J. Inform. Process. Cybernet. EIK 27 (1991) 5/6, 263 —271
(formerly: Elektron. Inform.verarb. Kybernet.)

A Three-dimensional Bin Packing Algorithm’)

By Guntram Scheithauer

Abstract: In this paper an approximation algorithm for the three-dimensional bin packing problem is
proposed and its performance bound is investigated. To obtain such a bound a modified bin packing
algorithm is considered for a two-dimensional problem with bounded bin and its area utilization is
estimated. Finally, a hard example gives a lower bound of the performance bound.

1. Introduction

In the last twenty years the two-dimensional bin packing problem was investigated by
several authors and many papers were published on approximation algorithms, performance
bounds. asymptotic behavior and further problems connected with the two-dimensional
bin packing problem (see e.g. [1] —[4]). The two-dimensional bin packing problem is NP-hard
([2]). For this reason, especially, numerous approximation algorithms have been developed
and investigated with respect to their performance behavior.

In this paper we consider the three-dimensional bin packing problem as a generalization
of the two-dimensional one. This problem is the following:

Given a container with fixed length and width and unbounded height and a set of
(rectangular) pieces. Find an orthogonal packing of the pieces within the container realizing
a minimal required container height.

For this problem we propose an approximation algorithm which fills the container
according to a “layer”-strategy, i.c., at first pieces are located on the bottom of the container,
if no more piece can be fitted then the layer is closed and now location takes place on the
top of the layer, and so on. :

Further on, we investigate the performance bound of the approximation algorithm, i.e.
the ratio of the heights used by the approximation algorithm and an optimal algorithm.
To do so, we have at first to study the two-dimensional problem where, additionally, the
bin width is bounded. Especially, we are interested in statements about the area utilization
of approximation algorithms. This problem has not been considered so far in the literature.

The paper is organized as follows. In Section 2 we describe the NFD algorithm used for
the bounded bin. After that, in Section 3, we investigate the area utilization of this algorithm
and give further trivial bounds. A general three-dimensional approximation bin packing
algorithm is proposed in Section 4 followed by investigations of its performance bound. In
Section 6 the NFD algorithm is applied within the three-dimensional bin packing algorithm
and corresponding performance bounds are shown. At last, a hard example gives a lower
bound for the performance behavior of the proposed algorithm.

') Keywords: cutting stock problem, bin packing problem, approximation algorithms, performance
bounds

264 G. Scheithauer

2. The NFD algorithm for bounded bins

Throughout the paper we assume that the given rectangles (pieces) are oriented each
having a specified side that must be parallel to the bottom (length side) of the bin. With
no loss of generality, let the length L and width Wof the bounded bin be normalized to 1.

Further on, we assume that the set of rectangular pieces T, having length /; and width

wy, i = 1,....m, [ulfill the following conditions:
> lw; =1, (“sufficient many pieces”) (1)
i=1
0<f=1 O<w =1 i=1 m (2)
wl 2 HZ 2 LR ; “’m (3J

For abbreviation, let be

| = min [, I = max [, W= w, = min w,,
=

1=zi=m 1=i=m 1Zi=m

W=w, = max w;.
15ism

We use the NFDW (next fit decreasing width) algorithm as defined in [2]. The NFDW
algorithm assumes a list L of rectangles ordered according to (3) and packs the rectangles
in the order given by L so as to form a sequence of levels. All rectangles will be placed
with their bottoms (length sides) resting on one of these levels. The first level is simply the
bottom of the bin. Each subsequent level is defined by a horizontal line drawn through the
top of the first (and hence maximum width) rectangle placed on the previous level.

With the NFDW algorithm, rectangles are packed left-justified on a level until there is
insufficient space at the right to accommodate the next rectangle. At that point, the new
level is defined, packing on the current level is discontinued, and packing proceeds on the
new level. This packing process ends in the original (unbounded) problem if all pieces are
packed. In our problem the packing is finished if there is insufficient space between the
new level and the top of the bin. (This modified NFDW algorithm will be called NFD
algorithm in the following.)

