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Abstract

We consider how accelerated expansion, whether due to inflation or dark energy, imposes strong

constraints on fundamental theories obtained by compactification from higher dimensions. For

theories that obey the null energy condition (NEC), we find that inflationary cosmology is impos-

sible for a wide range of compactifications; and a dark energy phase consistent with observations

is only possible if both Newton’s gravitational constant and the dark energy equation-of-state

vary with time. If the theory violates the NEC, inflation and dark energy are only possible if

the NEC-violating elements are inhomogeneously distributed in the compact dimensions and vary

with time in precise synchrony with the matter and energy density in the non-compact dimensions.

Although our proofs are derived assuming general relativity applies in both four and higher dimen-

sions and certain forms of metrics, we argue that similar constraints must apply for more general

compactifications.
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I. INTRODUCTION

Compelling evidence exists that the present universe is dominated by some form of dark

energy and undergoing a period of accelerated expansion. Also, a widely accepted hypothesis

is that the early universe underwent inflation, a period of accelerated expansion shortly after

the big bang that smoothed and flattened the universe and generated a nearly scale-invariant

spectrum of density perturbations.

The purpose of this paper is to explore the implications of cosmic acceleration for fun-

damental theories obtained by compactification from a higher dimensional theory, a feature

common to Kaluza-Klein theory, Randall-Sundrum models, string theory and M-theory, for

example. A general property of compactified theories is that the expansion of the non-

compact directions required for any realistic big bang cosmology has the tendency to cause

the extra dimensions to contract unless some interaction prevents it. The contraction of the

extra dimensions has undesirable physical effects, such as the time variation of Newton’s con-

stant or other fundamental constants and a deviation from standard Friedmann-Robertson-

Walker (FRW) evolution. For decelerating universes, these problems can be avoided, in

principle, by introducing ordinary interactions.

In this paper, though, combining techniques developed in Refs. [1, 2] with new approaches,

we shall derive a series of no-go theorems showing how one is forced to consider more exotic

solutions in order to obtain accelerated expansion in compactified theories. The power of

these theorems may surprise some readers, yet they emerge from fairly simple considerations.

The key constraint is that the models are described by Einstein gravity both in the 4d

effective theory and in the higher dimensional theory. What seems relatively innocuous in

the 4d effective theory – e.g., accelerated expansion of the non-compact directions – can

require something extraordinary when lifted into the higher dimensional Einstein gravity.

As a simple example, consider the original Kaluza-Klein model with a single static extra

dimension whose size, we will assume, has been frozen by some interaction. Accelerated

expansion of the 4d effective theory means that the 5d theory is described by a metric

ds2 = −dt2 + a2(dx2
1 + dx2

2 + dx2
3) + dx2

4, where the FRW scale factor satisfies ȧ > 0 and

ä > 0. By substituting the metric into the 5d Einstein equations, it is possible to show

[1] that the equation-of-state in the compact dimension (the ratio of the 4-4 to the 0-0

components of the energy-momentum tensor) is w5 < −1; for example, for an expanding
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universe with a(t) ∼ tp>1, its value is w5 = (1 − 2p)/p < −1. The fact that this ratio is less

than -1 means the higher dimensional theory necessarily violates the null energy condition

(NEC), an extraordinary constraint. The NEC is not violated by any observed matter fields

or by unitary two-derivative quantum field theories; and violating the NEC can produce

problems of its own. Under many conditions it leads to unacceptable consequences, such as

superluminal propagation, instabilities, or violations of unitarity.[3–7]

We begin in Sec. III by considering compactified theories that do not violate the NEC,

including the original Kaluza-Klein model, the Randall-Sundrum II model[8] and many

string theory models, and see how difficult it is to accommodate accelerated expansion. For

a wide class of models, we derive a no-go theorem that rules out inflationary cosmology

altogether and additional no-go theorems that rule out the simplest dark energy models,

including ΛCDM. We further show that a dark energy phase with accelerated expansion

consistent with current observations is only possible if both Newton’s gravitational constant

and the dark energy equation-of-state vary with time.

Then, we turn our attention in Sec. IV to models that do violate the NEC. In spite of the

potential dangers cited above and in Refs. [3–7], models of this type have been suggested that

may safely violate NEC, such as the Randall-Sundrum I model[9] and recently proposed flux

compactifications on the string landscape. Examples of NEC-violating components invoked

in string constructions include orientifold-planes, which have negative tension, and quantum

effects analogous to Casimir energy. Here, though, we find another set of new no-go theorems

that rule out some forms of NEC violation and impose precise conditions on how any NEC-

violating components must vary with time as the universe evolves. Although the discussion

here is confined to certain common types of metrics and assumes Einstein’s general theory

of relativity applies in higher dimensions, we argue in Sec. V that similar no-go theorems

must apply in more general cases.

Our approach complements but is quite different from previous no-go theorems based on

supersymmetry or supergravity [10]; supersymmetry is not assumed in our analysis, so our

conclusions apply to more general compactified theories. Our results are also different from

inflationary no-go theorems based on requiring small values of the slow-roll parameters ε

and η in the case of inflation; or constructions leading to the long-lived metastable de Sitter

minima in the string landscape [11–15]. Previous theorems are based on what might be

called “micro-to-macro” approaches where the microphysics is specified first and then the
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constraints on the macroscopic pressure, energy density and equation-of-state are derived.

Ours is a more “macro-to-micro” approach in which we assume a certain equation of state

on macroscopic scales (based on observations) and derive constraints on the microphysics.

This method is more closely related to the one used by various authors [16–19] to constrain

compactified theories with purely static de Sitter minima (equation-of-state w = wDE = −1,

where we use w to represent the ratio of total pressure to total energy density and wDE to

represent the pressure-to-density ratio for the dark energy component alone). In Refs. [1, 2]

and this paper, though, the constraints are derived for more general – and more practical –

cases where w is significantly greater than −1 and time-varying (e.g., the present universe

has w ≈ −0.74 today and varying with time) [20–22]. By considering the time-evolution in

w, we derive numerous new constraints that do apply in the pure de Sitter limit, w = −1.

Another new feature of this paper is that it derives no-go theorems for a wide class of

time-dependent metrics that were not constrained previously (the “CRF metrics” described

below).

