether this scale is set by the size of the compact dimensions,
the characteristic scale which enters in the localization of matter transverse
a non-compact space, or other relevant model dependent scales. In any case,
the larger the number of the extra dimensions is the looser the bounds be-
come.

In the following we review some of the rather established bounds im-
posed on models with large extra dimensions, 35 with more emphasis on
constraints arising from compatibility with Cosmological observations. After
having done so, we go on to present examples where the standard big bang
Cosmology can be recovered in Kaluza-Klein compactification schemes and
in Randall-Sundrum type scenarios. Then we move on to discuss briefly the
issue of stabilizing the scale of compactification, proton stability in theories
with extra dimensions, and finally baryogenesis with low scale gravity. We

33 LHC (CERN) has a center of mass energy around 14 TeV and is scheduled to operate
in 2005, while NLC (SLAC), the anticipated e+e− collider, has a center of mass energy
500-1500 GeV. For reviews see [160, 161].

34See [162] for a breif summary of the present status of the standard Big Bang model,
and [163, 164] for the recent interesting developments.

35Discussion about searches for extra dimensions in future colliders can be found in [18]
and [165, 166, 167].
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conclude this chapter by presenting a model for baryogenesis in 5 dimensions.

4.2 General bounds

The most stringent bound 36 on the size of the compact space comes from
the emission of the supernova SN1987A core of large fluxes of Kaluza-Klein
gravitons which affects its energy release [169, 147] (see [24] for a review).
For n = 2, these constrains turn out to be R < 0.9 × 10−4mm and for
n = 3, R < 1.9 × 10−7mm [149]. Collider and other bounds on the size of
compact extra dimensions can be found in [24], and a more recent analysis
in [147]-[156]. Higher-dimensional operators suppressed by small scales are
model dependent and they do not significantly modify the SM cross sections
and precision observables for a gravity scale greater than 1TeV [24]. 37 The
bounds on non-compact warped, Randall-Sundrum type, scenarios are less
elaborated and more model-dependent; such constraints can be found in
[150, 158, 159].

KK gravitons

The existence of light Kaluza-Klein gravitons is a general feature of com-
pact large extra dimensions, although their coupling properties to ordinary
matter is more model-dependent.38 Each KK graviton mode interacts with
the ordinary matter through the four-dimensional energy-momentum tensor
and its coupling is gravitationally week, suppressed by 1/MP , as can be read
from

Sn = Md+2

∫
dd+4z

[
∂h(x)eiqny

]∗ [
∂h(x)eiqny

]
+

∫
d4x h(x)T (x)

which shows that upon integrating over y the volume of the compact space
will appear in front of the first term producing M 2

P . The proper rescaling
gives a coupling M−1

P with the energy momentum tensor (ordinary matter).
Despite the gravitationally weak coupling, there are a large multiplicity

of those massive gravitons below an energy level, E, which is enormous ∼
36It was claimed racently nucleon-nucleon gravi-bremsstrahlung in the early Universe

could give a stronger bound that SN1987A provides [168].
37A serious problem in Kaluza-Klein large radii compactification is proton decay. For

that, a TeV gravity scale will cause a serious problem [157], unless a specific symmetry is
imposed.

38For the manifestation of these states in a string theory context see for example [169].
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(ER)d, and their combined effect is much stronger than the gravitational
suppression. One of the typical processes for producing a KK graviton is

e+e− → γ + graviton .

The graviton produced here will have the form of a missing energy. The total
cross section is of order α/M 2

P and is

σ(e+e− → γ + graviton) ∼ α

M2
P

(ER)d ∼ α

E2

(
E

M

)d+2

which becomes comparable to the electromagnetic cross section at energies
E ∼ M (for further details of this and others, like hadronic processes, we
refer the reader to [156]).

Beside their possible detection in colliders, through their emission or ex-
change, they can be produced at high temperature sometime in the early
Universe, and if they decay after the Big Bang Nucleosynthesis (BBN) they
will distort the Cosmic Microwave Background Radiation. Not only that,
their abundant number and large mass will change the expansion of the Uni-
verse, and this may be done during the BBN by slowing the expansion down
since they red shift as matter, ∼ R−3 rather than radiation ∼ R−4. Further-
more, their energy density may over-close the Universe if their abundance
is comparable to the photon abundance at early times. These obstacles are
enough to impose a strong upper bound on the temperature of the Universe,
T∗, after which it should behave as the usual Friedmann-Robertson-Walker
(FRW) Universe [24].

We explain below how these bounds arise (more or less along the lines of
[79]).

At high enough temperature T � R−1, the creation rate per unit time and
volume of a KK graviton of mass mn . T , based on dimensional analysis,39

Γ ∼ T 6

MP
, where the factor M−1

P is the strength of the coupling of the KK
graviton to matter. The estimate for the total rate of KK graviton production
would be

dn

dt
∼ T 6

MP
(TR)d ∼ T 4

(
T

M

)2+d

.

39Strictly speaking, assuming a four-dimensional KK gravity production at scales much
higher than R−1 makes little sense, since at such high scales the Universe appears multi-
dimensional presuming the general coordinate invariance is restored at high energies (the
break down of the isometry of the full space, and the formation of a domain wall, is usually
due to a spontaneous breaking characterized by R−1).
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Assuming that after a certain temperature, T∗, after which the Universe
evolves in the standard way (presumably during the reheating after inflation)

H = T 2
∗ /M

∗
P , where M∗2

P = MP /(1.66g
1/2
∗ ) ∼ 1018GeV, and g∗ is the effective

number of relativistic degrees of freedom, one finds that the number of KK
gravitons created in a Hubble time per relativistic species (photons) is

nKK(T∗)

nγ
∼M∗P

T 1+d
∗

M2+d
,

which is fairly large, and requires nKK � nγ.
A stronger upper bound on the temperature T∗ comes from slowing the

expansion of the Universe at temperature below T∗, since KK gravitons pro-
duced after this temperature red-shift as non-relativistic particles. At the
time of BBN their mass density per energy density of photons is of order

ρKK(1MeV)

ργ
∼ T∗

1MeV
× T d+1

∗ M∗P
Md+2

.

Requiring ρKK � ργ yields to the following upper bound on the reheating
temperature (or normalcy temperature) [24]

T∗ . 10
6d−9
d+2 MeV

M

1TeV
.

The upper bound reads for M = 1TeV in two dimensions 10MeV which it
too severe. The bound relaxes somehow for d = 6 and is T∗ . 1GeV.

Finally we come to the most constraining Cosmological bound which is
the risk of overclosing the Universe. The energy density of the massive KK
gravitons should not exceed the critical energy density today which corre-
spond to ∼ 3 × 10−9GeV. The life time of a graviton with an energy E
is

τ (E) =
M2

P

E3
∼ 1010yr.

(
102MeV

E

)3

.

Gravitons produced at temperatures below 102MeV have lifetime at least
as the age of the Universe. The energy density stored in the gravitons pro-
duced at a temperature T∗ is

ρKK(T∗)

ργ
∼ T∗nKK '

T d+1
∗ MP

Md+2

52



0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
_{

re
h}

 (
G

eV
)

m_{pl(4+n)} (TeV)

’n=2’
’n=4’
’n=6’

Figure 6: The maximum allowed normalcy temperature T∗ as a function of the

fundamental gravity scale M for various number of extra dimensions (taken from
[157]).

which gives for ρKK � ργ

T∗ . 10
6d−15
d+2 MeV

M

1TeV

and this constrains T∗ severely from above by a value of 1.7MeV, 0.3GeV,
and 2GeV for 2, 4, and 6 extra dimensions with fundamental gravity scale
M ' 10TeV!. This bound suggest that M > 10TeV for this scenario to be
compatible with BBN in the case of 2 extra dimensions.

4.3 Kaluza-Klein Cosmology

It is obvious that the evolution of the Universe as a system in more than four
dimensions will be different than the standard Friedmann-Robertson-Walker
scenario.

The question to pause is whether or not recovering the standard Cos-
mological expansion is possible and under which conditions. The answer to
this question is yes, it is possible for the four-dimensional Universe to evolve
according to the usual Freedmann expansion law if the internal space is small
enough compared to the size of the Universe [170]-[175]. Other Cosmological
consequences were also discussed as massive relics [176], inflation [172], and

53



other finite temperature effects in [177, 178]. In the few past years the some
of the above issues were re-examined in addition to some new cosmological
and phenomenological aspects [179]-[196].

Let us look at what happens to a Universe living in D dimensions with
the following metric

gMN =



−1

R(t)2g̃µν(x)
a(t)2g̃mn(y)


 , (59)

where g̃µν and g̃mn are the metrics on the d1-dimensional space M (d1 = 4
eventually) and the d2-dimensional compact one K respectively. Further, we
assume the Universe to have the perfect fluid description in D dimensions,
i.e.

TMN =



−ρ

pg̃µν
p′g̃mn


 , (60)

where the energy density ρ and the pressures p, p′ may depend on time,
but not the space coordinates xµ, ym. They are also assumed to satisfy the
equation of state ρ = (D − 1)p,40 p = p′.

The Einstein equations for the scale factor R and a in terms of the entries
of the energy-momentum tensor can be derived from the action

S =

∫
dd1xdd2y

√−g
(

1

κ2
R+ Λ

)
. (61)

For Λ = 0 they are

(d1 − 1)
R̈

R
+ d2

ä

a
= −κ2ρ ,

RM

R2
+
d

dt

(
Ṙ

R

)
+

(
(d1 − 1)

Ṙ

R
+ d2

ȧ

a

)
Ṙ

R
=

κ2

D − 1
ρ ,

RK

a2
+
d

dt

(
ȧ

a

)
+

(
(d1 − 1)

Ṙ

R
+ d2

Ṙ

R

)
ȧ

a
=

κ2

D − 1
ρ ,

where RM and RK are the curvature scalars of M and K respectively. Look-
ing at the equations of motion (setting Λ = 0) it was shown in [174] that,

40This equation of state is not well justified. For a generic treatment see [175].
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for a flat M , the typical distance R(t) between two point on M increases
monotonically from 0 to ∞ at every value of R0, while a, the radius of K,
increases from zero to a maximum then drops back to zero. A similar varying
behavior of the compactification scale has been noted in [173] 41 by taking
into account combined thermal and quantum mechanical fluctuations effects,
and the instability feature remains to be accounted for. Therefore a stabiliza-
tion mechanism is needed to set a at the desired value whatever it is chosen
to be in a short enough period, not only for keeping the fundamental scale
of gravity low enough, but also in order not to cause any conflict with the
variations of the four-dimensional Newton’s constant κ2 [197] and big bang
nucleosynthesis [198].

Assuming that such a localization mechanism exists and that its net effect
is to induce a constant effective pressure pc = 1

a2
c

the independent four-

dimensional Einstein equations to be solved at low energies become [174]

d

dt

(
Ṙ

R

)
+ (d1 − 1)

Ṙ2

R2
= κ2ρ , (d1 − 1)

R̈

R
= κ2ρ

which clearly resemble the evolution of FRW Universe.
As pointed out in [174], the temperature profile of the early Universe is

radically changed due to the presence of the extra dimensions. If all the
dimensions were expanding, the Universe would have only cooled down by
time. However, if the extra space undergoes a period of expansion and con-
traction, the D-dimensional Universe will start off very hot, cools down to a
certain limit, afterwhich it reheats until it becomes effectively the observed
four-dimensional Universe.

The energy momentum tensor (60) was shown in [175] to be derived from a
free energy function of free bosonic gas in thermal equilibrium. It was shown
that at energies below the compactification mass scale, the Universe expands
as usually observed in four dimensions while the radius of compactification
remains constant.42 This is done by adding a source term to (61)

Γ =

∫
d4xddy

√−g
(

1

κ2
R + Λ

)
+ Γ1 ,

41There is a major difference in the two results as in [173] the compact space tends to
increase after a certain critical length, in contrast with [174].

42For alternative expansion, e.g. inflation, see for instance [172, 188, 190].
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where Γ1 represents the contribution of matter fields, vacuum fluctuations,...etc.
Its variations defines the energy-momentum tensor

δΓ1 =

∫
d4xddy

√−g1

2
δgMNTMN .