The space between two consecutive levels is called a block. Hence, packings may be
regarded as a sequence of blocks B,. B,, ..., B,, where the index increases from the bottom
to the top of the packing. Let 4, denote the total area of the rectangles in block B,, and
let W, denote the width of block B,. Note that, by the manner in which the algorithm
defines levels, we have W, = W, = ... = W,

NFD algorithm
S0: k=1, m, =1, W= w,.

S1: Compute the maximal index j (Zm) with)ﬁ I =1
S2: Setk==k + 1, m:=j+ 1.

S3: If m, > m then go to S6.

S4: Set W= w,,.

A Three-dimensional Bin Packing Algorithm 265

1=

S5: If), W, <1 then go to SI.

j=1

S6: Sett=k — 1, M, y=].

(; denotes the index of the first piece placed in block Bj, j = 1, ..., t: w4, is the index
of the last piece packed.)

3. Estimations of the area utilization

Consider the NFD packing of such a list L, with blocks By, B, ..., B,. For each k, let y,
be the total length of rectangles in By. Then we have:

since otherwise an additional piece could be packed in the block B,. Because of (3) the
used area A4, in block B, can be estimated by

Akz_\«‘k'ﬁi+1>(l—h'“’i+1- (4)
Formula (4) i1s valid for k = 1, ...,t — 1. For the last block B, we have:
I i
A:>}’;'(1—ZW1)>(1—”'(1—wac)‘ (5)
k=1 k—1
Let A denote the total used area in the bin. Summing up (4) and (5) we obtain:

it
A=ZA_|(

k=1

=1 t
> 5 (l—fl'ﬁi”ﬂl—f}-(l— 5 w)
k=1

(1=n-(1-wW).

Hence,
A>(1=10-(1—wW=:B(NFD). (6)

It is to remark that f(NFD) depends on the range of the input data.
The following example shows that the estimation (6) is asymptotically sharp.

Example 1. Let be given positive integers r and s and let & < min {1/r, 1/s}. For
abbreviation, we set | = 1/r and w = 1/s. The (infinite) list L of rectangles T,, i = 1.2, ...,
is defined as follows:
w,=w if i=1,

;=¢ if i>r and imodr =0,
w; = ¢ otherwise .

T; with

—_
Il
=

|

266 G. Scheithauer
Hence, the assumptions (1), (2) and (3) are fulfilled with [= [, = w,l = w = & The NFD
algorithm generates the following blocks:

B, contains the pieces Ty, To, ... T,, with y, = & + (r — 1)1,
B, contains the pieces Ty _y), 41, -y T With yp = ¥y,
k=23 ..[1—w/e+1.

(Here and in the following, [a] denotes the largest integer not greater than a.) Hence,

A=w-e+(r—=1)L-e+[(1 —we]-e-(r— DI+ e

I

e+ 1 —w + 0(e)
r

(1—=0-(1—w + 0(e).

Ifz tends to zero then A tends to f(NFD). Hence, (6) vields an asymptotically sharp bound.

On the other hand, (6) is unsuitable if [or # tends to 1. For that reason, we consider a
trivial bound for the area utilization. Obviously, at least [1/]] - [1/W] pieces, each having
an area of at least [-w can be allocated in the unit square. Hence, an admissible
two-dimensional packing algorithm ALG should fulfill the following demand:

BALG) = [/} - [1/%] - 1+ w = B, (7)
where f{ALG) denotes the area utilization using algorithm ALG.

Remark. If [tends to I 'and w tends to w (pieces of “equal size”) or if [and +# tend to
0 with I/l < const and Ww/w = const (relative “small pieces”) then the utilization of the area
of the unit square tends to 1.

In Example 1, f, tends to zero if ¢ tends to zero.
Example 2. Let
I=1/11gkgs1/10=1, i=1,..,m,
w=13=sw12=w, i=1..m.
Then, f(NFD) = 0.45 and 8, = 0.6060...

In this example, (7) yields a better result than (6) does. One reason for this insufficiency
is the fact that all estimations. done for getting (6). correspond to the unused length and
width, not to the used area. For that reason, more detailed investigations are necessary.