II. COMPACTIFIED MODELS AND NEC VIOLATION

The NEC is commonly assumed in fundamental theories to avoid the classical and quan-

tum instabilities (closed time-like curves, big rips, ghosts and unitarity violation) normally

associated with its violation [3–7]. Nevertheless, we will show that, for a wide range of

compactified models, inflationary cosmology and the NEC are completely incompatible and

that dark energy is compatible only if Newton’s gravitational constant GN and the dark

energy equation-of-state wDE vary with time.

A. Assumptions

Our conclusions rest on rigorous theorems that apply to compactified satisfying certain

conditions in addition to NEC:

• GR condition: both the higher dimensional theory and the 4d theory are described by

Einstein’s theory of general relativity (GR), either exactly or with small corrections;

• Flatness condition: the 4d theory is spatially flat;
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• Boundedness condition: the extra dimensions are bounded;

• Metric condition: the metric of the higher dimensional theory is R-flat (RF) or R-flat

up to a conformal factor (CRF):

ds2 = e2Ω(−dt2 + ā2(t)dx2) + gmndymdyn, (1)

where the x are the non-compact spatial dimensions; y ≡ {ym} are the extra dimen-

sions; ā(t) is the usual FRW scale factor; and

gmn(t, y) = e−2Ω̄ḡmn (2)

where ḡmn has Ricci (scalar) curvature R = 0, as evaluated in the compact dimen-

sions. We do not require that ḡmn have zero Ricci tensor. We call the metric R-flat

(RF) if Ω̄ = const. and conformally R-flat (CRF) if Ω(t, y) = Ω̄(t, y). We will use

indices {M, N} to represent all 4+k dimensions, {µ, ν} to represent the non-compact

dimensions, and {m, n} to represent the extra dimensions.

These conditions are common to many models published in the literature. The GR

condition dates back to the original Kaluza-Klein theory and underlies the idea of unified

theories based on compactifying extra dimensions. It is reasonable to expect corrections,

such as higher derivative terms, in the higher and 4d effective theory. So long as those

are small, the theorems will apply with obvious caveats (as discussed in Sec. VI). The

spatial flatness condition for the 4d theory is motivated by cosmological observations, e.g.,

from WMAP [22]. The boundedness condition on the extra dimensions is needed because

the theorems rely on integrating fields and warp factors over the compact direction. In

particular, the boundedness condition insures that, if Ω is non-trivial and has continuous

first derivative, then the Laplacian ∆Ω must be non-zero for some y; this fact is useful in

some of the proofs.

The metric condition is motivated by common constructions in the literature, especially

string theory. The original Kaluza-Klein model, the Randall-Sundrum models, and Calabi-

Yau based models are all RF; some useful theorems for this case were developed in Refs. [1, 2].

Metrics of CRF type appear in warped Calabi-Yau [11] and warped conifold [23] construc-

tions (where they are sometimes referred to as conformally Calabi-Yau metrics). Here we

derive no-go theorems for both RF and CRF models. Our constraints for RF and CRF are
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slightly different in terms of the number of extra dimensions and the moduli fields to which

they apply. However, the differences do not affect our conclusions for practical cases relevant

to string theory, M-theory, the Kaluza-Klein model, etc., so we will only present the details

for CRF models and ignore the fine distinctions.

B. Detecting NEC violation

In this subsection, we develop some basic relations that make it possible to detect easily

when a higher dimensional theory is forced to violate the NEC.

To describe a spatially-flat FRW spacetime after dimensional reduction, the metric

gmn(t, y) and warp function Ω(t, y) must be functions of time t and the extra-dimensional

coordinates ym only. Following the convention in Ref. [1], we parameterize the rate of change

of gmn using quantities ξ and σmn defined by

1

2

d gmn

d t
=

1

k
ξgmn + σmn (3)

where gmnσmn = 0 and where ξ and σ are functions of time and the extra dimensions; this

relation assumes the gauge choice discussed in Ref. [1].

It is important to note that all discussions of the equation-of-state, the NEC, acceler-

ated expansion, the energy-momentum tensor TMN , and the pressure and density of any

components always refer to Einstein frame quantities in either the higher dimensional or

4d effective theory. The space-space components of the energy-momentum tensor are block

diagonal with a 3 × 3 block describing the energy-momentum in the three non-compact di-

mensions and a k × k block for the k compact directions. The 0-0 component is the higher

dimensional energy density ρ. The 0-m components are generally non-zero but will be of no

special interest for our theorems.

Associated with the two blocks of space-space components of TIJ are two trace averages:

p3 ≡
1

3
γµν

3 Tµν and pk ≡ 1

k
γmn

k Tmn, (4)

where γ3,k are respectively the 3 × 3 and k × k blocks of the higher dimensional space-time

metric. Violating the NEC means that TMNnMnN < 0 for at least one null vector nM and

at least one space-time point.

Our approach in this paper is not to identify all cases where the NEC is violated, which

can be complicated; rather we find simple methods for identifying a subset of cases where it
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must be violated. For this purpose, the following two lemmas, proven in Ref. [1], are very

useful:

Lemma 1: If ρ + p3 or ρ + pk is less than zero for any space-time point, then the NEC is

violated. (Note that the converse is not true, ρ + p3 ≥ 0 and ρ + pk ≥ 0 does not guarantee

that the NEC is satisfied.)

The second lemma utilizes the concept of A-averaged quantities introduced in Ref. [1]:

〈Q〉A =

(
∫

Q eAΩ√g dky

)

/

(
∫

eAΩ√g dky

)

; (5)

that is, quantities averaged over the extra dimensions with weight factor eAΩ where, for

simplicity, we restrict ourselves to constant A. Using the fact that the weight function in

the A-average is positive definite, a straightforward consequence is:

Lemma 2: If 〈ρ + p3〉A < 0 or 〈ρ + pk〉A < 0 for any A and any {t, x}, then the NEC must

be violated.

As with the case of Lemma 1, this test is asymmetrical: finding an A-average less than

zero proves NEC is violated, but finding a positive average is not sufficient to conclude NEC

is satisfied.