The stress tensor TMN is as usual expected to have the same invariances as
the metric. In [175] the full manifold is considered R1 × S3 × Sd, where the
3-dimensional space is taken to be closed. The case of flat Universe can be
obtained by taking R → ∞ after a careful transition from the discrete to
continuum limit. The symmetry of TMN in this case is O(1, 3) × O(d + 1).
The action with this metric ansatz is hence

Γ =

∫
dt

Ω3Ωd

κ2

[
6Ṙ2

R2
+ 6d

Ṙ

R

ȧ

a
+ d(d − 1)

ȧ2

a2

]
+ U , (62)

where Ω3 and Ωd denote the spatial volumes

Ω3 = 2π2R3 , Ωd = (2π)
d+1

2
ad

Γ(d+1
2

)
,

and U is the effective “potential” which incorporates a classical gravity terms
arising fromR+Λ, from the one-loop quantum part Γ1, and from the thermal
part depending on the entropy S,

U =
Ω3Ωd

κ2

[
− 6

R2
− d(d − 1)

a2
+ Λ

]
+ U1−loop . (63)

The Free energy to be computed is obtained by Legendre transform of U

U1−loop = F + TS = Ω3Ωdρ(R, a, S) , (64)

where the temperature is given by T = ∂U/∂S. Let the pressures p and p′

entries in (60) be defined by the thermodynamic identity

d [Ω3Ωdρ(R, a, S)] = TdS − ΩdpdΩ3 −Ω3p
′dΩd ,

then the conservation of energy ∇MT
MN = 0 implies the conservation of

entropy.43 Since we have no a priori idea of what could the equation of state
43Recall that in the usual treatment [199] the energy density and pressure must satisfy

the integrability condition
∂2S(V, T )

∂T∂V
=
∂2S(V, T )

∂V ∂T
,

where dS(V, T ) ≡ dQ/T = [ρ(T )dV + p(T )dV + V dρ]/T which imply dp/dT = (ρ(T ) +
p(T ))/T . Since the equations of motion are d/dt[R3(ρ + p)/T ] = 0, the entropy will be
constant in time.
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for Kaluza-Klein Cosmology be, let us suppose that ρ, p, and p′ are due to
a gas of non-interacting bosons in thermal equilibrium. The free energy of
this system can be written as follows

βF =
1

2
ln det

[
−∆ + µ2

]

=

∞∑

r,m,n=0

Dmnln

[(
2πr

β

)2

+m
m+ 2

R2
+ n

n + d− 1

a2
+ µ2

]
(65)

where µ is a mass parameter, β = (kT )−1, and ∆ denotes the Laplacian
on the full compact manifold S1 × S3 × Sd and the three first terms in (65)
represent its eigenvalues. Dmn is the multiplicity factor related to each of the
eigenvalues and is equal to the dimension of O(1, 3)×O(d+1) representation

Dmn = (m+ 1)2 (2n+ d − 1)
(n + d− 2)!

(d− 1)!n!
.

The divergent sum (65) can be regularized by making use of the identity

lnX =
d

ds
Xs|s=0 =

d

ds

[
1

Γ(−s)

∫ ∞

0

dtt−s−1e−tX
]

s=0

The free energy can thus be rearranged as

βF =
d

ds

[
1

Γ(−s)

∫ ∞

0

dt t−s−1e−tµ
2

σ1(4π
2t/β2)σ3(t/R

2)σd(t/a
2)

]

s=0

,

where the functions σ1,3,d are defined by

σ1(4π
2t/β2) = 2

∞∑

r=0

e−16π2r2t/β2

σ3(t/R2) =
∞∑

m=0

(m+ 1)2e−m(m+2)t/R2

(66)

σd(t/a
2) =

∞∑

n=0

(2n+ d − 1)
(n + d− 2)!

(d− 1)!n!
e−n(n+d−1)t/a2

.

Note that each of the σ function can be written in terms of the Jacobi
Theta function

θ3(0, iu/π) ≡
∞∑

n=−∞
e−τn

2

=

√
π

τ
e−π

2n2/τ
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which has away from τ = 0 the modular property

θ3(z/τ,−τ−1) =

√
τ

i
eiπz

2/τθ3(z, τ ) .

The sums (66) hence converge and define analytic functions on the half
plane Ret > 0 and are singular at t = 0

σ1 ∼ t−1/2 , σ3 ∼ t−3/2 , σd ∼ t−d/2 .

For σ1, the zero temperature limit corresponds to σ1 '
√

4πt/β2, and the
flat four-dimensional space limit of the energy density F/(2π2R) corresponds
to σ3 ' 1

4

√
πR3t−3/2.

Now, in a regime in which R� T−1 > a and a relativistic gas of particles,
µ < T , the formula for the free energy converges at t = 0 (see [175] for
the technical details) and the “s” regularization can be removed, and the
approximate expression becomes

F ' Ω3

(
σda

−4 − 1

90
π2β−4 + ...

)
,

where

σd = − 1

32π2

∫ ∞

0

du u−3σd(u) .

The 1-loop contribution to the potential U related to F by (64) therefore
is

U1−loop ' Ω3
σd
a4

+ S4/3 τ

R
, τ =

3

4

(
45

4π4

)1/3

The full potential (63) up to one loop is therefore

U =
Ω3Ωd

κ2

[
− 6

R2
− d(d − 1)

a2
+ Λ

]
+ σd

Ω3

a4
+ τS4/3R+ ζm ,

where the last term ζm is identified by the energy for a constant a,

E = −Ω3Ωd

κ2

Ṙ2

R2
+ U . (67)

The time evolution of the D-dimensional Universe is governed by the
Euler-Lagrange equations derived from (62). Is is shown that for an appro-
priate choice of Λ and the parameters in U , it is possible to obtain a solution
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where the internal radius is constant while the large radius evolves as in the
standard Cosmology [175]. For ȧ = 0 the equations of motion become

∂t(RṘ)− 1

2
Ṙ2 =

1

12

κ2

Ω3Ωd
R
∂U

∂R
(68)

R−1∂t(R
2Ṙ)− Ṙ2 =

κ2

6d

R2

Ω3Ωd
a
∂U

∂a
(69)

The compatibility of (67), (68), and (69) requires

R
∂U

∂R
− 2

d
a
∂U

∂a
= E − U ,

and this constraint allows us to determines Λ and a in terms of κ2 which
upon substituting back into (69) gives

∂t(RṘ) = −1 or R2 = t (t0 − t) , (70)

where t0 is computed from (67) to be t20 = (τ/3π2)κ2S4/3/Ωd.
As a summary, there are solutions for Einstein equations in the regime

R � T−1 > a where the size of the internal space remain constant, and the
4-dimensional Universe evolves according to the conventional Friedmann-
Robertson-Walker Cosmology, as (70) clearly indicates, for a closed Universe
in a radiation dominated era. It remains to check the classical stability,
at least, of the value of a by solving the equations for small perturbations
around the desired value.

4.4 Brane Cosmology

Here we review an example [135] of the evolution of a brane-world embedded
in five dimensions, and under which condition the FRW expansion can be
recovered. The time evolution of the scale factor, is worked out explicitly for
the a specific choice of the equation of state p = ωρ (ω = const.), and it is
shown that the standard cosmological evolution can be obtained [135].

Since we are interested in a FRW metric for the four-dimensional Uni-
verse, we start from the following maximally symmetric three-dimensional
metric ansatz

ds2 = −n2(τ, y)dτ 2 + a2(τ, y)g̃ijdx
idxj + b2(τ, y)dy2 ,
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and we assume the brane as a hypersurface in five dimensions defined by
y = 0.

Upon substituting this ansatz into the five-dimensional Einstein equa-
tions, the non-vanishing components of the Einstein tensor
GMN ≡ RMN − 1

2
R gMN are [135]

G00 = 3

{
ȧ

a

(
ȧ

a
+
ḃ

b

)
− n2

b2

[
a′′

a
+
a′

a

(
a′

a
− b′

b

)]
+ κ

n2

a2

}
, (71)

Gij =
a2

b2
γij

{
a′

a

(
a′

a
+ 2

n′

n

)
− b′

b

(
n′

n
+ 2

a′

a

)
+ 2

a′′

a
+
n′′

n

}

+
a2

n2
g̃ij

{
ȧ

a

(
− ȧ
a

+ 2
ṅ

n

)
− 2

ä

a
+
ḃ

b

(
−2

ȧ

a
+
ṅ

n

)
− b̈

b

}
− κg̃ij , (72)

G05 = 3

(
n′

n

ȧ

a
+
a′

a

ḃ

b
− ȧ′

a

)
, (73)

G55 = 3

{
a′

a

(
a′

a
+
n′

n

)
− b2

n2

[
ȧ

a

(
ȧ

a
− ṅ

n

)
+
ä

a

]
− κb

2

a2

}
, (74)

where a prime stands for a derivative with respect to y while a dot denotes
the derivative with respect to τ .

The energy-momentum tensor can be decomposed into two parts; the
bulk matter source and the brane matter one

TAB = ŤAB |bulk + T̃AB |brane ,

where ŤAB |bulk is the energy-momentum tensor of the bulk matter which we
assume to have the form

ŤAB |bulk + diag(−ρB, pB, pB, pB, pT ) ,

where the energy density ρB and the pressures pB and pT are independent
of the coordinate y. Later we will be interested in the special case of a
Cosmological constant −ρB = pB = pT .

The second term T̄AB |brane corresponds to the matter content on the brane,
�i.e at y = 0. According to our metric ansatz, the matter description on the
brane is the one of a perfect fluid in four dimensions

T̃AB |brane =
δy

b
diag(−ρb, pb, pb, pb, 0) ,
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where ρb and pb are, respectively, the energy density and pressure on the
brane and are functions of time only. The last entry being zero means phys-
ically that there is no flow of ordinary matter along the fifth direction, and
consequently the vanishing of G05 and this leads in turn that (71) and (74)
become

F ′ = 2
a′a3

3
κ2Ť 0

0 (75)

Ḟ = 2
ȧa3

3
κ2Ť 5

5 , (76)

where F is a function of τ and y defined by

F (τ, y) =
a′2a2

b2
− ȧ2a2

n2
κa2 . (77)

Integrating (75) over y, keeping in mind that ρB
′ = 0, we obtain

F +
κ2

6
a4ρB + C = 0 ,

where C is a constant of integration.
Now, by taking the time derivative of (75), the y derivative of (76), and

assuming −ρB = pT we see that

(a′ − ȧ)a3 d

dt
ρB = 0

which indicates that ρB is independent of time for a′ − ȧ 6= 0, the thing we
will assume from now on. 44 This will indicate that Ċ = 0.

Coming back to (72), Gij can be written using the Bianchi identity
∇AG

A0 = 0 as

∂τ

(
F ′

a′

)
=

2

3
ȧa2g̃ijG

j
i

which is identically satisfied when −ρB = pB as can be seen using (75).
Hence, when the bulk source is a Cosmological constant, any set of func-

tions a, n, and b satisfying (77) or more explicitly

(
ȧ

na

)2

=
1

6
κ2ρB +

(
a′

ba

)2

− κ

a2
+
C

a4
(78)

44If a is, for example, an exponential function of y and τ as egyτ this assumption is no
more valid.
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together with G05 = 0 will locally be solution of Einstein equations in five
dimensions, away from y = 0.

At the position of the brane, y = 0, the junctions condition should be
taken into account (see section 3.2) which here take the form

[a′]

a(0)b(0)
= −κ

2

3
ρb (79)

[n′]

n(0)b(0)
= −κ

2

3
(3pb + ρb) , (80)

where [Q] = Q(0+)−Q(0−) defines the jump of the function Q across y = 0.
Assuming the symmetry y → −y (for simplicity, which is not necessarily

imply the presence of another brane), the junction condition (79) can be
used to compute a′ at the two sides of the brane, and by continuity, when
y → 0, one sees that the equation (78) implies the generalization of the first
Friedmann equation (after setting n(0) = 1 by a suitable change of time):

ȧ(0)2

ȧ(0)2
=
κ2

6
ρB +

κ4

36
ρ2
b +

C

a(0)2
− κ

a(0)2
. (81)

Note from the above equation that the bulk energy density enters linearly
while the brane energy density enters quadratically, and the Cosmological
evolution depends on the constant C, an effective radiation term, which is
determined by the initial conditions can be constrained by BBN [135].

Equation (81) is enough to study the cosmological evolution on the brane
whatever the metric outside looks like and whether or not ḃ = 0.

However, let us assume ḃ = 0 and set it to b = 1. Using the equation
G05 = 0 one can express n in terms of a according to

ȧ

n
≡ α(t) ,

where α depends solely on time. Inserting this into (75) leads to

α2 + κ− (aa′)′ =
κ2

3
a2ρB

which applies in the bulk at both sides of the brane. Integrating it over y
gives

a2 = A cosh(σy) +B sinh(σy) ,+C
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with

σ =

√
−2κ2

3
ρB ,

for ρB < 0.
For ρB > 0, the solution is

a2 = A cos(σy) +B sin(σy) + C ,

with

σ =

√
2κ2

3
ρB .

For a = 0 it is
a2 = (α2 + κ)y2 + Sy + E .

where the functions A,B,C, S, and E are functions of time (or constants)
and can be determined in terms of the input parameters of the theory.

In order to see more explicitly the Cosmological evolution on the brane,
let us decompose the energy density on the brane into two parts:

ρb = ρ+ ρΛ ,

where ρΛ is a constant, and ρ stands for the contribution of matter on the
brane. Substituting in (81) we get

ȧ(0)2

a(0)2
=
κ2

6
ρB +

κ4

36
ρ2

Λ +
κ4

18
ρΛρ+

κ4

36
ρ2 C

a(0)2
− κ

a(0)2
.

