
VOLUME 83, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 25 OCTOBER 1999

3370
Large Mass Hierarchy from a Small Extra Dimension

Lisa Randall
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08543

and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Raman Sundrum
Department of Physics, Boston University, Boston, Massachusetts 02215

(Received 10 May 1999)

We propose a new higher-dimensional mechanism for solving the hierarchy problem. The weak scale
is generated from the Planck scale through an exponential hierarchy. However, this exponential arises
not from gauge interactions but from the background metric (which is a slice of AdS5 spacetime). We
demonstrate a simple explicit example of this mechanism with two 3-branes, one of which contains the
standard model fields. The phenomenology of these models is new and dramatic. None of the current
constraints on theories with very large extra dimensions apply.

PACS numbers: 11.10.Kk, 04.50.+h, 12.60.– i
If spacetime is fundamentally higher dimensional
with 4 1 n spacetime dimensions, then the effective
four-dimensional (reduced) Planck scale, MPl � 2 3

1018 GeV, is determined by the fundamental �4 1 n�-
dimensional Planck scale, M, and the geometry of the
extra dimensions. In the simplest cases, where the
higher-dimensional spacetime is approximately a product
of a four-dimensional spacetime with a n-dimensional
compact space,

M2
Pl � Mn12Vn , (1)

where Vn is the volume of the compact space. Recently,
it has been proposed that the large hierarchy between the
weak scale and the fundamental scale of gravity can be
eliminated by taking the compact space to be very large [1].
The fact that we do not see experimental signs of the extra
dimensions despite the fact that the compactification scale,
mc � 1�V 1�n

n , would have to be much smaller than the
weak scale, implies that the SM particles and forces with
the exception of gravity are confined to a four-dimensional
subspace within the �4 1 n�-dimensional spacetime, re-
ferred to as a “3-brane.” While this scenario does elimi-
nate the hierarchy between the weak scale y and the Planck
scale MPl, it introduces a new hierarchy, namely, that be-
tween mc and y. In light of this, it is worthwhile to explore
alternatives.

Here, we will present a distinct higher-dimensional sce-
nario which provides an alternative approach to gener-
ating the hierarchy. We propose that the metric is not
factorizable, but rather the four-dimensional metric is
multiplied by a “warp” factor which is a rapidly changing
function of an additional dimension. The dramatic conse-
quences for the hierarchy problem that we identify in this
Letter follow from the particular nonfactorizable metric,

ds2 � e22krcfhmndxmdxn 1 r2
c df2, (2)

where k is a scale of the order of the Planck scale, xm are
coordinates for the familiar four dimensions, while 0 #
0031-9007�99�83(17)�3370(4)$15.00
f # p is the coordinate for an extra dimension, which is
a finite interval whose size is set by rc. We will show that
this metric is a solution to Einstein’s equations in a simple
setup with two 3-branes and appropriate cosmological
terms. In this space, four-dimensional mass scales are
related to five-dimensional input mass parameters and
the warp factor, e22krcf. To generate a large hierarchy
does not require extremely large rc. This is because
the source of the hierarchy is an exponential function of
the compactification radius. The small exponential factor
above is the source of the large hierarchy between the
observed Planck and weak scales.

Although designed to address the hierarchy problem by
exploiting an additional dimension, this solution is quite
distinct from that studied in Refs. [1–3]: (i) The hier-
archy between the fundamental five-dimensional Planck
scale and the compactification scale mc � 1�rc is only
of order 10, as opposed to �MPl�TeV�2�n. (ii) There
is one additional dimension, as opposed to n $ 2. The
experimentally distinctive consequences are as follows:
(i) There are no light Kaluza-Klein (KK) modes. The ex-
citation scale is of the order of a TeV. However, as with
the scenario of Ref. [1], string�M-theoretic excitations are
also expected to appear at the TeV scale. (ii) The coupling
of an individual KK excitation to matter or to other gravi-
tational modes is set by the weak, not the Planck scale.
The KK modes are not invisible; they should be observ-
able at high energy colliders as spin-2 resonances that can
be reconstructed from their decay products.