To illustrate the utility of A-averaging, we introduce the CRF metric into the the higher-

dimensional Einstein equations, and then try to express terms dependent on ā in terms of

the 4d effective scale factor using the relation a(t) ≡ eφ/2ā(t), where [1]:

eφ ≡ `−k

∫

e2Ω√g dky (6)

and ` is the 4 + k-dimensional Planck length. The 4d effective scale factor, a(t), obeys the

usual 4d Friedmann equations:

(

ȧ

a

)2

=
1

3
ρ4d (7)

(

ȧ

a

)2

+ 2
ä

a
= −p4d (8)

(henceforth, we use reduced Planck units, 8πGN = 1 in 4d; also, except where displayed

explicitly, we choose ` = 1 in the 4+k-dimensional theory). Note that the 4d effective energy

density ρ4d and pressure p4d are generally different from ρ and p3 in the higher dimensional
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theory if the warp factor Ω is non-trivial. Then, using the Einstein equations, we obtain

e−φ〈e2Ω(ρ + p3)〉A = (ρ4d + p4d) −
k + 2

2k
〈ξ〉2A − k + 2

2k
〈(ξ − 〈ξ〉A)2〉A − 〈σ2〉A (9)

e−φ〈e2Ω(ρ + pk)〉A =
1

2
(ρ4d + 3p4d) + 2

(

A

4
− 1

)

k + 2

2k
〈(ξ − 〈ξ〉A)2〉A

−k + 2

2k
〈ξ〉2A − 〈σ2〉A

+

[

−5 +
10

k
+ k + A

(

−3 +
6

k

)]

〈e2Ω(∂Ω)2〉A

+
k + 2

2k

1

a3

d

dt

(

a3〈ξ〉A
)

(10)

A-averaging is a powerful tool because, with a judicious choice, one can insure that certain

coefficients on the right hand side, the ones that depend explicitly on A, are non-positive.

This opens a path for proving some of the no-go theorems below.

This freedom is possible provided there is a range where

4 ≥ A ≥ 10 − 5k + k2

3k − 6
≡ A∗, (11)

which is the case for 13 ≥ k ≥ 3 (for CRF). Some theorems below rely on choosing A = 2;

for this value to be within the range given in Eq. (11), it is necessary that 8 ≥ k ≥ 3.

(The corresponding ranges of k in the RF case are given the Appendix.) Since this includes

the relevant string and M-theory models, we will implicitly assume this range of k for CRF

models for the remainder of this paper. (For k = 1, the metric reduces to RF and similar

theorems in Ref. [1] apply.)

The two relations in Eq. (9) can be rewritten

e−φ〈e2Ω(ρ + p3)〉A = ρ4d(1 + w) − k + 2

2k
〈ξ〉A 2 + non − positive terms for all A (12)

e−φ〈e2Ω(ρ + pk)〉A =
1

2
ρ4d(1 + 3w) +

k + 2

2k

1

a3

d

dt

(

a3〈ξ〉A
)

+non − positive terms for some A, (13)

where the values of A that make the last term non-positive are those that are in the range

in Eq. (11). Henceforth, unless stated otherwise, we always choose A to be in that range.

Recall that w represents the ratio of the total 4d effective pressure p4d to the total 4d effective

energy density ρ4d. In Appendix I, we provide the coefficients of the last term in Eqs. (12)

and (13) relations for the case where the moduli are frozen ξ = 0.
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On the left hand side of Eqs. (12) and (13), both φ and 〈. . .〉A depend on the warp

factor, Ω, but the combination is invariant under shifts Ω → Ω + C, where C is a constant.

Furthermore, the combination tends to have a weak dependence on Ω. For example, if ρ+pk

is homogeneous in {ym}, the left hand side reduces to K(ρ + pk), where the dimensionless

coefficient K is not very sensitive to Ω or A; in particular, K = `k I(A + 2)/I(A)I(2) where

I(Ā) ≡
∫

eĀΩ√g dky. (14)

In this notation, the k-dimensional volume of the compact space is Vk = I(0); then, K is

equal to `k/Vk, a coefficient which is strictly less than unity. Similarly, if ρ + pk is smooth

and Ω has a sharp maximum on some subspace of dimension m and volume vm, then the

left hand side of Eq. (13) is O(1)(`m/vm)(ρ+pk)max, where (ρ+pk)max is the value of ρ+pk

evaluated on the subspace where Ω is maximal. We will use this example in Sec. V.

III. NO-GO THEOREMS FOR MODELS THAT SATISFY NEC

The lemmas of the previous subsection can be used to prove that compactified theories

satisfying NEC and meeting the other assumptions given at the beginning of Sec. (II) are

incompatible with inflation and the simplest dark energy models consistent with observa-

tions. The theories include the original Kaluza-Klein model and many string theories. The

Randall-Sundrum II model[8], with a single brane, also satisfies NEC; formally, it does not

satisfy the boundedness condition, but, because the warp factor is well-behaved at infinite

distances from the brane, we conjecture that the same theorems apply.

As a first step, we show that w must be strictly greater than -1. The argument is simple.

If w = −1, the first term in Eq. (12) is precisely zero and the second two are non-positive.

Consequently, NEC can only be satisfied if the last two terms are precisely zero as well.

However, in Eq. (13), the first term is strictly negative and the last term is non-positive.

Hence, the middle term must be positive for this equation to to satisfy the NEC; but this

requires ξ and/or its time-derivative to be non-zero. But this is incompatible with having

the middle term in Eq. (13) be zero. Hence, one or both equations must violate the NEC if

w = −1.

An immediate consequence is a first dark energy no-go theorem. (Theorems labeled IA,

IB, etc. refer to models obeying NEC and models labeled IIA,IIB, etc. refer to models that
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violate NEC.)

Dark Energy No-go Theorem IA: ΛCDM (the current concordance model in cosmology) is

incompatible with compactified models[24] satisfying the NEC.

A pure de Sitter universe is obviously ruled out by the argument above. Also, w < −1

is forbidden by the assumption that the 4d effective theory obeys the NEC. It is further

apparent that w > −1 but close to -1 is subject to the same problems. Consequently,

a ΛCDM universe, with a mixture of matter and positive cosmological constant that ap-

proaches w = −1 in the future, is also ruled out.