If we chose

κ2

6
ρB +

κ4

36
ρ2

Λ = 0 , (82)

we see that for ρ � ρΛ the standard Cosmology is recovered [134, 135] (the
solution for the case ρ = 0 is also in [200]).

Assuming the equations of state to be ρ = ωp, the energy density and
pressure become

ρ = ρc

(
a(0)

ac

)−q
, q = 3(1 + ω) ,
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where ρc and ac are constants. The scale factor describing the time evolution
on the brane, when (82) is satisfied, behaves as [135]

a(0, t) = acκ
2/qρ1/2

c

(
q2

72
κ2ρΛt

2 +
q

6
t

)1/q

,

and therefore the evolution of the Universe will be non-conventional a(t) ∼
t1/q at early times while at late times it is described by the standard Cos-
mology a(t) ∼ t2/q (further discussion can be found in [135]).

4.5 Stability of the scale of compactification

So far, the examples explained in sections 4.3 and 4.4 represent equilibrium
configurations, what remains is to check their stability against the perturba-
tions of the metric and other background fields.

The procedure of checking classical perturbative stability of a solution
to Einstein equations was explained in section 2.6 under2.6.3. There, it
was argued that one way to see whether the solution is stable or not is by
looking at the spectrum and making sure it contains no tachyons or ghosts.
The absence of such modes would indicate that the radius of compactification
would only oscillate around the background value and that the configuration,
say M ×K, will not acquire a shape different from the initial ansatz. 45

For example, the theory provided in section 2.6 (of reference[56]) is free
of both tachyons and negative norm fields, in addition to having a fixed
value of the radius in of S2 in terms of the other parameters in the theory
(equation (17)),46 and therefore the radius of compactification is expeted to
be oscilating around the value (8M 4g2/n2)−1. It is may also be helpful to
note that in this model there is no massless mode in the gravity sector to
associate with the radion, the radius of compactification.

In general, this not the case. The radion is usually massless and it has
no potential (or a flat one). Therefore, there is no reason why the scale

45It was argued in [201] that even a manifold which is stable against all deformations
will become unstable if the temperature is raised to a critical value, which is independent
of the shape of the manifold, as on rather general grounds the free energy could become
increasingly negative above the critical temperature. The phase transition due to this
phenomena indicates the necessity of having time-dependence for the field associated with
the evolution of the compact space.

46There is no analogue for this relation in the original Kaluza-Klein compactification
performed on a circle since S1 is flat.
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of its vacuum expectation value should be fixed at a specific point which is
moreover close to the electroweak scale. When put in a cosmological context,
the value of the radius should not vary much as this may have strong impact
on the Universe as observed today. Therefore, the ground state state of the
radion field has to have a determind value for at least two reasons. The first
is that there is no experimental evidence for a variation of the fundamental
constants [198]; according to observations the internal space(s) should be
static or nearly static at least from the time of nucleosynthesis. The second
is that we wish to have a lower gravity scale, preferably as low as few TeV,
as a cutoff for the standard model of particle physics. Therefore, a good
stabilization mechanism for the radion should be a part of any realistic model.

In superstring theories, the fundamental physical constants are related
to the vacuum expectation values of the moduli fields which are defined by
the shape and size of internal space(s) of compactification. In these theories,
some stabilization mechanisms are proposed, for example in [202, 203], and
recently it was shown that the stabilization can be enhanced due to the
coupling of the dilaton, the string coupling constant e〈φ〉 to the kinetic energy
of ordinary matter fields [223]. In the context of Kaluza-Klein theory this
issue was, and is still, subject to numerous investigations (see for instance
[204]-[223] for tensor product compactification, and [224]-[233] for warped).

Another way to stabilize the radion, than the one provided in [56], is by
generating a potential for the radion, through an ad hoc coupling to a scalar
field for example (as in [224]), and checking whether this potential has a
minimum which could correspond to the desired value of the radion. 47 In
fact, the background solution for the scalar field in [224] is, in a sense, similar
to the Yang-Mills background (16), and the relation determening the value
of the radion in [224] in terms of the values of the minima of scalar potential
and other paramters of the model is somehow analogous to equation (17).

In [221] the issue of stabilization was discussed within a cosmological time
evolution context, which is essentially the same idea. Again a potential was
introduced for this purpose, with the background metric similar to (59), and
it was argued that the fluctuations of the radion were oscillatory with positive
frequency, around a value r0, and this subsequently lead to the understanding
that r0 is a minumum of the potential. Of course one has to check that all
physical modes of the model have the feature.

47In [224] the back reaction of the scalar field into the metric was not taken into account,
for a discussion about this point see [231].
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We believe that the method in section 2.6 is nice since it does not involve
ad hoc potentials to stabilize the radion as usually alternative stability checks
require. It may even be that higher order corrections result in a potential
[234] which could lead to a better understanding to the origin of stabilization
potentials, which may also shed some light on the way how supersymmetry
is broken in superstring theories, and to possible relation of the value of
the radion at the minimum with the rest of parameters in the theory. This
problem remains challenging.

4.6 Proton stability

Another problematic issue arising from models with large extra (and also
infinite) dimensions is the potentially too fast proton decay. Generally, the
proton decay rate due to gravitational effects of, e.g. dimension 5 operators,
is given by

τ−1
p ∼

m5
p

M4
P

.

which we know from the bounds on proton life time it should satisfy τp . 1033

years. This implies a bound, too well known in Grand Unified Theories,
that the smallest mass which could substitute MP and does not lead to
an unacceptably fast proton decay is 1015 − 1016GeV. Therefore one does
generally expect a problem with proton decay at low fundamental scales
∼TeV.

If the particle mediating proton decay, say via the dimension five non-
renormalizable operator qqql/mX, has a mass mX ∼TeV range, it should
be incredibly weakly coupled in order not to lead to proton decay. A way
to suppress such an operator could be by imposing certain symmetries [157]
(see also [235]-[239]. Since global symmetries are are expected to be broken
by quantum effects, those symmetries better be gauged. Moreover, the pro-
cedure of orbifold compactification with fixed point (which is used by some
in order to achieve chiral fermions, project out unwanted states,...etc) is al-
lowed only in a string theory context, and therefore a neater way to achive
acceptable proton decay rate could be by choosing an appropriate Yang-Mills
gauge group in D-dimensions together with an appropriate compact space.
It is possible to construct examples of such compactification where opera-
tors leading to proton decay are forbidden because the quantum numbers
of quarks and leptons can not form invariant couplings under the unbroken
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symmetry (could be the unbroken part of the gauge group, the isometry
group, or both) as can be checked with the U(6) model in chapter 5. This
possibility will be discussed elsewhere.

We review here a simple mechanism for proton stability suggested in
[73], as this will serve in explaining chapter 4.7. 48 The same idea of fermion
localization [13] explained in section 3.5.2 can be adopted to guarantee proton
stability [73]: quarks and leptons are localized at two slightly displaced point
along the fifth direction, and this suppressed their mutual interaction. To
see how, let us give leptons and baryons the following 5-dimensional masses

(m0)l = 0 , (m0)b = m0 , (83)

which correspond to the localizations 49

yl = 0 , yb =
m0

√
2λ0M̃0

µ2
0

<
1

µ0
. (84)

The shape of the fermion wave functions along the fifth dimension is the
one in (53) up to a normalization. It can be cast in an explicit and simple
form if we consider the limit yb � 1/µ0, in which the effect of the plateau
for y > 1/µ0 can be neglected: 50

fl(y) =


 µ2

0√
2λ0M̃0π




1/4

exp



−

µ2
0y

2

2

√
2λ0 M̃0





fb(y) =


 µ2

0√
2λ0M̃0π




1/4

exp



−

µ2
0 (y − yb)2

2

√
2λ0M̃0



 .

We assume the Standard Model to be embedded in some theory which, in
general, contains some additional bosons X whose interactions violate baryon
number conservation. If it is the case, the four fermion interaction qq ←→ ql

48See also [10, 157, 182] for alternative suggestions.
49The last inequality in the next expression comes from (58). We assume quarks of

different generations to be located in the same y position in order to avoid dangerous
FCNC mediated by the Kaluza-Klein modes of the gluons [193].

50This is also the limit in which the approximation (57) is valid.
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Figure 7: The wave functions of quarks and leptons in the transverse space to the
brane world.

can be effectively described by
∫
d4x dy

q q q l

Λm2
X

, (85)

where mX is the mass of the intermediate boson X and Λ is a parameter of
mass dimension one related to the five-dimensional coupling of the X-particle
to quarks and leptons. This scattering is thus suppressed by 51

I =
1

Λm2
X

∫
dy

µ2
0

π

√
2λ0M̃0

exp



−

µ2
0/2√

2λ0M̃0

[
y2 + 3 (y − yb)2]





=
µ0

Λm2
X

√
2π
(

2λ0M̃0

)1/4
exp




−

3
(

2λ0 M̃0

)1/2

8

m2
0

µ2
0





. (86)

Current proton stability [240] requires I ∼ (1016 GeV)
− 2

, that is

m0

µ0

&

√
200 − 6 Log10

(
Λm2

X

µ0

/
GeV2

)

(
2λ0M̃0

)1/4
. (87)

The numerator in the last equation is quite insensitive to the mass scales
of the model, and – due to the logarithmic mild dependence – can be safely

51From the approximation (57), only the squared difference of the five-dimensional
masses affects the suppression factor. For this reason, the above choice (m0)l = 0 was
only done in order to simplify notation and does not have any physical meaning.
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assumed to be of order 10 . For definiteness, we will thus fix it at the value
of 10 in the rest of this chapter. Conditions (58) and (87) give altogether

10µ0(
2λ0 M̃0

)1/4
. m0 .

µ0(
2λ0 M̃0

)1/2
, (88)

that we can rewrite

2λ0M̃0 . 10−4

m0

µ0

& 102 . (89)

Notice that the last limit in equations (89) is stronger than the one given
in [73] where proton stability is achieved if the ratio of the massive scales
of the model is of order 10 . However, in ref. [73] the field Φ simply scales
linearly as a function of y , while we expect that whenever a specific model
is assumed, conditions analogous to our (58) and (89) should be imposed
[241].

4.7 Baryogenesis with Low Scale Gravity

In this section we discuss a mechanism for generating baryon number vio-
lation in a model with one extra dimensions. As explained in section 4.6,
the Rubakov-Shaposhnikov localization mechanism [13] was used in [73] in
order to insure proton stability at zero temperature.52 The baryon number
is almost conserved at zero temperature due to the slight overlap of the wave
functions of quarks and lepton in the internal space due to their different
localization along the fifth direction. The suppression decreases due to finite
temperature effects leading to bayon number violation at earlier times in the
history of the Universe.

Here, we review [241] where the idea of [73] is adopted for generating
operators leading to baryon number violation at finite temperature, while
such operators remain appropriately suppressed at zero temperature.

52 Beside providing an way around fast proton decay in theories with low fundamental
scales, this idea has further applications as one may reproduce the entries of the Cabibbo-
Kobayashi-Maskawa matrix just placing quarks of different generations at different and
appropriately chosen positions (this requires the presence of at least two extra dimensions,
as shown in [242]) without assuming any hierarchy in the original Yukawa couplings of the
fermions to the Higgs field. Discussion for collider signature is in [243].
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The starting point is to assume that quarks and leptons are now (i.e. at
zero temperature) sufficiently apart in the extra space. However, we wonder
if finite temperature effects could change this picture increasing the interac-
tions between quarks and leptons at early times. This would render proton
stability now compatible with baryogenesis in the early Universe. An exact
computation of the corrections on a solitonic background presents some tech-
nical difficulties. Moreover, relying on a perturbative analysis at a scale close
to the cut-off of the theory may be unsafe. For this reason, we do not give
a precise final value for the temperature necessary to achieve the observed
baryon asymmetry. We limit ourselves to a perturbative analysis made on di-
mensional arguments, which anyhow indicates that finite temperature effects
should indeed increase the interactions between baryons and leptons.

As it is well known, baryon number violation alone is not sufficient for
baryogenesis. To present a more complete analysis we discuss a particular
model reminiscent of GUT baryogenesis. In doing so, we meet another prob-
lem typical of these brane scenarios. Due to the low energy densities involved,
the expansion rate of the Universe is always very small. If baryogenesis orig-
inates from the decay of a boson X, the out of equilibrium condition requires
mX much higher than the physical cut-off of brane models. This problem can
be overcome for example if the temperature of the Universe never exceedsmX

and if these bosons are created non-thermally (for instance at preheating).
This and some other options are briefly discussed in the last section.