The setup.—We work on the space S1�Z2; that is, we
take periodicity in f, the angular coordinate for the fifth
dimension, and identify �x, f� with �x, 2f�, though we
use the range of f 2p to p . The 3-branes, extending
in the xm directions, are located at the orbifold fixed
points f � 0, p . The 3-branes can support �3 1 1�-
dimensional field theories. Both couple to the purely
four-dimensional components of the bulk metric:
© 1999 The American Physical Society
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gvis
mn�xm� � Gmn�xm, f � p� ,

ghid
mn �xm� � Gmn�xm, f � 0� ,

(3)

where GMN , M, N � m, f, is the five-dimensional metric.
This setup is similar to the scenario of Ref. [1], but

we take into account the effect of the branes on the
bulk gravitational metric and find a new solution to the
hierarchy problem. As we will show, this requires nothing
beyond the existence of the 3-branes in five dimensions
and their compatibility with four-dimensional Poincaré
invariance.

The classical action is
S � Sgravity 1 Svis 1 Shid, Sgravity �
Z

d4x
Z p

2p
df

p
2G �2L 1 2M3R� ,

Svis �
Z

d4x
p

2gvis �Lvis 2 Vvis�, Shid �
Z

d4x
p

2ghid �Lhid 2 Vhid� .

(4)

Note that from each 3-brane Lagrangian we have separated out a constant “vacuum energy” which acts as a gravitational
source even in the absence of particle excitations. Other details of the 3-brane Lagrangian are not important (see
Ref. [6]).

Classical solution.—In this section we solve the five-dimensional Einstein’s equations for the above action:

p
2G

µ
RMN 2

1
2

GMNR

∂
� 2

1
4M3 �L

p
2G GMN 1 Vvis

p
2gvis gvis

mnd
m
Mdn

Nd�f 2 p�

1 Vhid
p

2ghid ghid
mn d

m
Mdn

Nd�f�	 . (5)
We assume there exists a solution that respects four-
dimensional Poincaré invariance in the xm directions. A
five-dimensional metric satisfying this ansatz takes the
form

ds2 � e22s�f�hmndxmdxn 1 r2
c df2. (6)

The coefficient, rc, is independent of f, rc being the con-
stant of proportionality so that rc is the “compactification
radius” of the extra dimensional circle prior to orbifolding.

With this ansatz, the Einstein’s equations following
from Eq. (5) reduce to

6s02

r2
c

�
2L

4M3 , (7)

3s00

r2
c

�
Vhid

4M3rc
d�f� 1

Vvis

4M3rc
d�f 2 p� . (8)

The solution to Eq. (7), consistent with the orbifold
symmetry, is

s � rcjfj

s
2L

24M3 , (9)

so we find L , 0. Note that the spacetime in between
the two 3-branes is simply a slice of an AdS5 geometry.
(Note, this makes our bulk gravitational dynamics com-
patible with a supersymmetric extension.)

Recall that in computing derivatives we are to consider
the metric a periodic function in f. Equation (9), valid
for 2p # f # p , then implies

s00 � 2rc

s
2L

24M3 �d�f� 2 d�f 2 p�	 . (10)

From this, we see that we obtain a solution to Eq. (8) only
if Vhid, Vvis, L are related in terms of a single scale k:
Vhid � 2Vvis � 24M3k, L � 224M3k2. (11)

These relations are necessary for four-dimensional
Poincaré invariance. Note that these relations arise in the
five-dimensional effective theory of the Horava-Witten
scenario [4] if one were to interpret the expectation
values of the background three-form field (but with
frozen Calabi-Yau moduli) as cosmological terms in
the effective five-dimensional theory after Calabi-Yau
compactification [5]. We will assume that k , M so that
we trust our solution.

Our solution for the bulk metric is then

ds2 � e22krcjfjhmndxmdxn 1 r2
c df2. (12)

The compactification radius rc is effectively an arbitrary
integration constant for this solution.

Physical implications.—We can extract the physical
implications with a four-dimensional effective field theory
description. In this section, we derive the parameters of
this low-energy theory, in terms of the five-dimensional
scales, M, k, and rc.

The first step is to identify the massless gravitational
fluctuations about our classical solution [Eq. (12)]. They
are the zero modes of our classical solution, and take the
form

ds2 � e22kT �x�jfj�hmn 1 hmn�x�	dxmdxn 1 T2�x�df2.