This point can be made more forcefully and precisely. Depending on the number of extra

dimensions and whether the metric is RF or CRF, there exists a wtransient between −1/3

and −1 such that w can only remain in the interval (−1, wtransient) for a few e-folds. The

condition w < wtransient cannot be maintained indefinitely because it requires either NEC

violation of Eq. (13), if the average ξ and dξ/dt are kept small or negative; or NEC violation

of Eq. (12), if ξ is made large and positive enough to avoid NEC violation in Eq. (13). In

principle, it is possible to satisfy NEC for both relations if ξ is near zero and dξ/dt is large

and positive, but this can only be maintained for a brief period.

How brief is brief? In order for the right hand side of Eq. (13) to remain positive, it is

necessary that
k + 2

2k

1

a3

d

dt

(

a3〈ξ〉A
)

> −1

2
ρ4d(1 + 3w). (15)

The right hand side is positive for w < wtransient and has magnitude O(ρ4d) = O(H2), where

H ≡ ȧ/a is the Hubble parameter. Hence, H−2d〈ξ〉A /dt = O(1). Now suppose 〈ξ〉A begins

small so that Eq. (12) is satisfied initially. Integrating over a Hubble time, we find that 〈ξ〉A,

grows until

〈ξ〉A /H = O(1) (16)

at which point Eq. (12) violates NEC. In other words, the brief period during which ξ

remains small cannot last more than a few Hubble times.

To reach w < wtransient in the first place, it must be that wDE is less than wtransient.

But, then, the only way to avoid violating NEC is for w to increase above wtransient after a

few e-folds, which is only possible if wDE itself increases above wtransient after a few e-folds

(which we will take to be three e-folds, for the purposes of this paper).
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FIG. 1: Plot of wtransient vs. the number of extra dimensions k for extra-dimensional models based

on RF (circle) and CRF (square) metrics. The dashed horizontal segment represents the current

value of w according to WMAP.

A plot of wtransient as a function of the number of extra dimensions is given in Fig. 1;

note that wtransient is substantially greater than −1 for the cases of greatest interest, such

as string theory (k = 6) or M-theory (k = 7). (See Ref. [25] for a more detailed quantitative

discussion).

Two additional no-go theorems follow from this analysis:

Dark Energy No-go Theorem IB: Dark energy models with constant wDE less than wtransient

or time-varying wDE whose value remain less than wtransient for a continuous period lasting

more than a few Hubble times are incompatible with compactified models[24] satisfying the

NEC.

This theorem rules out a wide spectrum of dark energy models, including a range which

is currently allowed observationally and that the JDEM mission is designed to explore [26].

Conversely, if JDEM indicates wDE < wtransient and constant, this would rule out this entire

class of compactified models.

Inflationary No-go Theorem IA: Inflationary models consistent with observations are incom-
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patible with compactified models[24] satisfying the NEC.

Inflationary cosmology requires a period of 40 or more e-folds of accelerated expansion

with w ≈ −1 to within a few percent in order to smooth and flatten the universe and to

obtain a scalar spectral index within current observational bounds [22]. For the compactified

models considered here, this value of w is far below wtransient and cannot be maintained for

more than a few e-folds – certainly not for 40 e-folds.

Inflationary Corollary: Compactified models[24] satisfying the NEC are counterexamples

to the common assertion that inflation with nearly scale-invariant spectra are an inevitable

consequence given chaotic or generic initial conditions after the big bang.

The common lore is that, after the big bang, the universe is chaotic but there are always

rare patches of space that are smooth enough and have the right conditions to initiate

inflation (assuming an inflaton with a sufficiently flat potential); and these patches soon

dominate the volume of the universe. For the entire class of theories considered here, though,

no patches of space undergo inflation that is slow and long-lasting enough to produce a

spectral tilt anywhere near the observational bounds. The problem is not finding a scalar

field with a sufficiently flat potential, because none of the compactified models explicitly

forbids that. Rather, the problem is that accelerated expansion induces a rapid variation

of ξ which, in the 4d effective theory in Einstein frame, appears as a time-varying field

whose kinetic energy increases the overall equation of state w and prevents inflation from

continuing long enough.

Additionally, for all models (RF or CRF, and for any k), 〈ξ〉A = ĠN/GN for A = 2, if the

theory is expressed in Jordan-Brans-Dicke (JBD) frame. Although we keep to Einstein frame

in this paper generally, it useful to express ξ in terms of ĠN for the purpose of comparison

to observational constraints on ĠN which implicitly assume JBD frame. For RF models,

A = 2 lies outside the corresponding range of A (see Appendix A) and so theorems below

about changing GN should be re-expressed as conditions on changing ξ or, equivalently,

changing size of the extra dimensions. For CRF models, A = 2 lies in the range in Eq. (11)

when 8 ≥ k ≥ 3. Converted to JBD frame, we could restate our conclusion for CRF models

as follows: accelerated expansion induces a rapid variation of the gravitational constant,

ĠN/GNH = O(1). .

Returning now to Eq. (15), we note that it requires that, regardless of the value of A,
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d 〈ξ〉A/dt = O(H2) be positive not only for w < wtransient, but also for w < −1/3. From

this emerges:

Dark Energy No-go Theorem IC: All dark energy models are incompatible with compactified

models[24] satisfying the NEC if the moduli fields are frozen (or, specifically, GN is constant,

in the case of CRF models).

This follows trivially because any form of dark energy requires w reach a value less than

-1/3, and, as we just argued, ξ must vary with time whenever w < −1/3 if NEC is satisfied.

As a practical matter, the current value of w ≈ −0.74 is already less than wtransient

for k = 7 dimensions (e.g., M-theory). In this case, both Dark Energy no-go Theorem IC

and IB apply, but Theorem IB is more stringent. Theorem IB says that both wDE and

GN must vary with time and at high rates. One might wonder: Is it already possible to

rule out all RF and CRF compactified models[24] satisfying the NEC based on current

observations? In Ref. [25], we show that the answer is no; there remains a small window

in the parameter space {wDE, dwDE/dt, ĠN/GN} consistent with all current observations.

However, anticipated observations will be able to check this remaining window to determine

if this class of theories is empirically ruled out or not.