4.7.1 Thermal correction to the coefficients

Once the localization mechanism is incorporated in a low energy effective
theory – as the system described above may be considered –, one can legiti-
mately ask if thermal effects could play any significant role. We are mainly
interested in any possible change in the argument of the exponential in (86),
that will be the most relevant for the purpose of baryogenesis. For this
reason, we introduce the dimensionless quantity

a(T ) =
m(T )2

µ(T )2

√
2λ(T )M̃ (T ) . (90)

From (87) and (89), we can set a(0) ' 100 at zero temperature. Thermal
effects will modify this value. There are however some obstacles that one
meets in evaluating the finite temperature result. Apart from some technical
difficulties arising from the fact that the scalar background is not constant,
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the main problem is that nonperturbative effects may play a very relevant role
at high temperature. As it is customary in theories with extra dimensions,
the model described by (42) and (55) is nonrenormalizable and one expects
that there is a cut-off (generally related to the fundamental scale of gravity)
above which it stops holding. Our considerations will thus be valid only for
low temperature effects, and may be assumed only as an indication for what
is expected to happen at higher temperature.

Being aware of these problems, by looking at the dominant finite-temperature
one-loop effects, we estimate the first corrections to the relevant parameters
to be

λ (T ) = λ0 + cλ
T

M̃2
0

M̃ (T ) = M̃0 + c
M̃
T

m (T ) = m0 + cm
T 2

M̃0

(91)

µ2 (T ) = µ2
0 + cµ

T 3

M̃0

, (92)

where the c’s are dimensionless coefficients whose values are related to the
exact particle content of the theory.

In writing the above equations, the first of conditions (89) has also been
taken into account. For example, both a scalar and a fermionic loop con-
tribute to the thermal correction to the parameter λ0 . While the contribution
from the former is of order λ2

0 T , the one of the latter is of order T/M̃2
0 and

thus dominates. 53

Substituting equations (92) into eq. (90), we get, in the limit of low
temperature,

a (T ) ' a (0) ·
[
1 +

T

M̃0

(
cλ

2λ0 M̃0

+
cM̃
2

+
2 cm T

m0

− cµ T
2

µ2
0

)]
. (93)

From the smallness of the quantity λ0 M̃0 (see (89)) we can safely assume
(apart from high hierarchy between the c’s coefficients that we do not expect

53Notice also that with our choice (83) loops with internal leptons dominate over loops
with internal quarks, since the former have vanishing 5-dimensional bare mass and thus
are not Boltzmann suppressed. However, although this choice is the simplest one, one
may equally consider the most general case where all the fermions have a nonvanishing
five-dimensional mass.
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to hold) that the dominant contribution in the above expression comes from
the term proportional to cλ .

We thus simply have

a (T ) ' a (0)

(
1 + cλ

T

2λ0 M̃
2
0

)
. (94)

We notice that the parameter cλ, being related to the thermal corrections
to the φ4 coefficient due to a fermion loop, is expected to be negative [222]:
the first thermal effect is to decrease the value of the parameter a(T ), making
hence the baryon number violating reactions more efficient at finite rather
than at zero temperature.

There is another effect which may be very crucial at finite temperature,
linked to the stability of the Z2 symmetry. When a temperature is turned
on, we generally expect the formation of a fermion–antifermion condensate
〈ψ̄ ψ〉 6= 0 . If it is the case, the Yukawa coupling Φ ψ̄ ψ in the Lagrangian
(42) renders one of the two vacua unstable. While this leads to an instanta-
neous decay of the kink configuration, a kink–antikink system could have a
sufficiently long lifetime provided the two objects are enough far apart.

Let us conclude this section with an important remark. While in this
discussion we have considered only the localization of fermions along one ex-
tra dimension, almost everything we have said can be generalized if two or
more additional dimensions are present 54. The index theorem guarantees
[244, 245] indeed the possibility of localizing fermions on a topological defect
of an arbitrary dimension. Just to give an example, let us consider the local-
ization on a Nielsen–Olesen [246] vortex in the case of two extra–dimensions,
as it is discussed in [9]. Also in this case, one can localize quarks and leptons
at two different positions (actually along different circles about the center
of the vortex). Once again, proton stability requires conditions completely
analogous to conditions (89) here discussed. Of course the calculation of
thermal corrections gives different results, since the dimension of the cou-
plings of the model changes according to the number of spatial dimensions.
However, also in the case of the two-dimensional vortex, the qualitative result
turns out to be identical to what has been derived in the one-dimensional
case: the most significant effect comes from the variation of the coefficient λ

54This is mandatory in the scenario [9], since the presence of only one large extra
dimension is phenomenologically excluded.
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of the φ4 interaction, and it is in the direction of enhancing the quark–lepton
interaction with increasing temperature.

4.7.2 A model for baryogenesis

We saw in the previous section that thermal effects may increase the rate of
baryon number violating interactions of the system. This is very welcome,
since a theory which never violates baryon number cannot lead to baryoge-
nesis and thus can hardly reproduce the observed Universe. Anyhow baryon
number violation is only one of the ingredients for baryogenesis, and the aim
of this section is to investigate how the above mechanism can be embedded
in a more general context.

A particular scheme which may be adopted is baryogenesis through the
decay of massive bosons X. 55 This scheme closely resembles GUT baryoge-
nesis, but there are some important peculiarities due to the different scales
of energy involved. In GUT baryogenesis the massive boson X , coupled to
matter by the interaction g X ψ ψ̄ , has the decay rate

Γ ' αmx , α =
g2

4π
. (95)

An important condition is that the X boson decays when the temperature
of the Universe is below its mass (out of equilibrium decay), in order to avoid
thermal regeneration. From the standard equation for the expansion of the
Universe,

H ' g1/2
∗

T 2

MP
(96)

(where g∗ is the number of relativistic degrees of freedom at the temperature
T ), this condition rewrites

mX & g−1/2
∗ αMP . (97)

IfX is a Higgs particle, α can be as low as 10− 6 . Even in this case however
the X boson must be very massive. In principle this may be problematic in
the theories with extra dimensions we are interested in, which have the main
goal of having a very low fundamental scale.

55We may think of these bosons as the intermediate particles which mediate the four
fermion interaction described by the term (85).
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There are some possibilities to overcome this problem. One is related
to a possible deviation of the expansion of the system from the standard
Friedmann law. This is a concrete possibility, since the exact expansion law
is very dependent on the particular brane model one is considering and on
the fact that the size of the compact dimension is or is not stabilized. For
example, we will show in the next chapter that the Randall-Sundrum model
[22] with a stabilized radion can have (depending on the energy density on
the zero brane) an expansion rate higher than the standard one for temper-
atures close to the cut-off scale of the system (that is TeV). This accelerated
expansion could in principle favor the out of equilibrium condition for the X
bosons.

However this issue is very dependent on the specific cosmological scenario
adopted, and one may be interested in more general solutions for the out of
equilibrium problem. One very natural possibility is to create the X particles
non thermally and to require the temperature of the Universe to have been
always smaller than their mass mX . In this way, one kinematically forbids
regeneration of the X particles after their decay. In addition, although inter-
actions among these bosons can bring them to thermal equilibrium, chemical
equilibrium cannot be achieved.

Nonthermal creation of matter has raised a considerable interest in the
last years. In particular, the mechanism of preheating has proven quite
successful, as we have discuss in the first part of this work. The efficiency of
preheating has been exploited in the work [247] to revive GUT baryogenesis
in the context of standard four-dimensional theories. Here, we will not go
into the details of the processes that could have lead to the production of
the X bosons. Rather, we will simply assume that, after inflation, their
number density is nX . To simplify our computations, we will also suppose
that their energy density dominates over the thermal bath produced by the
perturbative decay of the inflaton field.56

56An alternative way to overcome the bound (97) relies on the fact that, as observed
in the works [248, 249], the maximal temperature reached by the thermal bath during
reheating can indeed be much higher than the final reheating temperature. In this case,
even if Trh is considerably lower than mX , X particles can be produced in a significant
amount, and the out of equilibrium condition is easily achieved. However, the treatment
of this mechanism is in our case somewhat different from the one given in [248]: due to
the slowness of the expansion of the Universe, the X bosons will decay before the freeze
out of their production. The final baryon asymmetry cannot be estimated with the use of
the formulae of [248], which are valid only if the decay of the X particles occurs well after
their freeze out.
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Just for definiteness, let us consider a very simple model where there are
two species of X boson which can decay into quarks and leptons, according
to the 4-dimensional effective interactions 57

g X q̄ q̄ , g e− a/4X l q , (98)

where (remember the suppression given by the different localization of quarks
and leptons) the quantity a is defined in eq. (90). Again for definiteness we
will consider the minimal model where no extra fermionic degrees of freedom
are added to the ones present in the Standard Model. Moreover we will
assume B −L to be conserved, even though the extension to a more general
scheme can be easily performed.

The decay of the X bosons will reheat the Universe to a temperature that
can be evaluated to be

Trh '
(

30

π2

mX nX
g∗

)1/4

. (99)

Since we do not want the X particles to be thermally regenerated after
their decay, we require Trh . mX, that can be rewritten as an upper bound
on nX

nX . 30
( g∗

100

)
m3
X . (100)

Another limit comes from the necessity to forbid the B violating four
fermion interaction (85) to erase the B asymmetry that has been just created
by the decay of the X bosons. We thus require the interaction (85) to be out
of equilibrium at temperatures lower than Trh. From eq. (86) we see that we
can parameterize the four fermion interaction with a coupling g2 e−3a/8/m2

X.
Hence, the out of equilibrium condition reads

g4 e−3 a/4 . g∗
mX

MP

(
mX

Trh

)3

. (101)

One more upper bound on the reheating temperature comes from the out
of equilibrium condition for the sphalerons. This requirement is necessary

57Here one can not really adopt a GUT regime, since in unified theories the quarks and
leptons are in the same multiplets which is not consistent with the idea of separation in
the extra space.

75



only if one chooses the theory to be B−L invariant, while it does not hold for
B−L violating schemes. We can approximately consider the sphalerons to be
in thermal equilibrium at temperatures above the electroweak scale. Thus,
if B − L is a conserved quantity, we will require the reheat temperature to
be smaller than about 100 GeV.

If one neglects the presence of the thermal bath prior to the decay of
the X bosons, the very first decays will be only into couples of quarks, since
the channel into one quark and one lepton is strongly suppressed by the
e−a(T=0) factor due to the fact that the kink is not modified by any thermal
correction. However, the decay process is not an instantaneous event. It
is shown in [248] that the particles produced in the very first decays are
generally expected to thermalize very rapidly, so to create a thermal bath
even when most of the energy density is still stored in the decaying particles.
58 The temperature of this bath can even be considerably higher than the
final reheating temperature. The presence of the heat bath modifies in turn
the shape of the kink, as shown in the previous section, and we can naturally
expect that this modification enhances the B violating interactions.

If the energy density of the Universe is dominated by the X bosons before
they decay, one has

ηB ' 0.1 (NX Trh/mX) 〈r − r̄〉 , (102)

where NX is the number of degrees of freedom associated to the X particles
and 〈r − r̄〉 is the difference between the rates of the decays X → q l and
X̄ → q̄ l̄.

We denote with X1 and X2 the two species of bosons whose interac-
tions (98) lead to baryon number violation, and parameterize by ε the strength
of CP-violation in these interactions. Considering that e−2a is always much
smaller than one, we get [250]

〈r − r̄〉 ∼ 3 g2 e−a/2 ε Im ISS (MX1/MX2) , (103)

where the function Im ISS(ρ) = [ ρ2 Log(1 + 1/ρ2) − 1 ] / (16π) can be esti-
mated to be of order 10−3−10−2. It is also reasonable to assume ε ∼ 10−2−1.

58As shown in [248], what is called the reheating temperature is indeed the temperature
of the thermal bath when it starts to dominate. After the first decays, the temperature of
the light degrees of freedom can be even much higher than Trh.
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Collecting all the above estimates, and assuming NX to be of order 10,
we get

ηB '
(
10−5 − 10−2

)
g2 Trh

mX
e−a(Trh)/2 . (104)

From the requirement Trh . mX we get an upper limit on the baryon
asymmetry

ηB .
(
10−5 − 10−2

)
g2 e−a/2 , (105)

where the factor a (T ) has to be calculated for a value of T of the order of
the reheating temperature.

We get a different limit on ηB from the bound (101): assuming mX ∼ TeV
and g∗ ∼ 100 indeed one obtains

ηB .
(
10−6 − 10−10

)
g2/3 e−a/4 . (106)

Since the observed amount of baryon asymmetry is of order 10−10, even in
the case of maximum efficiency of the process (that is, assuming maximal CP
violation and g ∼ 1), the bounds (105) and (106) imply that a (Trh) ∼ 40 .
Unfortunately, the temperature at which the condition a (T ) ∼ 40 occurs
cannot be evaluated by means of the expansion of eq. (94), that have been
obtained under the assumption |a (T )− a (0)| � a (0). On the other hand,
it is remarkable that our mechanism may work with a ratio a (Td) /a (0) of
order one. We thus expect that a successful baryogenesis may be realized
for a range of the parameters of this model which – although not possible to
evaluate through a perturbative analysis – should be quite wide and reason-
able.