Summarizing we have. the area utilization of the NFD algorithm is not worse than
max{f(NFD), f,}.

4. A three-dimensional approximation bin packing algorithm

Now we will consider the three-dimensional packing problem. Let be given a container
with length L, width Wand unbounded height H and a set of (rectangular) pieces T; having
length /;, width w; and height h, i = 1. ..., m. Find an orthogonal packing of the m pieces
within the container realizing a minimal required container height.

A Three-dimensional Bin Packing Algorithm 267

Without loss of generality we assume
L=1, W=1, 0<l=1, D<w =1, 1 =g W . 1N (8)
hl =1 gh22 "'ghm>0‘ (9}

The approximation algorithm works as follows: The height h, of piece T, defines the
height H, of the first layer (block) in the container parallel to the bottom side. Then, as a
two-dimensional packing problem, the unit square L x W is filled with the bottom rectangles
I; x w; of the pieces Ty, T3, ... (according to a chosen two-dimensional packing algorithm
A) until all pieces are packed or the next piece in the sequence, say T, cannot be packed
within the unit square. If not all pieces are packed then the layer is closed and the next
layer having height h,, is defined, and so on. If all pieces are packed then the packing
process is finished. The required container height H, (it depends on the algorithm A) equals
the sum of the heights of the defined layers. More formally, we have:

3DBP algorithm
SO: k=1, 1y = 1.
SI: f ;, > mthensett:=k—1 — stop.

i
S2: Compute the maximal index j (<m) with Y, Lw; < 1.

i=mx

Setri=m, 5:=].

S3: Let:=={i:m =i = J)
Use the two-dimensional packing algorithm A to allocate (pack) the rectangles [; x w;,
i € I, within the unit square.

S4: If not all pieces of I, are allocated then set

s=j, j=[(r+j2l,

if j > r then go to S3
else go to S6.

S5: If all pieces of I, are allocated then set
re=j, Jj=[l+s+ 172,
if j < s then go to S3.
S6: A new layer is obtained: set
H,=h,, ki=k + 1, me=r+1,
go to S1.

Remarks.

In step 3 of the algorithm the pieces are allocated with respect to the assumed pre-ordering
(9). Thereby it is essential that the remaining unpacked pieces have heights not greater
than the heights of the packed pieces.

The two-dimensional packing algorithm A used in step 3 of the 3DBP algorithm may
be a (two-dimensional) bin packing algorithm by itself or a more general two-dimensional
packing algorithm.

268 G. Scheithauer

To calculate the expense of the 3DBP algorithm we denote with x(A) the computational
expense of algorithm A to allocate m pieces in a strip of length 1 (worst case bound of
algorithm A). The bisection strategy defined by the steps 3, 4 and 5 yields a multiplicative
factor of at most In(m) of computational effort. The number of layers is at most m. Hence,
the total expense of the 3DBP algorithm is bounded by O(m - In(m) - x(A)). If the algorithm
A is polynomial then the 3DBP algorithm is, too.

5. Performance bounds

Because of L - W = 1 the total volume of all pieces is a lower bound of the optimal height
H,, used by the best possible packing algorithm, ie.

opl = Z hi[“l‘

Further on,

—1 me+en1—1

z Z hilw; + Z hlw, = i Hy., Z Lw,.

1 i=ng [=m i=mx

Ma

I

Let f(A) denote the (lower bound of) utilization of the unit square by the algorithm A
in each layer, then we have:

opl = Z, Hk+!.

Since H, = 1, it follows:

3
—H,, +12 Hy=H (10
ﬁ{A] pt ;l k A)
Remarks.
Depending on the knowledge of a given algorithm A, (10) gives a relative performance
bound for the 3DBP algorithm.
The larger f/(A) is, the better is the estimation for the 3DBP algorithm.

6. Applying the NFD algorithm within the 3DBP algorithm

To apply the NFD algorithm in step 3 of the 3DBP algorithm we have to sort the pieces
in_I, with respect to decreasing widths. (This implies a total computational effort of
O(m + In(m) - (m - In(m) + «(NFD))). Using an initial ordering of the pieces with respect to
their widths and because of #(NFD) = O(m) the total computational expense equals
O(m* In(m)).)

