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Conventional wisdom states that Newton’s force law implies only four noncompact dimensions. W
demonstrate that this is not necessarily true in the presence of a nonfactorizable background geome
The specific example we study is a single 3-brane embedded in five dimensions. We show that ev
without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and general relativistic gravit
is reproduced to more than adequate precision.
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There exists evidence that convinces us that we live
four noncompact dimensions. Certainly standard mod
matter cannot propagate a large distance in extra dim
sions without conflict with observations. As has recent
been emphasized, this can be avoided if the stand
model is confined to a�3 1 1�-dimensional subspace, or
“3-brane,” in the higher dimensions [1,2]. However, thi
solution will not work for gravity, which necessarily propa
gates in all dimensions as it is the dynamics of spacetim
itself. The experimental success of Newton’s1�r2 law and
general relativity then seems to imply precisely four non
compact dimensions. Additional dimensions are noneth
less acceptable, but they should be compact and sma
than a millimeter so that they would not have been resolv
in our shortest distance tests of gravity. One further pie
of evidence is that if there aren extra compact dimensions,
the Planck scale is related to the higher-dimensional sc
of gravity, M, through the relationM2

Pl � M2nVn, where
Vn is the extra-dimensional volume.

The point of this Letter is to argue that none of th
statements about gravity in the previous paragraph is n
essarily true. The previous conclusions rely on a factori
able geometry, namely, the metric of the four familia
dimensions is independent of position in the extra d
mensions. The story can change significantly when th
assumption is violated. Perhaps the most dramatic con
quence is that we can live in4 1 n noncompact dimen-
sions, in perfect compatibility with experimental gravity
We will give an example wheren � 1. We will show
that MPl is determined by the higher-dimensional curva
ture rather than the size of the extra dimension. This cu
vature is not in conflict with four-dimensional Poincaré
invariance. Earlier work on noncompact extra dimensio
focused on trapping matter [3] or on finite-volume dimen
sions [4].

The reason the above statements can be true is tha
curved background can support a “bound state” of th
higher-dimensional graviton, which is localized in the extr
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dimensions. This can be understood as follows. Sm
gravitational fluctutations satisfy a wave equation of th
form

�≠m≠m 2 djd
j 1 V �zj��ĥ�xm, zj� � 0 , (1)

with a nontrivial “potential,”V , arising from the curvature.
(We have dropped Lorentz indices on the fluctuations h
for simplicity.) General fluctuations can be written a
superpositions of eigenmodes,ĥ � eip?xĉ�z�, where

�2djd
j 1 V �z��ĉ�z� � 2m2ĉ�z� , (2)

and p2 � m2. This implements the Kaluza-Klein (KK)
reduction of the higher-dimensional gravitational fluctu
tions in terms of four-dimensional KK states, with the ma
squaredm2 given by the eigenvalues of Eq. (2), and wit
fixed wave function in the extra dimension,ĉ�z�. It is
useful to note that Eq. (2) takes the form of an analog no
relativistic quantum mechanics problem.

If there is a zero mode (which is guaranteed if the bac
ground preserves four-dimensional Poincaré invarian
that is also a normalizable state in the spectrum of Eq. (
it corresponds to a four-dimensional graviton. In additio
there exists a tower of higher KK modes. If there we
a gap, as is conventional in product space compactifi
tions, one reproduces four-dimensional gravity up to t
scale determined by the gap. Instead, in our example
cause of a nontrivial potential we find a very interestin
situation where there is a single bound state of the ana
quantum mechanics problem corresponding to a mass
four-dimensional graviton, and whose extra-dimension
wave function is centered on a 3-brane to which the st
dard model is confined. There is also a continuum K
spectrum with no gap. We nonetheless reproduce Ne
tonian gravity and other four-dimensional general rel
tivistic predictions at low energy and long distance. Th
example we give will be an effective four-dimensiona
theory in five noncompact dimensions.
© 1999 The American Physical Society
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The setup for our theory is a single 3-brane with a posi-
tive tension, embedded in a five-dimensional bulk space-
time. In order to carefully quantize the system and treat
the non-normalizable modes which will appear in the
Kaluza-Klein reduction, we choose to first work in a finite
volume by introducing another brane at a distance prc

from the brane of interest, and taking the branes to be the
boundaries of a finite fifth dimension. We will eventu-
ally take this second brane to infinity, thereby removing it
from the physical setup. The associated action is

S � Sgravity 1 Sbrane 1 Sbrane0 ,

Sgravity �
Z

d4x
Z

dy
p

2G �2L 1 2M3R� , (3)

Sbrane �
Z

d4x
p

2gbrane �Vbrane 1 Lbrane� ,

where R is the five-dimensional Ricci scalar made out of
the five-dimensional metric, GMN . The coupling to the
branes and their fields and the related orbifold boundary
conditions are described in Ref. [2]. (The new coordinate
y is rcf in the coordinates of Ref. [2].)