As we have discussed in the previous chapter, in scenarios with large ex-
tra dimensions and low scale gravity, the maximal temperature reached by
the Universe after inflation is strongly bounded from above in order to avoid
overproducing Kaluza-Klein graviton modes, which may eventually contra-
dict cosmological observations [24]. For instance, in models with two large
extra dimensions the reheating temperature cannot exceed much 1MeV (un-
less the fundamental scale M is unnaturally high.

This value is too low for the scenario we are describing since ηB is propor-
tional to the ratio Trh/mX , and hence the observed amount of baryons would
be reproduced at the price of an unnaturally small value of a (Trh). However,
other schemes with extra dimensions exist where the bounds on Trh are less

77



severe. For example, in the proposals [22, 62] the mass of the first graviton
KK mode is expected to be of order TeV. The reheating temperature can
thus safely be taken to be of order 10 − 100 GeV.

There are of course several possible baryogenesis schemes alternative to
the one just presented (see for instance [251, 252]). A possible option which
also requires a minimal extension to the Standard Model could be to achieve
the baryon asymmetry directly through the 4 fermions interactions q + q ↔
q+l in the thermal primordial bath. The out of equilibrium condition may be
provided by the change of the kink as the temperature of the bath decreases.
59 What may be problematic is the source of CP violation which may lead
the creation of the baryon asymmetry. A possibility in this regard may be
provided by considering a second Higgs doublet, but the whole mechanism
certainly deserves a deep analysis by itself.

5 Gauge Hierarchy, Electroweak Spontaneous

Symmetry

Breaking, & Fermion Chirality Linked

5.1 Introduction

In the SM, the hierarchy of mass scales is present at both classical and
quantum levels. At the tree level, there is a huge difference between the
scales associated with the electroweak and the gravitational interactions,
MW/Mp ∼ 10−17.

If quantum corrections were not to significantly alter the value of the
Higgs (mass)2 computed classically, one could simply consider the number
10−17 above as one of the many extreme ratios existing in nature (like the
mass ratio of a feather and of an elephant). However, there are huge quadratic
corrections to the Higgs (mass)2 at the quantum level due to the fact that the
Higgs particle is described by a fundamental scalar field. These corrections
change the classical value of the Higgs (mass)2 by many orders of magnitude,
and adjusting the value back to its classical one requires a fine-tuning of
order 10−34 in the case of a gravitational cutoff, and another of order 10−26

in GUTs.

59This condition may be easily achieved due of the exponential dependence of the rate
of this process on the temperature, see equations (86) and (94).
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Supersymmetry is a very good example where the problem is nicely solved
at the quantum level, in fact once the SUSY breaking scale is set classically,
usually taken to be around few TeV, only logarithmic corrections will alter
this value. The key principle for the absence of quadratic divergences in this
theory is that the Higgs mass is protected by the symmetry above the cutoff.
Being in a multiplet with chiral fermions, the Higgs is deemed to be massless,
due to chiral symmetry, as long as SUSY is unbroken.

The idea of large extra dimensions explains perturbative stability of the
weak scale versus the Planck scale,60, by lowering the cut-off of the theory.
Nevertheless, it does not address the issue of sensitivity of the Higgs mass to
the ultraviolet cut-off. This is an important issue from the point of view of
the low energy calculability, and is the central point to be addressed in [253].

In the chapter we present the work [253], where the above key principle
is employed, though without supersymmetry, to explicit models where the
Higgs mass is protected by a gauge symmetry in 4+d dimensions. It is argued
that identifying the electroweak Higgs particle with the extra components
of the gauge field in 4 + d dimensions provides a solution to the hierarchy
problem.61

The absence of ultraviolate quadratic divergences is due to to the manifis-
tation of exact gauge symmetry at energies beyond the cutoff.62 The higher-
dimensional gauge symmetry plays the role of the “protector” in this case
forbidding the Higgs (mass)2 from receiving cut off dependent (and hence
local) corrections. This symmetry is spontaneously broken by compactifica-
tion.

The idea is implemented within explicit models which also provide a link
between fermion chirality and electroweak symmetry breaking in four dimen-
sions.

60Provided that a convincing stabilization mechanism for the radius of compactification
is found.

61An alternative approach was discussed in [255], where the Higgs mass is controlled by
a higher-dimensional extended supersymmetry, spontaneously broken globally by Scherk-
Schwarz mechanism. An alternative to the Higgs mechanism was suggested in [256]. The
idea can also be thought of as performing a compactification on a manifold with the first
betti number b1(Y ) = 0.

62Soon after the proposal in [253], several models appeared, [257, 258, 259], using the
same idea in explaining the finiteness of the Higgs mass.
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5.2 The proposal

After compactifying extra dimensions on a monopole background, via mech-
anism of [53], some of the extra components of the gauge fields become
tachyonic and spontaneously break the electroweak symmetry. Their quan-
tum numbers are identical to those of SM Higgs doublet. Notice that the
monopole background is essential for generating the families of chiral fermions
in four-dimensions, and therefore is doing a double job. If the tachyonic mass
is a tree level effect the natural scale of the symmetry breaking is ∼ 1/a, the
inverse radius of extra compact space, since the only source of spontaneous
breaking of the higher-dimensional gauge invariance is the compactification
itself. In other words, since in the infinite volume limit a → ∞ the full
higher-dimensional gauge invariance must be recovered, the weak scale must
go as MW ∼ 1/a. Thus in this case the size of extra dimensions to which
gauge fields can propagate should be a ∼ 1/TeV (as in [15]). However, it
is important to stress that in order for the theory not to become infinitely
strongly coupled above the compactification scale, the cut-off M must be
lowered as in [9], possibly via increase of the volume of some additional di-
mensions to which only gravity can spread. This issue will not be discussed
here.

The models constructed in [253] were in the direction of answering the
following question: “How close can one get the to the Standard Model, in
four dimensions, by Kaluza-Klein compactifying large extra dimensions of
an Einstein Yang-Mills theory coupled to fermions in 4 + d dimensions?”.

Eventually, the effective action of a “good” theory should provide us in
four dimensions with:

- chiral fermions in 4 dimensions.

- standard model gauge group (or a group containing it), spontaneously
broken to U(1)em.

- fermions and Higgs particles in the correct representations of the stan-
dard model gauge group.

- a good solution to the hierarchy problem.

- correct quark and lepton masses.

- suppressed proton decay.
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In the following, examples will explicitly given where the first four points
mentioned above can be realized, with some hints to achieving the last two.

In a an attempt to approaching the answer of the above question, two
principal ideas were proposed: Identifying the electroweak Higgs with the
extra components of the Yang-Mills field as a solution for the hierarchy prob-
lem, and linking fermion chirality to the spontaneous electroweak symmetry
breaking.

Approaching the hierarchy problem:

The suggestion to solving the hierarchy problem is that the electroweak Higgs
particle is identified with the extra components of the gauge field in 4 + d
dimensions.

Note that this identification will not be meaningful, from the point of
view of explaining the absence of quadratic divergences to the Higgs mass,
unless it is proven that those extra components (which are a scalar in four
dimensions) possess a φ4 potential with a negative bilinear term so to derive
the usual spontaneous symmetry breaking described by the SM. Not only
that, this scalar filed should also have the appropriate Yukawa couplings
with the fermions in the right SM group representations.

In the examples constructed in [253], a Higgs-type potential is produced
at the tree-level and therefore the electroweak breaking scale will be set
by the compactification scale. A more appealing regime to implement the
above idea is when the extra components of the gauge field of interest have a
vanishing tree-level (mass)2 and acquire a negative bilinear term via quantum
corrections, at one loop say, as can happen in SM [254] (the procedure is
outlined in section 5.9). This will render the electroweak scale to be, as
desired, an order of magnitude or two less than the scale of compactification,
1/a, which is taken usually to be few TeV.

Since the Higgs phenomena happens only in four dimensions and at low
energies, the spontaneous symmetry breaking will be dealt with exactly as
in the standard model. This description will be valid at low energies, below
1/a, as the four-dimensional observer will only see the effective Lagrangian
of the standard model however with an extra advantage that most of its pa-
rameters are fixed (the magic hand is the higher-dimensional theory): the
parameters in the Higgs potential; Yukawa couplings; and the gauge cou-
plings are all determined by the scale of compactification and the original
Yang-Mills coupling in the higher-dimensional theory.
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Suppose that we start from an Einstein Yang-Mills theory coupled to
fermions on a 4 + d dimensional manifold, W , W = M4 × K. The field
content to start with consists of a graviton, gMN (x, y), a gauge field Aa

M(x, y)
in the algebra of a Lie group G, and a fermion ψ(x, y). Where M,N =
0, 1, 2, ..., d + 3, a = 1, ...dimG, x and y are the coordinates on M4 and K
respectively. We take Y to be a compact manifold with a typical volume
of order TeVd, and × to indicate a tensor product. Arguing that the Higgs
particle is

H(x) ≡ Aα(x) α ∈ K
implies a solution for the quantum instability of the electroweak scale as was
first pointed out by [260, 261].63

Classically, the Planck scale is related to the fundamental 4 + d dimen-
sional gravity scale, as we mentioned previously, by the relation

MP = a
d
2 M

d
2

+1

When K = K1 ×K2 × ...×Kn, the ad should be replaced by the product of
the volumes of each manifold. As an example, we take

W = M4 × S2 × CP 2

as in the model we discussed in [253] for quarks and leptons. In this example
we have the gravity scale M ∼ 104TeV, and hence new physics is expected to
show off at around 1/a ∼ 1TeV. Whether one considers the cutoff to be M ,
1/a, or the scale at which the gauge coupling in 10 dimensions becomes strong
(in our case this happens at around 1TeV as well), the hierarchy between the
weak scale and the cutoff, Λ, is much milder than the one in the ordinary
gravity or grand unified theories:

mH

Λ
∼ 10−5 −−10−1

Quantum mechanically, the absence of quadratic, or large, divergences as
the ones present in the standard model 64 can be understood via the argument
of symmetry, as in the case of SUSY, however with no fundamental scalar to

63An earlier attempt for obtaining spontaneous symmetry breaking in six dimensions is
in [262].

64δm2
H = 1

8π2 (λ2
H−λ2

t )Λ
2+log.div. + finite term, where λ2

H and λ2
t are the self coupling

of the Higgs and its coupling to the top quark respectively.
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start with. The gauge symmetry in this case is spontaneously broken due to
the presence of a topologically non-trivial background,65 as will be explained
later on, however, at energies larger than the compactification scale, it is
recovered and the Higgs field is massless being a component of the massless
gauge field. In other words the Higgs mass2, m2

H, can not be larger than 1/a

m2
H =

1

a2
f(Ea)

where E is the common energy scale, and a is the typical radius of com-
pactification. We conjecture that lim

E→∞
f(Ea) = 0. In fact, it was shown in

[261, 266, 267] that the function f(Ea) is exponentially damping at energies
higher than 1/a. Finding the explicit form of f in our case is technically
more complicated due to the presence of a monopole background, however
we believe that the lim

E→∞
f(Ea) will always be finite.

Linking chirality and SSB:

As discussed in an earlier chapter, the only way to get chiral fermions in
Kaluza-Klein type field theories couple them to a topologically non-trivial
background [56, 37]. This in principle changes both the index and the kernel
of D/ and hence allows for achieving a chiral theory, as the standard model, in
four dimensions. Examples will be shown in details in the following sections.

5.3 The background solution

As discussed earlier, the background solutions should satisfy the Einstein and
Yang-Mills classical equations of motion. Although the background we are
going to use will solve the field equations of any generally covariant and gauge
invariant action containing the metric and the Yang-Mills fields only, for the
sake of simplicity we start from Einstein-Yang-Mills system in D-dimensions.
The action is given by

S =

∫
dDx
√
−G

(
1

κ2
R− 1

2g2
TrF 2 + λ + ψ̄i∇/ ψ

)

65 In [263, 264], similar ideas have been used to study dynamical breaking of supersym-
metry in the context of type I string theory. In [265] the idea of achieving spontaneous
breaking of the C, P, and rotational symmetries by topological defects in the internal space
was discussed.
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where ψ is in some representation of the gauge group G. This action can
be the low energy string field theory action with the λ-term induced by
some mechanism. The presence of λ in our discussion is required if we insist
on having product spaces like M1 ×M2 × ... as a solution of the classical
bosonic field equations, where one of the factors in the product is flat, e.g.
the flat 4-dimensional Minkowski space (as discussed earlier). Our argument
about chirality is not sensitive to the flatness of any of the factors in the
product. The presence of tachyons, however, depends on the definition of a
mass operator. This is different for example in AdSd and (Minkowski)d.

The bosonic field equations are (12) and (13). In this paper we shall
consider solutions of the form M4 × K, where M4 is the flat 4-dimensional
Minkowski space and K is a compact manifold. Therefore the equations of
motion (14) will be used.

The internal space K will be mostly taken to be either S2 or S2 × CP 2.
Furthermore we shall assume that the gauge field configuration A will be
non-vanishing only on K. One can of course think of many other choices for
K.