(13)

Here, hmn represents tensor fluctuations about Minkowski
space and is the physical graviton of the four-dimensional
effective theory (and is the massless mode in the Kaluza-
Klein decomposition of Gmn). Note that this metric is
locally the same as our “vacuum” solution. The compact-
ification radius, rc, is the vacuum expectation value of the
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modulus field, T �x�. As with many higher dimensional
theories, it will be critical that the T modulus is stabi-
lized with a mass of at least 1024 eV. This problem is
not yet solved (see Refs. [7,8]); we assume we can re-
place T with rc. In compactifying extra dimensions, one
frequently encounters vector zero modes from Amdxmdf

fluctuations of the metric (that is the original Kaluza-Klein
idea), corresponding to the continuous isometries of the
higher dimensions, but in the present case there are no
such isometries in the presence of the 3-branes. So all
such off-diagonal fluctuations of the metric are massive
and excluded from the low-energy effective theory.

The four-dimensional effective theory now follows by
substituting Eq. (13) into the original action [Eq. (4)].
We focus on the curvature term from which we can derive
the scale of gravitational interactions:

Seff .
Z

d4x
Z p

2p
df 2M3rce22krc jfj

p
2g R , (14)

where R denotes the four-dimensional Ricci scalar made
out of gmn�x�, in contrast to the five-dimensional Ricci
scalar, R, made out of GMN �x, f�. We can explicitly
perform the f integral to obtain a four-dimensional
action. From this, we derive

M2
Pl � M3rc

Z p

2p
df e22krcjfj �

M3

k
�1 2 e22krcp 	 .

(15)

This is an important result. It tells us that MPl depends
only weakly on rc in the large krc limit. Although the
exponential has very little effect in determining the Planck
scale, we will now see that it plays a crucial role in the
determination of the visible sector masses.

From Eq. (3) we see that ghid � gmn . This is not the
case for the visible sector fields; by Eq. (3), we have
gvis

mn � e22krcpgmn . By properly normalizing the fields
we can determine the physical masses. Consider, for
example, a fundamental Higgs field,

Svis .
Z

d4x
p

2gvis

3 �gmn
vis DmHyDnH 2 l�jHj2 2 y2

0�2� , (16)

which contains one mass parameter y0. Substituting
Eq. (3) into this action yields

Svis .
Z

d4x
p

2g e24krcp

3 �gmne2krcpDmHyDnH 2 l�jHj2 2 y2
0�2� ,

(17)

After wave-function renormalization, H ! ekrcpH, we
obtain

Seff .
Z

d4x
p

2g

3 �gmnDmHyDnH 2 l�jHj2 2 e22krcpy2
0�2� .

(18)
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A remarkable thing has happened. We see that the
physical mass scales are set by a symmetry-breaking
scale,

y � e2krcpy0 . (19)

This result is completely general: any mass parameter
m0 on the visible 3-brane in the fundamental higher-
dimensional theory will correspond to a physical mass,

m � e2krcpm0 , (20)

when measured with the metric gmn , which is the met-
ric that appears in the effective Einstein action, since all
operators get rescaled according to their four-dimensional
conformal weight. If ekrcp is of order 1015, this mecha-
nism produces TeV physical mass scales from funda-
mental mass parameters not far from the Planck scale,
1019 GeV. Because this geometric factor is an expo-
nential, we clearly do not require very large hierarchies
among the fundamental parameters, y0, k, M, and mc �
1�rc; in fact, we require only krc 
 10.

We now study the gravitational modes. This gives
rise to a rich and very distinctive phenomenology. To
determine the parameters of the gravitational modes in
detail requires an explicit Kaluza-Klein decomposition.
We will do this in Ref. [9]. The result is that the masses
and couplings of the Kaluza-Klein modes are determined
by the TeV scale. This result can be readily understood.