Using (6) and (7) we have

Hypp S0 Hop + 1 (11)
7o . 1 i
o=o(l,w Il W)= mm{ = , = }
T e Few[1]- W] (1 —=1)- (1 — W)
1) depends on the range of the input data. Let be

with

The performance bound given in (1
u = min{l, w} and .# = max{l, w}.

A Three-dimensional Bin Packing Algorithm 269

Remarks.
If p tends to 0 and .# tends to 1 then ¢ tends to infinity and (11) gives an unsuitable
bound. On the other hand, we have

1
Hyep = m'ﬂopl +1

which implies p < 4 if .# < 1, and p tends to 1 if .# tends to 0, i.e. the proposed 3DBP
algorithm is asymptotically exact.
If we additionally assume u = 4 - .4 with 6 € (0, 1) then p < g(.#) with

1 1
MM (1 —)

/«\\\\\

. ‘ » Fig. 1. g(.#) with § = 0.9

é(,ﬁ'{}=min{ } A e (0,1)

(see Fig. 1).

7. A lower bound for the 3DBP algorithm
Let us consider the following

Example 3.)
L=W=1e¢e<1/6,m=4 mmodd =0,
mpiecesof type T: =3 +ew,=1+eh=1i=1,..m,

270 G. Scheithauer

mpieces of type Ty: L, =3 — e, w, =3+ e, hy=1—¢i=m+1,...,2m,
m pieces of type T: [, =+ +e,wy=4— e hy=1—2ei=2u+1,...,3m,
mpiece of type Tp:l, =4 —e,w, =3 —ehy=1—3ei=3m+ 1,....4m.

Obviously, H,, < m, since T, T;, T, and T, can be packed in a layer of height 1.
The pieces Ty, ..., T, are ordered with respect to decreasing height. According to the
3DBP algorithm we obtain:

a) m — 1 layers with exactly one piece T,, H; =1,

b) 1 layer with one T, and one Tj, Hy=1,

c) 2 ; & layers with two pieces T, H,=1-—¢,
d) 1 layer with one T, and two T, H,=1-—z¢g,
e) " ; 4 layers with two pieces T, H.=1-—2¢,
fy 1 layer with two T and one T, Hy=1-—2¢,
2) " ; 4 layers with four pieces T, H.=1-— 3¢,
h) 1 layer with three T, H,=1-3¢.

Summing-up yields

m m : m
HNFn=m+5(1ms}+(5—1)u_2s)+1(1-3.»,-)

9 9
=—m—l—(—m—2)s.
4 -+

9 9
HangiHopt—]——(Zm—z)E- (12}

Hence,

On the other hand, from (11) it follows:

4

Bomella——2xr
NP 4 + 42

Hope % 1, (13)
If ¢ tends to zero we have

9
3 Hom — 1 S Hyep S 4Hop + 1.

opt

Remark. The “large” gap between 9/4 and 4 corresponds to Fig. 1 and results from the
“relative bad” estimation in (11) which is used for each layer. It is to denote that the lower
bounds also depend on the range of the input data. Improvements of the quality of the
performance bounds are only obtainable if improved estimations about the area utilization
are known.

A Three-dimensional Bin Packing Algorithm 271

8. Conclusional remarks

The aim of this paper is to propose a first approximation algorithm for the three-
dimensional bin packing problem. This algorithm is based on the NFD algorithnr for
two-dimensional bin packing. The 3DBP algorithm is asymptotically exact but further
questions are still open. For instance, some estimations (bounds) are not as sharp as desired.
Possibly, better results may be obtained if other packing strategies are used and/or sharper
results about area utilization are found.

Acknowledgement

The author thanks the unknown referees for their valuable remarks and Prof. Dr. sc.
nat. J. Terno (Dresden) for helpful discussions.

References

[1] Berkey, J. 0., P. Y. Wang: Two-dimensional finite bin-packing algorithms. J. Oper. Soc. 38 (1985),
423—429.