For K = CP 1 × CP 2 the metric is given by

ds2 = a2
1

(
dθ2 + sin2θdϕ2

)
+

4a2
2

1 + ζ†ζ
dζ̄a

(
δab − ζaζ̄b

1 + ζ†ζ

)
dζb (107)

where a1 and a2 are the radii of CP 1 and CP 2 respectively, and ζ = (ζ1, ζ2) is
a pair of local complex coordinates in CP 2. The CP 2 metric is the standard
Fubini-Study metric. There are two facts about CP 2 which are of importance
for our present discussion. The first is the isometry group SU(3) of CP 2.
Together with the invariance group SU(2) of the metric of S2, SU(3) will
form part of the gauge group in M4. SU(3) will be identified with the strong
interaction color gauge group. The low energy 4-dimensional gauge group
will be G̃ × SU(2) × SU(3), where G̃ is the subgroup of the D-dimensional
gauge group G which leaves the background solution invariant. Note that
even with G = U(1) we can obtain a 4-dimensional gauge theory with a
gauge group U(1) × SU(2) × SU(3). Although such a solution can produce
chiral fermions in a non-trivial representation of U(1) × SU(2) × SU(3), it
is not possible, however, to obtain the correct Standard Model spectrum of
leptons, quarks, and the Higgs fields. For this we need a bigger G. We shall
discuss this point in a greater detail in a later section.

The second important fact about CP 2 is that in the absence of a back-
ground U(1) gauge field it is not possible to have globally well defined spinor
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field on it. This is principally due to the fact that the complex coordinates
ζ do not cover CP 2 globally. We need at least three patches (U, ζ), (U ′, ζ ′),
and (U ′′, ζ ′′), where in U

⋂
U ′ we have the transition rule ζ ′1 = 1

ζ1
and ζ ′2 = ζ2

ζ1
.

It needs some work to show that the two chiral spinors of the tangent space
O(4) of CP 2 can not be patched consistently on the overlap. We shall give
some more details of this later on.

To write the solution of the Yang-Mills equations on K = CP 1×CP 2 we
first work out the spin connection on K. It is given by

Ω = −(cosθ − 1)dϕ
τ 3

2
+

(
1
2
ωiσi 0
0 −3

2
ωσ3

)
(108)

where the first factor refers to CP 1and the second, which is a 4 × 4 matrix,
refers to CP 2. Here τ 3 as well as σi and σ3 are Pauli matrices. Also the
expressions are valid on the upper hemisphere on CP 1 and the local patch
(U, ζ) on CP 2. The expressions for ωi and ω can be read from the Fubini-
Study metric (107) on CP 2. We shall not need the explicit expression for ωi.
The one for ω is given by

ω(ζ, ζ̄) =
1

2 (1 + ζ†ζ)

(
ζ†dζ − dζ†ζ

)
(109)

Note that dω is the self dual Kähler form on CP 2. It is thus an instanton
type solution of the Yang-Mills equation in CP 2.

It is important note from (108) that the CP 2 spin-connection takes its
values in the subgroup SU(2) × U(1) of the tangent space SO(4). Further-
more, under SO(4) → SU(2)×U(1) the two chiral spinors of O(4) decompose
according to

2+ = 20 (110)

2− = 1− 3
2

+ 1 3
2

(111)

where the subscripts indicate the U(1)-charges. Using this fact one can un-
derstand why spinors are not globally well defined on CP 2. The point is that
in the overlap of two patches (U, ζ) and (U ′, ζ ′) we have

ω(ζ ′) = ω(ζ)− idϕ (112)

where ϕ is defined by ζ1 = |ζ1|eiϕ. For 2− to be globally well defined 1±3/2

should patch according to the rule ψ′(ζ ′) = e±
3
2
iϕψ(ζ). We thus obtain
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transition functions which are anti-periodic under ϕ → ϕ + 2π. Coupling a
background gauge field proportional to ω can change this. With a little more
work one can show that a similar obstruction also prevents 2+ = 20 from
being well defined.

Now we are in a position to write our solution of the Yang-Mills equation
on CP 1 ×CP 2. It is easy to show that the ansatz

A =
n

2
(cosθ − 1)dϕ + qiω (113)

where n = diag(n1, n2, ...) and q = diag(q1, q2, ...) are matrices in the Cartan-
subalgebra of G. The consistent patching of spinors requires that n1, n2, ... be
integers and q1, q2, ... be one half of an odd integer. Note that the substitution
of the above ansatz in the Einstein equations will require that the radii a1

and a2 of CP 1 and CP 2 are quantized.
As mentioned in the beginning of this section our ansatz for the back-

ground configuration solves the field equations derived from any generally
covariant and gauge invariant Lagrangian in D = 10, which contains the
metric and the Yang-Mills potentials only. Such an effective Lagrangian will
contain infinite number of parameters and therefore the relationship between
the radii and other parameters will be more involved.

5.4 Chiral fermions

It is a well known fact that in order to obtain chiral fermions in D = 4 we
need topologically non-trivial background gauge fields on CP 1 × CP 2. Our
solution for the Yang-Mills equations consist of magnetic monopole on S2

and the potential for the Kähler form on CP 2. The Kähler form defines a
topologically non trivial line bundle on CP 2 .

Consider the D = 10 fermion Lagrangian

L = ψ̄i∇/ ψ (114)

where

∇M̂ψ = (∂M̂ + ωM̂ − iAM̂)ψ , M̂ = 0, 1, ..., 9 (115)

ωM̂ and AM̂ are, respectively, the SO(1, 9) and the Lie algebra valued spin
and gauge connections. We analyze the fermion problem in two steps. In the
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first step we write the manifold as M6×CP 2. Correspondingly we write the
D = 10 Dirac matrices as

Γ̂a = Γ × γa a = 6, 7, 8, 9

Γ̂A = ΓA × 1 A = 0, 1, ..., 5

where γa and ΓA are respectively 4 × 4 and 8 × 8 Dirac matrices satisfying

{γa, γb} = 2δab

{ΓA,ΓB} = 2ηAB

and Γ = Γ0Γ1...Γ5.
Substituting these Γ’s into L and recalling that the geometry has factor-

ized form we obtain

L = ψ̄Γi∇/ CP 2ψ + ψ̄i∇/ M6
ψ (116)

The chiral fermions on M6 will originate from those modes for which

∇/ CP 2ψ = 0 (117)

Those ψ’s which are not annihilated by∇/ CP 2 will give rise to massive fermionic
modes on M6. The standard way to analyze (117) is to operate one more
time with ∇/ CP 2 on it. Using the background connections (108) and (113) we
obtain

(∇2 − 3

2
) ψ+ = 0 (118)

{∇2 + (q σ3 −
3

2
)} ψ− = 0 (119)

where

∇ψ+ = (d + iωr
σr

2
+ ω q) ψ+ (120)

∇ψ− = {d + ω(q − 3

2
σ3)} ψ− (121)
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and

ψ± =
1 ± γ̂5

2
ψ , γ̂5 = γ6γ7γ8γ9

The Kähler instanton ω is given by equation (109). Since ∇2 ≤ 0 (118) will
have no non-zero solutions. Thus fermions of ψ+ type will all be non-chiral
and massive. Equation (119), on the other hand, can have solutions. Their
existence depends on the eigenvalues of q. Clearly for q = 3/2 we have only
one solution with σ3 = +1. For q = +5/2 we obtain 3 solutions with σ3 = +1.
They form a triplet of the isometry group SU(3) of CP 2. For q = −5/2 and
σ3 = −1 we obtain a 3∗ of SU(3). These are the only type of solutions we
need to consider.

Next we study the M6 Dirac Lagrangian

L = ψ̄i∇/ M6
ψ (122)

where ψ is assumed to be a solution of (119). We shall assume that the
D = 10 spinor is chiral and has positive chirality. Then the spinor of ψ−
type will have negative D = 6 chirality. We choose the D = 6 Γ matrices to
be

Γα = Γα × τ1 α = 0, 1, 2, 3

Γ4 = Γ5 × τ1 γ5 = iγ0γ1γ2γ3

Γ5 = 1 × τ2 (123)

and τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
.

Inserting the ΓA’s in (122) we obtain

L = ψ̄i∇/ M6
ψ +

i√
2

{
ψ̄(γ5 + 1)D−ψ + ψ̄(γ5 − 1)D+ψ

}
(124)

where

D±ψ = em±

(
∂m +

i

2
ωm(n− γ5)

)
ψ (125)

em± are the U(1) components of an orthonormal frame on S2 and ωm is the cor-
responding spin connection (ωθ = 0, ωϕ = −cosθ+1 in the upper hemisphere
and ωϕ = −cosθ − 1 in the lower hemisphere ). Decomposing ψ = ψL + ψR,
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where ψL =
1 − γ5

2
ψ, we obtain the analogue of (118, 119) for the Dirac

operator on CP 1 {
∇2 − 1

2
(1− n)

}
ψR = 0

{
∇2 − 1

2
(1 + n)

}
ψL = 0

n = 1 produces one ψR while n = −2 gives rise to two ψL which form a
doublet of the Kaluza-Klein SU(2).

5.5 General rules for Higgs-type tachyons

To obtain the spectrum of the effective theory in 4-dimensions we need to
expand the functions about our background solution in harmonics on CP 1×
CP 2. These include fluctuations of the gravitational, Yang-Mills, as well as
fermionic fields. The techniques of doing such analysis have been developed
long ago. In this paper we shall ignore the gravitational fluctuations and
consider only the Yang-Mills and fermionic fields. The full set of linearized
gravity Yang-Mills equations can be found in [53]. In the same paper it was
shown that there are tachyonic modes in the components of the gauge field
fluctuations tangent to S2. Here, we would like to show that the rule to
identify the tachyonic modes given in [53] for G ≡ SU(3) is in fact quite
general and applies to any gauge group G. It should be emphasized that
neglecting the gravitational fluctuations is justified as they will not mix with
the gauge field fluctuations of interest for us.

In general, we should writeA = Ā+V where Ā is the background solution
and V depends on the coordinates of M4, S2 and CP 2. Our first interest is
in the fields which are tangent to S2. It is these fields, which if develop a
tachyonic vacuum expectation value, can break SU(2), provided such modes
are singlets of SU(3) isometry of CP 2.

We suppress the CP 2 dependence of these fields and denote by V1 and
V2 their components with respect to an orthonormal frame on S2. It is
convenient to use the “helicity” basis on S2 defined by

V± =
1√
2

(V1 ∓ i V2)

V± are matrices in the Lie algebra of G. What governs their mode expansion
on S2 is their isohelicities. This is basically the effective charge of V± under
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the combination of U(1) transformations which leave our background con-
figuration invariant. These charges can be evaluated in the same way which
was done in [53]. For the sake of simplicity, let us assumes G = U(N) and
assume that charge matrices n and q introduced in (113) are diagonal N ×N
matrices. Then V± are N × N matrices with elements V±i

j , i, j = 1, ...N .
Their isohelicities, λ(V±i

j), are given by

λ(V±i
j) = ±1 +

1

2
(ni − nj)

Note that there is a hermiticity relation

V+i
j =

(
V−j

i
)∗

The harmonic expansion of V+i
j on S2 will produce an infinite number of

Kaluza-Klein modes. These expansions are defined by

V±(x, θ, ϕ) =
∑

l≥|λ±|

√
2l + 1

4π

∑

m≤|l|
V lm
± (x) Dl

λ±,m(θ, ϕ) (126)

Dl
λ±,m(θ, ϕ) are 2l + 1-dimensional unitary matrices.