Until this point, we have viewed M 
 MPl as the
fundamental scale, and the TeV scale as a derived scale as
a consequence of the exponential factor appearing in the
metric. However, one could equally well have regarded
the TeV scale as fundamental, and the Planck scale of
1019 GeV as the derived scale. That is, the ratio is the
physical dimensionless quantity. From this viewpoint,
which is the one naturally taken by a four-dimensional
observer residing on the visible brane, the large Planck
scale (the weakness of gravity) arises because of the
small overlap of the graviton wave function in the fifth
dimension (which is the warp factor) with our brane. In
fact, this is the only small number produced. All other
scales are set by the TeV scale.

Technically, this change in viewpoint is established
by the change of coordinates, xm ! ekrcpxm. In this
case, the warp factor at f � p is unity, whereas that
at f � 0 is e2krc p. In this language, since there is no
rescaling of the “y” parameter in the Higgs potential
because the Higgs is already canonically normalized, the
scale y should take its physical value. Because we are
assuming all fundamental mass parameters are of the same
order, all these parameters are also of order TeV. (Note
that the relation between the mass parameters in the new
coordinates and the old mass parameters is due to the
spacetime coordinate rescaling.)

This result contrasts sharply with the scenario of large
extra dimensions for solving the hierarchy problem with a
product structure for the full spacetime, where the Kaluza-
Klein splittings are much smaller than the weak scale,
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possibly smaller than an eV. The dangerous astrophysical
and cosmological effects of very light Kaluza-Klein [3]
states are absent in our model.

The phenomenological implications of this scenario
for future collider searches are very distinctive. For
a product spacetime, each excited state couples with
gravitational strength, and the key to observing these
states in accelerator experiments is the large multiplicity
of states due to their fine splittings. In our model,
with roughly weak scale splittings a relatively small
number of excitations will be kinematically accessible at
accelerators. However, their couplings to matter are set
by the weak scale rather than the Planck scale. Instead
of gravitational strength couplings �energy�MPl, each
excited state coupling is of the order of energy�TeV,
and therefore each can be individually detected. These
resonances can be detected via their decay products. This
should allow detailed reconstruction, permitting mass and
spin determination of these gravitational modes.

From the above discussion it should be clear that, at
energies somewhat larger than the weak scale, the excited
gravitons are strongly coupled. This regime should likely
open up the production of string�M-theoretic excitations
which lie outside the domain of even our starting five-
dimensional field theory. This means that, although the
fundamental scales of the higher dimensional theory are of
order MPl, the apparent scale where the theory becomes
strongly coupled and the string�M excitations appear is
of the order of the weak scale according to a four-
dimensional observer. This is an important result for
the consistency of our scenario beyond tree level. As
with Ref. [1], the TeV-scale strings will cut off large
renormalization of the weak scale.

Conclusions.—In the 3-brane scenario, where extra-
dimensional translational symmetry is necessarily broken,
nontrivial warp factors naturally arise upon solving Ein-
stein’s equations. The Kaluza-Klein reduction is consid-
erably more subtle than in product spacetimes, as we will
detail in a following paper [9]. This has important phe-
nomenological and theoretical implications.

In this Letter, we focused on a potential phenomenologi-
cal implication of this scenario, namely, an exponential
generation of the hierarchy. Remarkably, the four-
dimensional masses on the visible brane depend on the
background metric in such a way that their physical values
differ significantly from the input mass parameters, even
without invoking a large compactification volume. This
is a potential resolution to the hierarchy problem akin in
spirit to the ideas of strongly coupled gauge theories which
generate the low scale through an exponential times a fun-
damental high-energy scale. As an aside, we mention that
the exponential we exploited could generate other scales,
such as the low-energy supersymmetry breaking scale.
However, it is important to the viability of our mechanism
that it is possible to stabilize the compactification radius
roughly 2 orders of magnitude larger than the fundamental
five-dimensional Planck length. Issues such as flavor
violation and proton decay, in the face of the low scale of
new physics [10], also remain important challenges.

Fortunately, this solution to the hierarchy problem is
subject to experimental verification. The phenomenology
is quite distinct from the scenario of large radius compact-
ification. The gravitational resonances are of the order
of a TeV, and couple with TeV-suppressed, rather than
Planck-suppressed, strength. Furthermore, there are no
experimental bounds pushing this scale very high. Should
this solution prove correct, there is a rich spectroscopy
awaiting us at the LHC.
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