[2] Coffman, E. G., M. R. Garey, D. S. Johnson, R. E. Tarjan: Performance bounds for level-oriented
two-dimensional packing algorithms., SIAM J. Comput. 9 (1980), 808 —826.

[3] Coffman, E. G., G. §. Luecker, A. H. G. Rinnooy Kan: Asymptotic methods in the probabilistic
analysis of sequencing and packing heuristics. Management Sci. 34 (1988), 266 —290.

[4] Friesen, D. K., F. §. Kuhl: Analysis of a hybrid algorithm for packing unequal bins. SIAM 1.
Comput, 17 (1988), 23 —40.

Kurzfassung

In der Arbeit wird ein Niherungsalgorithmus fiir das dreidimensionale Bin-Packing-Problem vorge-
schlagen und hinsichtlich der Giite der Niherungen im Vergleich zu optimalen Losungen untersucht.
Dazu wird ein modifizierter (zweidimensionaler) Bin-Packing-Algorithmus fiir beschrinkte Bins
beziiglich der erreichbaren Mindestflichenauslastung betrachtet. AbschlieBend wird anhand eines
Beispiels eine untere Schranke fiir die Giite des Niherungsalgorithmus angegeben.

Peziome

B pabote mpennaraerca npuOIMAKEeHHbIH METOM MOKPLITHA TpexmepHoii nonockl. Mccnenyercs
MHHHMAJILHOE KAYECTBO NOJYYEHHOTO NPHOIHKEHHOTO PElIeHHd 110 CPABHEHHIO ¢ onTumabusiM, C
ITOH LENbI0 PACCMATPHUBARTCA MOAU(DHIMPOBAHHEIN AMTOPHTM TMOKPLITHA ABYXMEPHOH TOI0CHL €
OTrPAHUYMEHHON ITHPHHOW H OICHMBAETCH €0 MEPA MCMOIL3OBAHHS HMEMOUIecs IUI0maan CHU3Y.
Hakouen, yKa3eIBAETCH HWKHAS FPAHHIEA I8 KAUeCTBa NPHOIMKEHHOrO PelleHds NpH NOMOLIH
HHEOIATONPHATHOTO« [IPUMEpA.

(Received: first version May 30, 1990,
revised version November 14, 1990)

Author's address:

Dr. G, Scheithauer

Institute of Numerical Mathematics
Technological University Dresden
Mommsenstr. 13

0-8027 Dresden

Germany

J. Inform, Process. Cybernet. EIK 27 (1991) 5/6, p. 272
(formerly: Elektron. Inform.verarb. Kybernet.)

Book Review

Anne Kaldewaij: Programming. The Derivation of Algorithms. (Prentice Hall International
Series in Computer Science). Prentice-Hall, New York — London —Toronto — Sydney — To-
kyo —Singapore 1990. 216 pp.; $ 31.95

This textbook on programming continues an approach originated by C. 4. R. Hoare's article: “An
axiomatic basis for computer programming” (Comm. ACM 10 (1969)) and refined by E. W. Dijkstra
and W. H. J. Feijen during the 1970s and 1980s. Programming is considered as a stepwise activity of
deriving algorithms from their specifications, thus, assuring the correctness of the final algorithms.
Or in the words of the author: “A program together with its specification is viewed as a theorem”.
In each step, the programmer has to state creatively design decisions leading to a refinement of the
program derived so far.

The idea is examplified by Difkstra’s guarded command language. A specification is expressed., by
predicate calculus, as a precondition P and a postcondition @ of the program S: {P} S{Q}. The
bottleneck problem of finding invariants (a kind of intermediate conditions) is discussed in greater detail.

The bigger part of this book is devoted to practicing this method by examples. Programming
problems presented and handled are searching and sorting by different methods, manipulation and
retrieval operations on arrays, and others.

This book is organized in a very didactic way: It is suitable for university teachers to prepare an
introductory course to computer science as well as for students to use it in a private study of this
subject. Many exercises are helpful. K. Bothe