The tachyonic modes are generally contained in the leading terms with
l = |λ±|. The effective 4-dimensional mass2 of V lm

± (x) obtains contributions
from the appropriate Laplacian acting on S2 and CP 2. V± are charged scalar
fields on CP 2. We shall analyze their dependence on the CP 2 coordinates
in the next section. Here we shall consider the S2 contribution to their
masses. The condition for this contribution to be tachyonic is expressed in
the following simple rule

M2(V+i
j) < 0 if λ(V+i

j) ≤ 0

Likewise
M2(V−i

j) < 0 if λ(V−i
j) ≥ 0

To prove these claims let us make more detailed analysis.
Since we are assuming V± are independent of the CP 2 coordinates, their

mass term comes from the expansion of TrFmnF
mn, where m,n indicate

indices tangent to S2. The cubic and the quadratic parts in TrFmnF
mn will

produce the interaction terms in the Higgs potential. We have

TrFmnF
mn = TrF̄mnF̄

mn + Tr(D+V− −D−V+)2

− 4 i TrF̄+−[V−, V+]− 2 i Tr(D+V− −D−V+)[V−, V+]

+ Tr[V−, V+]2
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where the covariant derivatives are defined by

DmVn = ∇mVn − i[Ām, Vn]

∇m denotes the ordinary Riemannian covariant derivative on S2. Now, since
for λ+ ≤ 0 (λ+ ≥ 0) D−D

l=|λ+ |
λ+ ,m

= 0 = D+D
l=|λ− |
λ−,m we see that such modes

will be annihilated by D± and thus the S2 contribution to their D = 4 action
is given by

S = − 1

2g2

∫ 2π

0

dϕ

∫ π

0

sinθ Tr
{

4DµV+D
µV− − 4iF̄+−[V−, V+] + [V−, V+]2

}

The mass terms hence come from −4iT rF̄+−[V−, V+] term only.
To proceed it is convenient to choose the Cartan-Weyl basis for the Lie

algebra of G. Let Qj denote the basis of the Cartan subalgebra, Eα and
E−α = E†α the generators outside the Cartan subalgebra. The only part of
the algebra needed for the evaluation of the mass terms is

[Qj, Eα] = αjEα

In this basis we can write

V± = V α
±Eα + (V α

∓ )∗E−α + V j
±Qj

It is easy to see that

λ(V α
± ) = ±1 + p.α (127)

where p.α = pjαj and pj are defined by

1

2
n = pjQj

To simplify the discussion consider the case when only one λ(V α
+ ) ≤ 0. Set

the remaining modes to zero. Of course this is not a loss of generality. In
this case V+ = V α

+Eα and V− = (V α
+ )∗E−α. The mass term then becomes

Tr
(
−4iF̄+−[V−, V+]

)
= −4iTrV+[F̄+−, V−]

=
4

a2
1

p.α |V α
+ |2TrEαE−α
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where we inserted F̄+− = − i

a2
pjQj. The kinetic part of the action for V α

+

thus becomes

S2 = −2Tr(EαE−α)

g2

∫ 2π

0

dϕ

∫ π

0

dθ sinθ

{
∂µV

α
+ ∂

µV α
+ )∗ +

p.α

a2
1

|V α
+ |2
}

Substituting p.α = λ(V α
+ ) − 1 we obtain the mass of V α

+ in terms of its
isohelicity as (recall that our signature is (−,+,+, ...))

m2 =
λ − 1

a2
1

(128)

which is negative for λ ≤ 0. Similar reasoning can be applied if for some V α
−

the corresponding isohelicity λ(V α
− ) is non-negative.

This rule gives us an easy way of identifying possible tachyonic modes
which can act as Higgs scalars in the D = 4 effective theory.

5.6 Examples

In this section we shall ignore the CP 2 part and give some examples of
a D = 6 gravity Yang-Mills theories which produce standard model type
Higgs sectors upon compactification to D = 4. Leptons and quarks will be
included in the next sections. We basically need to choose the gauge group
G and assign magnetic charges n.

The notation is always

Ā =
n

2
(cosθ ∓ 1)dϕ (129)

where n = diag(n1, n2, ...) is in the Lie algebra of G, −(+) give the expression
for Ā in the upper (lower) hemispheres.

5.6.1 Tachyons

G = SU(3)

n = diag(n1, n2,−n1 − n2), n1, n2 ∈ Z (130)
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The isohelicities can be assembled in a 3× 3 matrix

λ(V±) =




±1 ±1 + 1
2
(n1 − n2) 1

2
(2n1 + n2)

±1 − 1
2
(n1 − n2) ±1 ±1 + 1

2
(n1 + 2n2)

±1− 1
2
(2n1 + n2) ±1− 1

2
(n1 + 2n2) ±1




(131)

Using the results of section 5.4 we see that in order to obtain left handed
doublets and right handed singlets we had to take (n1, n2) = (1, 1). With
these values of n1 and n2, V−1

3 and V−2
3 will contain tachyonic modes in the

leading term of their expansion on S2.

In this example the SU(2)×U(1) subgroup of SU(3) is unbroken and the
tachyonic Higgs V−1

3 and V−2
3 form a doublet of SU(2) with U(1) charge of

3/2. We denote this doublet by φ. Its isohelicity is +1/2. Therefore it will
also be a doublet of the Kaluza-Klein isometry of S2. One can integrate the
(θ, ϕ) dependence of φ on S2 and work out its D = 4 effective action. The
result is

L = − 1

2g2

∫ 2π

0

dϕ

∫ π

0

dθ sinθ TrFMNF
MN

= − 1

4g2
1

F 8
µν

2 − 1

4g2
2

F r
µν

2 − 1

4e2
W r
µν

2

−Tr

{
∇µφ

†∇µφ− 3

2a2
1

φ†φ+ 2g2
1(φ†φ)2

}
(132)

where we have regarded φ as a 2 × 2 complex matrix, and

∇µφ = ∂µφ−
3

2
iV 8
µ φ− iV r

µ

σr

2
φ− iW r

µφ
τ r

2

where V 8
µ , V r

µ , and W r
µ are respectively the U(1), SU(2)L, and the Kaluza-

Klein SU(2)R gauge fields. g1, g2, and e are their respective couplings. Some
calculation show that

g2 =
1

2
√
π

g

a1
=
√

3g1 (133)

The Kaluza-Klein gauge coupling e can also be expressed in terms of the
fundamental scales g and a1.

In the next section we shall work out the Yukawa couplings for this model
as well.
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G = U(6)

With n = diag(n1, ..., n5, n6) we can again work out the table of isohelicities
for V±. We shall see in section 5.6.2 that in order to obtain one family of
leptons and quarks we need to take n = diag(−2, 1, 1,−2, 1, 1). Note that
since the group is U(6) rather than SU(6), n is not traceless. λ(V±) is given
by

λ(V+) =




+1 −1
2
−1

2
+1 −1

2
−1

2

+5
2

+1 +1 +5
2

+1 +1
+5

2
+1 +1 +5

2
+1 +1

+1 −1
2
−1

2
+1 −1

2
−1

2

+5
2

+1 +1 +5
2

+1 +1
+5

2
+1 +1 +5

2
+1 +1




(134)

Since V− = V †+, therefore λ(V−i
j) = −λ(V+j

i).

The tachyonic modes are contained in V+1
i, and V+4

i where i = 2, 3, 5, 6.
They will all be doublets of the Kaluza-Klein SU(2). They also transform
under some representation of the unbroken part of U(6), which is SU(2) ×
SU(2) × U(1)3 × U(1)′, which is generated by diag(0,

σi

2
, 0, 0, 0),

i = 1, 2, 3; diag(0, 0, 0, 0,
σi

2
); diag(−2, 1, 1, 0, 0, 0); diag(0, 0, 0,−2, 1, 1);

diag(1, 1, 1,−1,−1,−1); and the 6× 6 unit matrix 16 which generates U(1)′.
The tachyonic Higgs will be neutral under this U(1)′, therefore their tree
level vacuum expectation value will not break it. Under U(6) → SU(2) ×
SU(2) × U(1)3 we have

6 = (1, 1)(−2,0,1) + (2, 1)(1,0,1) + (1, 1)(0,−2,−1) + (1, 2)(0,1,−1) (135)

The quantum numbers of the relevant Higgs tachyons will be

V+1
i ∼ (2, 1)(−3,0,0) i = 2, 3 (136)

V+4
t ∼ (1, 2)(0,−3,0) t = 5, 6 (137)

As we said earlier, the tachyonic modes in all these fields will be in the
doublet representation of the Kaluza-Klein SU(2). The vacuum expectation
value of the fields V+1

i ∼ (2, 1)(−3,0,0) and V+4
t ∼ (1, 2)(0,−3,0) will give masses

to the quarks and leptons respectively. In section 5.7 we shall show that the
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leading term in their expansion on CP 2 is a singlet of SU(3) and therefore
their masses receive no contribution from the dependence on the CP 2 co-
ordinates. Thus they remain tachyonic. The other tachyonic fields, namely
V+1

i, i = 5, 6; V+4
t, t = 2, 3, would induce Yukawa couplings between quarks

and leptons. We shall show that in fact the leading term in their harmonic
expansion on CP 2 is a triplet of SU(3). Thus the vacuum expectation value
of these fields can break the color SU(3). We will determine the conditions
to avoid this.

5.6.2 Fermions

We consider the two examples of the previous section.

G = SU(3)

Here we assume that D = 6 and there is no CP 2 factor. Let us take ψ in 3 of
SU(3) and n = diag(1, 1,−2). According to our rules this will produce two
right handed singlets of the Kaluza-Klein SU(2) which we denote by SU(2)K
and a left handed doublet. The singlets will form a doublet of SU(2)G ⊂
SU(3) and the doublet of SU(2)K will be a singlet of SU(2)G. Thus under
SU(2)K × SU(2)G ×U(1) where U(1) ⊂ SU(3) we have (1, 2R)1/2 + (2L, 1)1.
The D = 4 Yukawa and gauge couplings can be easily worked out. The result
is

LF =

∫ 2π

0

dϕ

∫ π

0

dθ sinθ ψ̄i∇/ ψ

= λ̄L iγ
µ

(
∂µ − ig1V

8
µ − ieW i

µ

τ i

2

)
λL

+λ̄R iγ
µ

(
∂µ − i

g1

2
V 8
µ − ig2V

i
µ

σi

2

)
λR

−2g1

{
λ̄Lφ(iσ2)λR − λ̄R(iσ2)φ

†λL
}

where λL = (2L, 1)1 and λR = (1, 2R)1/2.
This expression together with the bosonic part given in equation (122)

give the total effective D = 4 action for the SU(3) example. Although this
example leads to interesting chiral and Higgs spectrum in D = 4 can not be
considered satisfactory. It has both perturbative and global chiral anomalies
in D = 6. The perturbative anomalies can be eliminated with the standard
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Green Schwarz mechanism[268]. To apply this mechanism [269] we need
first to introduce an antisymmetric rank two potential together with three
right handed D = 6 SU(3) singlets to kill the pure gravitational anomaly
which is given by R4 term in the anomaly 8− form. The remaining terms
in the anomaly 8-form factorize appropriately in order to be canceled by a
judicious transformation of the antisymmetric potential. This mechanism
does not cancel the global anomalies [270] whose presence is due to the fact
that π6(SU(3)) = Z6 is non zero. To kill these ones we need to introduce
further SU(3) multiplets or to change the gauge group altogether and chose
to a gauge group like E6 which has a trivial π6(E6).

G = U(6)

Now assumeD = 10 and choose ψ to be in 6 of U(6) and q = diag(5/2, 5/2, 5/2,
3/2, 3/2, 3/2). As before n will be taken to be n = diag(−2, 1, 1,−2, 1, 1).
According to the results of the previous section with respect to the isometry
group SU(2) × SU(3) we have the following chiral fermions

(2L, 3) + (1R, 3) + (1R, 3) + (2L, 1) + (1R, 1) + (1R, 1)

Clearly the first three triplets are candidates for

(
u
d

)

L

, uR and dR. The

last two pieces can be identified with the leptons

(
νe
e

)

L

and eR.66

These multiplets also transform in the following representation of the
unbroken SU(2)× SU(2) × U(1)3 ⊂ G

(2L, 3) ∼ (1, 1)(−2,0,1)

(1R, 3) + (1R, 3) ∼ (2, 1)(1,0,1)

(2L, 1) ∼ (1, 1)(0,−2,−1) and (1R, 1) ∼ (1, 2)(0,1,−1)

The Yukawa coupling between the quarks will be through the Higgs field V+1
i

given in (136), while the electron will get its mass through coupling to V+4
t.

Thus our construction leads to a multi Higgs theory in which the quarks and
leptons obtain their masses from their Yukawa couplings to different Higgs

66 We have an extra right handed singlet in the lepton sector. This can be removed by
choosing the last entry in q to be for instance −1/2 or the last entry in n to be 0. In this
way the unbroken subgroup of U (6) will be SU (2) × U (1)× U (1)′.
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scalars. Note also that there is no common U(1) under which both Higgs
multiplets are charged. The hypercharge coupling in our model is different
from the standard electroweak theory.

5.7 Higgs like Tachyons on CP 2 × CP 1

If the total space-time dimension is D = 6 the masses of the Higgs like
tachyons are given by (128). In the case of a D = 10 theory we need to take
into account the contribution of CP 2 part as well. The fields V± are like
scalar fields on CP 2 which are charged with respect to the CP 2 part of the
background gauge field (113), viz, iqω. The CP 2 contribution to the masses
of V± come from the commutator term in the CP 2 covariant derivative of
V±, i.e.

DV± = dV± − i[iωq, V±]

= dV± + ω[q, V±]

To be specific let us consider the example of the U(6) model for which q =
diag(5/2, 5/2, 5/2; 3/2, 3/2, 3/2). Write

V =

(
v u
ũ ṽ

)
(138)

where v, ṽ, u, and ũ each is a 3× 3 matrix. Then

[q, V ] =

(
0 u
−ũ 0

)

This indicates that out of the Higgs fields given in equations (136–137) the
ones which give masses to quarks and leptons, namely, V+1

i and V+4
t (which

lie respectively inside v and ṽ in the above notation), do not couple to the
background ω field on CP 2. The leading term in their harmonic expansion
on CP 2 will be a constant (independent of the coordinates of CP 2). Their

masses will be tachyonic and will be given by (128) for λ = −1

2
, i.e. M2 =

−3

2

1

a2
1

.