IV. NO-GO THEOREMS FOR MODELS THAT VIOLATE NEC

In this section, we continue to consider compactified models satisfying the GR, flatness,

boundedness, and metric conditions assumed in Sec. II. The difference is that, before, we

only considered models that satisfy the NEC, in which case we showed that moduli fields

ξ (and GN) must vary with time at a fast rate barely compatible with current observa-

tional constraints and potentially ruled out by near-future observations. So now we consider

models that violate NEC but with fixed (or very slowly varying) moduli. Theories of this

type include the Randall-Sundrum I model[9], because it includes a negative tension brane,

and some models that arise in flux compactifications of Calabi-Yau manifolds when NEC-

violating components, such as orientifold-planes or Casimir energy, are introduced.

If the only requirement for incorporating accelerated expansion were NEC violation, then

it would suffice if ρ + p3 < 0 or ρ + pk < 0 at any one space-time point. However, we now

will present a set of no-go theorems that show that cosmic acceleration imposes a host of
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stringent conditions on the spatial distribution and temporal variation of the NEC-violating

elements. The no-go theorems in this section are qualitatively the same for dark energy

and inflation because the theorems only rely on the fact that the universe must evolve from

w > −1/3 to w < −1/3 or vice versa, which is required both for inflation and dark energy

cosmology. Recall that w refers to the ratio of the total pressure (p4d) to the energy density

(ρ4d) in the 4d effective theory.

Inflationary/Dark Energy No-go Theorem IIA: Inflation and dark energy are incompatible

with compactified models[24] (with fixed moduli) if the NEC is satisfied in the compact

dimensions (i.e., ρ + pk ≥ 0 for all t and ym) — whether or not NEC is violated in the

non-compact directions.

The first step in the proof is to note that, since GN (and other moduli) are assumed

to be fixed, the middle term in the expression for e−φ〈e2Ω(ρ + pk)〉A in Eq. (13) is zero.

In this case, the relations in the appendix apply. We can use the freedom to choose A in

our A-averaging so that the third term in Eq. (13) is zero; this corresponds to A = A∗

in Eq. (11). That leaves only the the first term, proportional to 1 + 3w, which is positive

for w > −1/3 and negative for w < −1/3. Hence, whenever the universe is accelerating

(w < −1/3), NEC violation must occur in the compact dimensions. (It may or may not

occur in the non-compact dimensions as well.)

Inflationary/Dark Energy No-go Theorem IIB: Inflation and dark energy are incompatible

with compactified models[24] (with fixed moduli) for which the net NEC violation (ρ + pk)

is time-independent.

This theorem relies on the fact that both inflation and dark energy models have a transi-

tion from phases with w > −1/3 to phases with w < −1/3. (This proof does not apply to a

pure de Sitter phase where w is always equal to -1.) Since e−φ〈e2Ω(ρ+pk)〉A∗
is proportional

to 3w + 1, which switches sign as w evolves past w = −1/3, the NEC violation (summing

over all energy density and pressure contributions) in the compact direction must be time-

dependent. In the case of inflation, there is also a transition in which w changes from less

than −1/3 to greater than −1/3. This leads to an important corollary:

Inflationary Corollary: Inflationary cosmology is only compatible with compactified

theories[24] that include an NEC violating component in the compact dimensions whose

14



magnitude is of order the vacuum density (that is, e−φ〈e2Ω(ρ + pk)〉A∗
∼ ρ4d); such that

〈ρ + pk〉A∗
switches from positive to negative when inflation begins and switches back when

inflation is complete.

The corollary means that the requirements usually associated with inflation — a scalar

field with a flat potential, stringent conditions on slow-roll parameters, a reheating mecha-

nism, etc. — are not sufficient to have inflation in compactified theories since they do not

produce or annihilate NEC violations. Furthermore, the magnitude of the NEC violation

is one hundred orders of magnitude larger than what is required to support a dark energy

phase; so the source of NEC violation must be different from whatever is used to produce

the current vacuum state. Finally, after inflation is over, e−φ〈e2Ωρ + pk〉A∗
must switch sign

again, so the reheating in the non-compact dimensions must somehow have back-reaction

that changes the NEC violation in the compact directions by a hundred orders of magnitude.

There is more to be said. Theorem IIA imposes the condition that NEC is violated in

the compact dimensions. The next no-go theorems constrain the spatial distribution of the

NEC-violating elements within those compact directions.

Inflationary/Dark Energy No-go Theorem IIC: Inflation and dark energy are incompatible

with compactified models[24] with fixed moduli if the warp factor Ω(t, y) is non-trivial and

has continuous first derivative and if any of the following quantities is homogeneous in y:

1. ρ + p3;

2. xρ + pk for RF metric, for any (1/2)(1 − 3w) > x > 4(k − 1)/3k;

3. ρ for CRF metric for k > 4;

4. 2ρ + pk for CRF metric for k > 3 and w > −1;

The first condition follows straightforwardly from Eqs. (A1) and (A9), which show that

ρ+p3 = eφ−2Ω(ρ4d +p4d). This expression must be inhomogeneous because Ω is y-dependent

(by assumption) and the 4d effective energy density ρ4d and pressure p4d are y-independent

(by definition).

The remaining conditions are proven by using Eq. (A9) in the appendix to express each

of the linear combinations of ρ and pk in the list above as:

C ∆Ω + D(∂Ω)2 + Ee−2Ωρ4d, (17)
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where C and E are have the same sign. For example, consider the case where C and E are

positive. If Ω is non-trivial and has continuous first derivative and if the compact dimensions

are bounded, then Ω must have a non-zero maximum and minimum on the compact manifold.

At the maximum, we have that ∂Ω = 0 (so the middle term is zero), ∆Ω < 0 and e−2Ω is

minimal; similarly, at the minimum, the middle term is also zero but ∆Ω > 0 and e−2Ω is

maximal. Hence, for positive C and E, both terms in Eq. (17) are smaller for maximal Ω

compared to their values for minimal Ω; the sum cannot be a homogeneous function of y.

(A similar argument applies if C and E or both negative.)

For the RF case, a similar argument can be used to show that xρ + pk must be inhomo-

geneous for a continuum of set of choices (1/2)(1− 3w) > x > 4(k − 1)/3k. Note that there

exists a non-zero range of x provided w < −5/9+(8/9k), which includes all w < −5/9. Since

all observationally acceptable dark energy and inflation models must pass through phases

where w < −5/9, these models require xρ + pk be inhomogeneous for a finite range of x. A

similar argument holds for the CRF case, but here we have, for simplicity, limited ourselves

to two linear combinations: ρ alone and 2ρ + pk, which must both be inhomogeneous for all

w > −1.