The remaining fields V+1
t and V−i

4 on the other hand are located inside u
and they couple to the background ω-field. Their masses will receive contri-
bution from CP 2 and in principle can become non-tachyonic. To verify this
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we need to evaluate the eigenvalues of ∇2
CP 2 on these fields. Their covariant

derivatives are
DV+1

t = dV+1
t + ωV+1

t

DV−4
i = dV−4

i + ωV−4
i

Since they couple with the same strength to the ω-field they will receive
the same contribution from ∇2

CP 2. It turns out that the leading term in the
expansion of any of these fields on CP 2 is a triplet of SU(3) and D2 acting

on it is − 1

a2
2

. Thus the total mass2 of such modes will be

−3

2

1

a2
2

+
1

a2
2

=
1

a2
1

(
−3

2
+
a2

1

a2
2

)

If a1 and a2 were independent we could choose (
a1

a2
)2 ≥ 3

2
and make these

fields non-tachyonic. If we insist on the validity of the background Einstein

equations then the ratio of
a1

a2

will be fixed. Equation (14) leads to (
a1

a2

)2 =

12

17
. 67 With this value unfortunately the above mass2 is still negative. The

vacuum expectation value of these fields will break the color SU(3).

One way to change the ratio
a1

a2

is to couple a U(1) gauge field to gravity

in D = 10. This U(1) will not couple to anything else. In particular the
fermions will be neutral under it, so the spectrum of the chiral fermions will
be unaltered. Its sole effect will be to add an extra term to the right hand
side of Einstein equations. In particular (14) will be replaced by

Rm̂n̂ =
κ2

g2
TrFm̂r̂Fn̂

r̂ +
κ2

g′2
TrF ′m̂r̂F

′
n̂
r̂

where F ′ and g′ refer to the extra U(1) system. Now if we set

A′ =
n′

2
(cosθ − 1)dϕ + q′iω

67To obtain (
a1

a2
)2 =

12

17
we need to use the following results, which can be obtained by

straightforward calculation,

R(S2) =
1

a2
1

12×2, R(CP 2) =
3

2

1

a2
1

14×4, TrF 2
S2 = 6

1

a4
1

, and TrF 2
CP2 =

51

2

1

a2
2

.
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where n′ and q′ are real numbers, the ratio of a1/a2 will turns out to be

a2
1

a2
2

=
36 + 3n′2 g

2

g′2

51 + 2q′2 g
2

g′2

There is a big range of parameters for which a1/a2 ≥ 3/2 .

5.8 Other scalars

The components of the gauge field fluctuations tangent to CP 2 will also give
rise to infinite tower of Kaluza-Klein modes which will be scalars fields in
D = 4. These modes will belong to unitary representations of SU(2)×SU(3).
If there is a tachyon Higgs among them they will break SU(3). We need to
verify that this does not happen. To this end we denote these fields by Va,
where a is tangent to CP 2, and write those terms in the bilinear part of
TrFMNF

MN which contains Va. In this section we are considering only the
U(6) model. The Va are 5× 5 Hermitian matrices. After some manipulation
and the imposition if the D = 10 background gauge condition DMV

M = 0,
the bilinear terms of interest to us can be written as

S2 = − 1

2g2

∫
d10xTr{2Va(−∂2 −D2

m −D2
m̂ +

3

2

1

a2
2

)V a + 4iV a[F̄ab, V
b]}
(139)

where Dm and Dm̂ are respectively the covariant derivatives on S2 and CP 2

and

DmVa = ∂mVa −
i

2
ωm[n, Va] (140)

Dm̂Va = ∇m̂Va −
i

2
ωm̂[q, Va] (141)

∇m̂ is the Riemann covariant derivative on CP 2. The contribution of D2
m

on each SU(2) mode of Va will simply be
1

a2
1

[l(l + 1) − λ2], l ≥ |λ| where λ

represents the isohelicities of various components of Va, λ(Vai
j) = λ(V+i

j)−1,
where λ(V+i

j) are given in equation (134).
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To work out the contributions of D2
m̂ and the commutator term [F̄ab, V

b],
we represent Va as in (138), i.e.

Va =

(
va ua
ũa ṽa

)
(142)

where va, ṽa, ua, ũa each is a 3× 3 matrix. Then

[q, Va] =

(
0 ua
−ũa 0

)
(143)

This indicates that the commutator terms in (139) and (141) do not con-
tribute to Dm̂va and Dm̂ṽa. Thus Dm̂ acting on these fields is just the Rie-
mannian Laplacian acting on vectors and its contribution to the masses of
these fields will be non-tachyonic.

The only fields we need to be concerned about are those in ua. To analyze
the contribution of these terms we introduce 2 complex SU(2) vectors uα and
u′α defined by

{
u1 = 1√

2
(u6 + iu7)

u2 = 1√
2
(u8 + iu9)

{
u′1 = 1√

2
(u6 − iu7)

u′2 = 1√
2
(u8 − iu9)

(144)

where 6, 7, 8, and 9 are directions tangent to CP 2. In terms of these new
fields the ua part of (141) can be rewritten as

Dm̂uα = (∂m̂ + iωim̂
σi

2
− i5

2
ωm̂)uα (145)

Dm̂u
′
α = (∂m̂ + iωim̂

σi

2
− i5

2
ωm̂)u′α (146)

The contribution of D2
m̂ on uα and u′α will again be positive.

Finally we need to evaluate the contribution of 2iTrV a[F̄ab, V
b] to the

masses of uα and u′α. After some calculation this turns out to be

2iTrV a[F̄ab, V
b] =

2

a2
2

Tr(u†αuα − u′†αu′α) (147)

It is seen that the contribution of this term to the uα mass is non-tachyonic.
However, it makes a negative contribution to the mass2 of u′α field. Upon
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substitution of the above in (141) we find out that the negative contribution

in (147) is off-set by the
3

2

1

a2
2

term in equation (139), with the result that u′α

is also non-tachyonic.
We thus conclude that all the tachyonic Higgs are singlets of SU(3) and

doublets of SU(2).

5.9 Massless scalars and loop-induced hierarchy

So far we have been discussing tachyonic mass of the scalar particles at the
tree level of the effective 4 dimensional theory. The natural scale of this mass
and therefore also of the symmetry breaking is the compactification scale.
This is few order of magnitude above the electroweak symmetry breaking
scale of a 200 hundred GeV. It will be very desirable if we could find a
mechanism to lower the scale of the tachyonic mass. An obvious idea is if the
tree level mass of the scalars is zero and they obtain their tachyonic value as
a consequence of loop effects. Our theory is of course a non renormalizable
one, at least in conventional sense. However, the Higgs mass is controlled
by 1/a due to higher dimensional gauge invariance. Our main point is that
the sign of the one loop induced effective mass will depend on the imbalance
between the contribution of fermions and bosons. By a judicious choice of
the fermionic degrees of freedom this sign can be made tachyonic. Any way
whatever the justification the first step in implementing this idea is to find
tree level massless scalars in the spectrum of the effective four dimensional
theory. Unlike the massless chiral fermions whose presence is dictated by
the topology of the gauge field in compact subspace, to verify the existence
of the massless scalars in the spectrum requires more detailed analysis of
the mass spectrum and should be carried out separately for each case. In
this section we give an example of a model in D = 10 in which a monopole
background on the S2 × S ′2 × S

′′2 internal space leads to massless scalars
transforming non trivially under the SU(2)×SU(2)×SU(2) isometry group
of the internal space. This example which was is only for illustrative purpose
and is not going to be used for a realistic model building.

We start from a U(N) gauge theory in 10 dimensions and consider a
solution of equations (14) in which the internal space is S2 × S ′2 × S”2. In
the notation of previous section we denote the magnetic charge matrices on
the three S2’s by n n′ and n”. Denoting all the quantities on S ′2 with a
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prime our ansatz for the gauge field becomes

A =
n

2
(cosθ − 1)dφ+

n′

2
(cosθ′ − 1)dφ′ +

n′′

2
(cosθ′′ − 1)dφ′′

The structure of the charge matrices will determine the unbroken sub-
group of U(N). As before we shall take them to be N × N diagonal real
matrices.

The scalars of interest for us are those components of the fluctuations
of the vector potential which are tangent to S2 × S ′2 × S”2 and are in the
directions of perpendicular to the Cartan subalgebra of U(N). Consider the
field V j

−i tangent to S2.
The masses of these fields can be calculated using the appropriate modi-

fication of equation (139). The result is

S2 = − 1

2g2

∫
d10x

{
(V j
−i)
∗(−∂2 −D2 −D′2 −D′′2 +

1

a2
)V j
−i

− 1

a2
(V j
−i)
∗(ni − nj)V j

−i

}
(148)

where D2, D
′2 and D

′′2 are the appropriate Laplacian on the three S2’s. The
eigenvalues of these Laplacians are basically determined from the isohelicities
of V j

−i which are given by

λ(V j
−i) = −1+ 1

2
(ni−nj), λ

′
(V j
−i) = 1

2
(n
′
i−n

′
j), λ

′′
(V j
−i) = 1

2
(n
′′
i −n

′′
j )

Similar expressions can be written for the bilinear parts of the fields
tangent to S

′2 and S
′′2.

For our illustrative example we consider an n matrix which has only the
elements n1 and n2 different from zero and such that n1 − n2 ≥ 2. Then
λ(V 2

−1) ≥ 0 and according to our general rule the leading mode in this field
can be tachyonic. The question we would like to answer is if by an appropriate
choice of magnetic charges we can make the mass of this field to vanish. It
is not difficult to write down the formula for the masses of the infinite tower
of modes of V 2

1 . These are given by

a2M2 = l(l+1)−λ2 +
a2

a′2
(l′(l′+1)−λ′2)+

a2

a′′2
(l′′(l′′+1)−λ′′2)+1−(n1−n2)
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To verify the existence of a massless mode first we employ the background
equations (14) to obtain the ratios

a2

a′2
=

Trn2

Trn′2
, and

a2

a′′2
=

Trn2

Trn′′2
.

It is seen that for the choice of n′1 − n′2 = n1 − n2 , Trn2 = Trn
′2 and

n
′′
1 − n

′′
2 = 0 the leading mode is indeed massless. For this choice there will

of course be a similar massless mode in the fluctuations V
′2
−1 tangent to S

′2.
The SU(2) × SU(2)× SU(2) quantum numbers of these modes will be
(l = 1

2
(n1−n2)− 1, l′ = 1

2
(n1−n2), 0), and l = (1

2
(n1− n2), l

′ = 1
2
(n1−n2)−

1, 0), respectively. We can make all other modes to have positive masses by
appropriate choices of the remaining magnetic charges.

6 Concluding Remark

Considering the possibility of living in a higher-dimensional space-time seri-
ously opens new gates towards understanding the present problems of particle
physics, mainly the unification of gravity with the other fundamental forces,
and the gauge hierarchy problem. So far, the dimensionality of our space-
time is an assumption based on our observational, technical, and probably
mental limitations. The new colliders, like LHC, will be able to test this
possibility and detect a possible modification of Newton’s low at energies
around few TeV.

The last three years has witnessed an enormous development in extra-
dimensional model building. It is very desirable to significantly increase
the predictability of the new scenarios as a compensation of having extra
dimensions. In particular, it would be nice if these models are free of the
same problems the standard model suffers from in four dimensions at low
energies.

The hope is that, eventually, most of these models can be somehow a low
energy effective field theoretical description of a supertring theory. Alterna-
tively, one can be more modest and seek a consistent theory in a field theory
context trying to make the best of this approach.

Interestingly enough, by going to higher dimensions one can link some
of the features of the standard model together. The fermion chirality and
electroweak spontaneous symmetry breaking can have the same origin: a
non-trivial Yang-Mills background in the internal space. What is even more
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interesting is that the mechanism in which the SM gauge group is sponta-
neously broken does not involve a fundamental scalar field, the thing which
leads to the absence of quadratic corrections to the classical value of Higgs
mass square.

There are certainly many other interesting issues to discuss. Unfortu-
nately, it was impossible to incorporate all the work done in this subject as the
recent literature consists of more than 1,000 article written from 1998 until
now, touching various sides and implications of the new thrilling idea, while
the total number of papers, old and new, probably exceeds 2,000. Therefore,
only examples could be provided.

As perhaps all new subjects in physics, the models with extra dimensions
seem to open a way for new problems and not to completely solve any. It
remains to check the classical and semiclassical stability for many of the
scenarios with both categories of warped and factorizable geometry. The
issue of semiclassical stability was not discussed here, and can be found
in [271]-[274] for Kaluza-Klein compactification, and for instance [106] for
brane-worlds. Furthermore, the stabilization of the compactification scale
close to the electroweak scale is an open problem although some attempts
exist [221, 224]. Other aspects not discussed here include unification with
large extra dimensions [275], brane-world in [9] scenario, thick branes as
[98]-[103], the cosmological constant problem (see [79] for a review),...etc.,
in addition to many aspects of the older literature (for which the reader is
refered to [274] and [29]).
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