We have made no attempt to be exhaustive here because these examples suffice to make

the point that the energy density and pressure must have non-trivial distributions across the

extra dimension to satisfy the higher dimensional Einstein equations. Further constraints

are given by the following no-go theorems that rely on somewhat different methods of proof.

Inflationary/Dark Energy No-go Theorem IID: Inflation and dark energy are incompatible

with compactified models[24] with fixed moduli if the warp factor Ω(t, y) is non-trivial if

ρ + pk is homogeneous.

Note that this linear combination is the indicator of NEC violation, so this no-go theorem

says that that the degree of NEC violation must itself be inhomogeneously distributed in

the compact dimensions. To prove this result, it suffices to restrict ourselves to showing that

ρ + pk is inhomogeneous for w = −1/3 since both dark energy and inflation models must

pass through this value of w. For w = −1/3, the last term in ρ + pk in Eq. (A1) (for RF)

and Eq. (A9) (for CRF) in the Appendix is zero. Using Lemma A1 in the Appendix, the

remaining terms can be rewritten as Γe−γΩ∆eγΩ where γ and Γ are positive. For non-trivial

Ω, ∆Ω must be non-zero and have different signs at the maximum and minimum of Ω on
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the compact manifold. Hence, ρ + pk must be inhomogeneous.

Inflationary/Dark Energy No-go Theorem IIE: Inflation and dark energy are incompatible

with compactified models[24] with fixed moduli if wk(A∗) ≡ 〈pk〉A∗
/〈ρk〉A∗

> −1 for 〈ρ〉A∗
>

0 or if wk(A∗) ≡ 〈pk〉A∗
/〈ρk〉A∗

< −1 for 〈ρ〉A∗
< 0 .

We will present the proof before explaining its significance: Let us first consider the case

where 〈ρ〉A∗
> 0. Based on Eqs. (A7) and (A16) in the Appendix, we can express wk(A) as:

wk(A) =
g(A)〈(∂Ω)2〉A + 3w−1

2
X

f(A)〈(∂Ω)2〉A + X
, (18)

where X = 〈eφ−2Ωρ4d〉A > 0. (Recall that ρ4d > 0 in inflation and dark energy models.)

Recall that the denominator is < ρA, the A-averaged energy density. For A = A∗ (as given

in Eq. (11)), f(A∗)/g(A∗) = −1. For w < −1/3, as required for inflation or dark energy

models, the coefficient of X in the numerator is less than -1. Straightforward algebra then

shows that wk(A∗) is strictly less than −1. (A similar argument can be used to show wk(A∗)

is strictly greater than −1 if 〈ρ〉A < 0.)

The quantity wk is the ratio of the volume-averaged pressure to volume-averaged energy

density with positive definite weight e−2Ω. To have NEC violation in the compact dimensions,

as required by Theorem IIA, it suffices that pk/ρ < −1 for ρ > 0 at a single point; or

pk/ρ > −1 for ρ < 0 at a single point. Here we have shown that the ratio volume weighted

averages must satisfy these inequalities, generally a much stronger condition.

This no-go theorem is useful because it shows that simply violating the NEC is not

enough; one must be deeply within the NEC-violating regime. For example, for constant

warp factor Ω, wk(A) = (3w − 1)/2 (independent of A), which approaches −2 as w → −1.

This value is far below the minimal value needed to violate the NEC; e.g., inconsistent with

simply Casimir energy or a single orientifold-plane as the source of NEC violation.

There are some other curiosities. For example, for constant warp factor Ω, radiation

alone exerts positive pressure in the non-compact dimensions, but must exert zero pressure

in the compact dimensions; and matter exerts no pressure in the non-compact dimensions,

but must exert negative pressure int the compact dimensions.
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V. CONSTRAINTS ON MODELS VIOLATING THE GR OR METRIC CONDI-

TIONS

Formally, the theorems derived here apply strictly to models in which the higher di-

mensional theory satisfies Einstein’s equations and is described by an RF or CRF metric.

However, the theorems provide useful insights for some models that violate one or both con-

ditions. For example, some string inflation models satisfy the GR conditions perturbatively

but violate them non-perturbatively [11, 13, 27]. One might inquire whether these models

evade the no-go theorems derived in this paper. Absent an explicit expression for the non-

perturbative interactions, a quantitatively precise answer cannot be reached. Nevertheless,

qualitatively, it is clear that the no-go theorems may only be evaded if the violations are

large and time-dependent.

For example, if the violations can be expressed as additions to the right-hand-side of

Eqs. (12) and Eq. (13), then, these modifications have to balance the equations by satisfy-

ing similar time-variation conditions as required for the NEC-violating components in the

proofs of the no-go theorems. That is, there must be some sort of back-reaction in the

compact directions in either case. By the argument given below Eq. (13), the modifications

to e−φ〈e2Ω(ρ+p3)〉A and e−φ〈e2Ω(ρ+pk)〉A must be of order ρ4d, and they must change by an

amount O(1)ρ4d whenever the universe switches from accelerating to decelerating (or vice

versa) in order to change the sign of e−φ〈e2Ωρ + pk〉A∗
(as required by the kind of argument

presented for Theorem IIB).

What makes the back-reaction problematic is that, phenomenologically, the change from

acceleration to deceleration (or vice versa) in the 4d effective theory is supposed to be due

entirely to the production of matter and radiation (in the case of inflation) or red-shifting of

matter energy density (at the onset of dark energy domination) that acts in the non-compact

dimensions; so it would seem that any back-reaction in the compact dimensions required to

satisfy Eq. (13) had better turn out to be quantitatively small enough to have a negligible

effect on the 4d effective theory. If the effect of back-reaction on the 4d effective theory is

not negligible, it will alter the course of accelerated expansion in undesirable ways, such as

shortening or eliminating the acceleration phase, as was shown to be the case for models

that satisfy the GR and metric conditions. In the case of inflation, even if the back-reaction

does not prevent inflation, it may change the transition from inflation to reheating and,
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thereby, the predictions.

In fact, in certain flux compactifications in string theory, there is an argument to suggest

that the back-reaction will have a very large effect. These models invoke orientifold-planes

(extended objects with negative tension) that serve as sources of the NEC violation necessary

to stabilize a true vacuum with positive cosmological constant.[11, 13] Averaged over the bulk

volume, the large negative tension of the orientifold-planes is nearly canceled by large positive

density contributions, such as branes. There can also be positive density contributions in

the throat. However, several of the no-go theorems entail the A∗-average of ρ + pk where

A∗ ≥ 1. For example, Theorem IIB requires that this average switch sign and change by an

amount of order ρ4d when the universe transitions from acceleration to deceleration (or vice

versa). Because the A∗-average over the compact volume weights contributions to ρ + pk by

a factor of eA∗Ω, contributions from regions in the compact volume where Ω is maximal will

be strongly weighted compared to regions where Ω is small. In the case of orientifold-planes,

singular surfaces near which G00 < 0 and (∂Ω)2 approaches zero, Eq. (A9) implies ∆Ω < 0;

hence, orientifold-planes are (local or global) maxima of Ω and tend to be strongly weighted

in the A∗-average.

Consider, for example, a setup where Ω is maximal along the orientifold-planes which

have some constant (ρ + pk)neg < 0 in a volume of dimension m < k and volume vm;

further suppose that Ωpos is somewhat smaller but nearly uniform over the rest of the

bulk where there is some average stress-energy (ρ + pk)pos > 0 that nearly balances the

orientifold-plane component; finally, as in the case of d-brane inflation, suppose there is

some positive (ρ + pk)throat > 0 contribution in the throat. The A∗-weighted combination of

these components is then:

`m

vm
(ρ+pk)neg +

`2m−kVk

v2
m

e−(A∗+2)∆Ωbulk(ρ+pk)pos +
`2m−kVk

v2
m

e−(A∗+2)∆Ωthroat(ρ+pk)throat (19)

where ∆Ωbulk = Ωneg − Ωpos > 0 and ∆Ωthroat = Ωneg − Ωthroat > 0. This sum is supposed

to switch from an amount of order −ρ4d to +ρ4d at the end of inflation (or the reverse

at the onset of dark energy domination). Because of the A∗ weights, the exponentially

dominant contribution to Eq. (19) is the due to the orientifold-plane, which contributes

an amount (lm/vm)(ρ + pk)neg, that is exponentially enhanced compared to the positive

energy density contributions in the bulk or in the throat because, by assumption, the warp

factor Ω is much larger near orientifold-planes. In order for e−φ〈e2Ωρ + pk〉A∗
to switch
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sign when the universe changes from accelerating to decelerating (or vice versa), the back-

reaction in the bulk must either change the contribution of the orientifold-planes by an

amount of order ρ4d, which seems unlikely given their topological character; or the back-

reaction must change the positive energy density components by an exponentially larger

amount. In the latter case especially, the effect of the back-reaction on the effective 4d

theory is likely to be overwhelmingly large. (One could switch the scenario so that Ω is

maximal in the bulk positive (ρ + pk) regions and smaller on the orientifolds; even so, the

only way to change the sign on the left-hand side of Eq. (13) is to have a back-reaction in

which some energy components change by an amount of at least ρ4d; and, in most cases,

by an amount exponentially greater amount.) It is, therefore, essential to track the effect

of this back-reaction on the 4d effective theory (where the leading contribution is supposed

to be of order ρ4d) to be sure the cosmological scenario is not spoiled. As of this writing,

though, the back-reactions during the transition from inflation to reheating and from matter

domination to dark energy domination are not well understood: In particular, they have

not been included in string inflation calculations and predictions or in discussions of stringy

dark energy models.

We note that our analysis has been restricted to the case of RF or CRF metrics which are

Ricci flat or conformally Ricci flat and that we have ignored non-perturbative corrections

to GR. However, a similar argument applies if they are included. They can be viewed as

amendments to the right-hand side of Eq. (13); then, by the same reasoning, they must

change by an amount of order ρ4d to balance the equation. So, as in the case above, one

must be concerned about the effect of their back-reaction in the 4d effective theory.

VI. CONCLUSIONS

The essence of this paper is that cosmic acceleration is surprisingly difficult to incorporate

in compactified models. The problem arises in trying to satisfy simultaneously the 4d and

higher dimensional Einstein equations. Both must be satisfied for any equation-of-state, but

we have shown that, for the metrics assumed in this paper, this requires increasingly exotic

conditions as the universe goes from decelerated to accelerated expansion or, equivalently,

as w decreases below −1/3. For dark energy models, either moduli fields (including GN)

have to change with time at a rate that is nearly ruled out (and may soon be excluded
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observationally altogether[25]) or NEC must be violated. For inflation, only the second

option remains viable.

If the NEC is violated, it must be violated in the compact dimensions; it must be violated

strongly (wk significantly below the minimally requisite value for NEC violation); and the

violation in the compact dimensions must vary with time in a manner that precisely tracks

the equation-of-state in the 4d effective theory. For example, in realistic cosmological models,

there are known matter and radiation components (baryons and photons, for example) that

contribute to the energy and density of the 4d effective theory but are not normally related to

NEC violation. Nevertheless, the no-go theorems say that the magnitude of NEC violation

must vary with time in sync with how the conventional matter and radiation energy density

and pressure evolve.

Satisfying these equations for ΛCDM is difficult, but satisfying them for inflation is even

harder. A period of inflation with w within a few percent of −1 (as required to meet the

observational constraints on the spectral tilt) must be sustained for at least 40 e-folds to

resolve the flatness and homogeneity problems; this requirement restricts us to the case

that the NEC is violated, according to Inflationary Theorem IA. The magnitude of the

NEC violation is proportional to ρ4d according to Eq. (13), which is roughly 10100 times

greater during the inflationary epoch than during the present dark energy dominated epoch.

Hence, the source of NEC violation for inflation must be different and 10100 stronger. Also,

identifying a scalar inflaton field with a flat potential or branes and antibranes approaching

one another in some warped throat does not suffice because they do not violate NEC,

either. For example, as a hypothetical, imagine that a D3 brane-antibrane pair collide and

annihilate into ordinary radiation; they do not change ρ + pk at all since neither branes nor

radiation exert pressure in the compact directions and the energy density remains the same.

Yet, after inflation is over and the equation-of-state increases to w = +1/3 (the radiation

epoch), the NEC violation must be reduced or eliminated to continue to satisfy the Einstein

equations. This suggests some back-reaction effect must be built into the higher dimensional

theory that creates and later eliminates exponentially large NEC-violating contributions at

the beginning and end of inflation, leaving behind exponentially small NEC-violating effects

needed for the current dark energy dominated epoch. This needs to be incorporated into

any realistic theory of reheating.[28]

The added complexity is disappointing. Inflation and dark energy in 4d have always had
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the problem that they require special degrees of freedom and fine-tuning. One would have

hoped that extra dimensions, which are introduced to simplify the unification of fundamental

forces, would also alleviate the conditions needed for inflation. The no-go theorems say the

opposite: the number and complexity of conditions needed to have inflation or dark increase

significantly.

The fact that NEC violation is required to have inflation in theories with extra dimensions

is unexpected since this was not a requirement in the original inflationary models based on

four dimensions only. Curiously, a criticism raised at times about models with bounces

from a contracting phase to an expanding phase, such as the ekpyrotic[29, 30] and cyclic[31]

alternatives to inflationary cosmology, is that the bounce requires a violation of the NEC

(or quantum gravity corrections to GR as the FRW scale factor a(t) → 0 that serve the

same function). Now we see that, although the details are different, all of these cosmologies

require NEC violation when incorporated into theories with extra dimensions.

In general, the no-go theorems are powerful because they span a broad sweep of theories.

They say that one should be wary of focusing on one localized region of the extra-dimensions,

such as a warped throat, since there are non-trivial global constraints. Second, just because

some elements appear to add to the vacuum energy or provide an inflaton potential in the 4d

effective theory does not mean the theory is viable; they may force unacceptable conditions

in the higher dimensional theory. Thirdly, the NEC violation must be time-varying, at least

for the class of metrics considered here. This power of the no-go theorems derives from the

fact that they arise from “macro-to-micro” approach in which the analysis only relies on

known macroscopic properties, although this also means that they tell us nothing directly

about the detailed microphysics needed to satisfy or evade them.

We note that, thus far, we have restricted the analysis to no-go theorems that are simple

to express and simple to prove. There are numerous other relations that must be satisfied

to have cosmic acceleration that will be considered in future work. However, we hope

the examples shown here and in Ref. [1] suffice to show how these no-go theorems can

be remarkably informative, complementing other ways of thinking about how to construct

higher dimensional models.
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APPENDIX A: APPENDIX: SOME USEFUL RELATIONS

For R-flat (RF) models, we have the following useful relations in the case of fixed ξ

(breathing mode) and metric gmn:

G00 = −3∆Ω − 6(∂Ω)2 + eφ−2Ω ρ4d (A1)

p3 = 3∆Ω − 6(∂Ω)2 + eφ−2Ω p4d (A2)

pk = (4 − 4

k
)∆Ω + (10 − 4

k
)(∂Ω)2 (A3)

+eφ−2Ω(
1

2
ρ4d(3w − 1)) (A4)

ρ + p3 = eφ−2Ω(ρ4d + p4d) (A5)

ρ + pk = (1 − 4

k
)∆Ω + (4 − 4

k
)(∂Ω)2 + eφ−2Ω(

1

2
ρ4d(1 + 3w)) (A6)

manifold. Taking A-averages and using 〈∆Ω〉A = −A(∂Ω)2 , we can obtain an expression

for the equation-of-state of the compact directions

wRF
k (A) =

[(10 − 4A) + 4A−4
k

](∂Ω)2 +
(

3w−1
2

)

eφ〈e−2Ωρ4d〉A
(3A − 6)(∂Ω)2 + eφ〈e−2Ωρ4d〉A

. (A7)

Following Ref. [1], we can obtain the RF analogue of (11) by multiplying both sides of (A6)

by e2Ω−φ and taking the A-average. As shown in [1], for all k ≥ 1 an A can be found such

that A-dependent coefficients are non-positive. The RF version of A∗, for which the warp

term contribution to e−φ〈e2Ω(ρ + Pk)〉A vanishes, is given by

A∗ =
2(k + 2)

k − 4
(A8)

and A can be chosen equal to A∗ for all k ≥ 1. The choice A = 2 is inconsistent with keeping

the A-dependent coefficients non-positive in the RF case.

For conformally R-flat (CRF) models, the analogous relations to (A1)-(A6) are:

G00 = (k − 4)∆Ω +
1

2
(k2 − 3k − 10)(∂Ω)2 + eφ−2Ω ρ4d (A9)

p3 = −(k − 4)∆Ω − 1

2
(k2 − 3k − 10)(∂Ω)2 + eφ−2Ω p4d (A10)

pk = (7 − 6

k
− k)∆Ω + (6 − 2

k
+

5k

2
− k2

2
)(∂Ω)2 (A11)

+eφ−2Ω(
1

2
ρ4d(3w − 1)) (A12)

ρ + p3 = eφ−2Ω(ρ4d + p4d) (A13)

ρ + pk = (3 − 6

k
)∆Ω + (k + 1 − 2

k
)(∂Ω)2 + eφ−2Ω(

1

2
ρ4d(1 + 3w)) (A14)

◦

R = 2(k − 1) ∆Ω + (k − 1)(k − 2)(∂Ω)2, (A15)
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where
◦

R is the Ricci curvature of the compact manifold. Then, the effective equation-of-state

is

wCRF
k (A) =

[−(7 − 6
k
− k)A + (6 − 2

k
+ 5k

2
− k2

2
)](∂Ω)2 +

(

3w−1
2

)

eφ〈e−2Ωρ4d〉A
[−(k − 4)A + 1

2
(k2 − 3k − 10)](∂Ω)2 + eφ〈e−2Ωρ4d〉A

. (A16)

In addition, the following Lemma proven in Ref. [1] is useful in deriving dark energy

theorems:

Lemma A1: For real and non-zero α and β,

α∆Ω + β(∂Ω)2 = Γe−γΩ∆eγΩ. (A17)

where α = Γγ and β = Γγ2.
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