The solution to Einstein’s equations was derived in
Ref. [2] and we quote it here:

ds2 � e22kj yjhmndxmdxn 1 dy2, (4)

where 0 # y # prc is the extra-dimensional coordinate
and rc is essentially a compactification “ radius.” This is
just a slice of the symmetric space, AdS5. The solution
holds only when the boundary and bulk cosmological
terms are related by

Vbrane � 2Vbrane0 � 24M3k, L � 224M3k2, (5)

which we hereby take to be the case. Notice that in the
solution here, we have reversed the roles of the “visible”
and “hidden” branes relative to Ref. [2]. Whereas in the
solution to the hierarchy problem proposed in Ref. [2] the
massless graviton wave function is biggest on the hidden
brane, in the scenario considered here it is critical that the
graviton is “bound” to the visible brane.

We now remind the reader of the derivation of the
four-dimensional effective Planck scale, MPl. The four-
dimensional graviton zero mode follows from our solution,
Eq. (4), by replacing the Minkowski metric by a four-
dimensional metric, gmn�x�. It is described by an effective
action following from substitution into Eq. (3),

Seff .
Z

d4x
Z prc

0
dy 2M3rce22kj yjR , (6)

where R denotes the four-dimensional Ricci scalar made
out of gmn�x�, in contrast to the five-dimensional Ricci
scalar, R, made out of GMN �x, y�. Because the effective
field is four-dimensional, we can explicitly perform the y
integral to obtain a purely four-dimensional action. From
this we derive

M2
Pl � 2M3

Z prc

0
dy e22kj yj �

M3

k
�1 2 e22krcp� . (7)

We see that there is a well-defined value for MPl, even
in the rc ! ` limit. This is a clue that one can get a
sensible effective four-dimensional theory, with the usual
Newtonian force law, even in the infinite radius limit, and
provides a sharp contrast to the product-space expectation
that M2

Pl � M3rcp .
Clearly, there is no problem with taking the rc ! `

limit of the background metric given above. This will re-
move the “ regulator” brane from the setup. However, we
still need to determine whether the spectrum of general
linearized fluctuations GMN � e22kj yjhmn 1 hmn�x, y� is
consistent with four-dimensional experimental gravity.
This requires an understanding of all modes that appear
in the assumed four-dimensional effective theory. We
therefore perform a Kaluza-Klein reduction down to four
dimensions. To do this, we need to do a separation of
variables; we write h�x, y� � c� y�eip?x , where p2 � m2

and m2 permits a solution to the linearized equation of
motion for tensor fluctuations following from Eq. (3)
expanded about Eq. (4):∑

2m2

2
e2kj yj 2

1
2

≠2
y 2 2kd� y� 1 2k2

∏
c� y� � 0 ,

(8)

where our boundary conditions tell us to consider only
even functions of y, describing the infinite half-line. The
effect of the regulator brane will be considered later; here it
has been taken to infinity. The mn indices are the same in
all terms if we work in the gauge where ≠mhmn � h

m
m � 0,

so they are omitted. Here m is the mass of the KK
excitation.

It is more convenient to put the above equation into
the form of an analog nonrelativistic quantum mechanics
problem by making a change of variables, z � sgn� y� 3

�ekj yj 2 1��k, ĉ�z� � c� y�ekj yj�2, ĥ�x, z� � h�x, y� 3

ekj yj�2. Equation (8) then reads∑
2

1
2

≠2
z 1 V �z�

∏
ĉ�z� � m2ĉ , (9)

where

V �z� �
15k2

8�kjzj 1 1�2 2
3k
2

d�z� . (10)

Much can be understood from the general shape of this
analog nonrelativistic potential.

First, the d function supports a single normalizable
bound state mode; the remaining eigenstates are contin-
uum modes. Furthermore, since the potential falls off to
zero as jzj ! `, there is no gap, and the continuum modes
asymptote to plane waves. These plane waves decay sub-
asymptotically, corresponding to their tunneling through
4691
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the potential to get to z � 0. By tuning of the cosmo-
logical terms we have ensured that the bound state mode
corresponds to a massless four-dimensional graviton, m �
0. In the four-dimensional description following Kaluza-
Klein reduction, we have tuned the effective cosmological
constant to zero. The continuum KK states have all pos-
sible m2 . 0.

The precise continuum modes are given in terms of
Bessel functions and are a linear combination of �jzj 1

1�k�1�2Y2���m�jzj 1 1�k���� and �jzj 1 1�k�1�2J2���m�jzj 1

1�k����. The zero mode wave function follows (after chang-
ing variables) from Eq. (4), ĉ0�z� � k21�kjzj 1 1�23�2.
[Though the zero mode is not a Bessel function, it is the
limit of m2�jzj 1 1�1�2Y2���m�jzj 1 1���� when m ! 0.] We
can better understand the KK modes by studying the small
and large argument limits of the Bessel functions. For
small m

k �jzj 1 1� we have

J2���m�jzj 1 1�k���� 	
m2�jzj 1 1�k�2

8
,

Y2���m�jzj 1 1�k���� 	 2
4

pm2�jzj 1 1�k�2 2
1
p

.

(11)

Therefore to satisfy the boundary condition implied by
the d-function potential on the brane at z � 0, for small
m (relevant at long distances) we must choose the linear
combination,

ĉm 	 Nm�jzj 1 1�k�1�2�Y2���m�jzj 1 1�k����

1
4k2

pm2 J2���m�jzj 1 1�k����� .

(12)
Here Nm is a normalization constant. For large mz,

p
z J2�mz� 	

s
2

2
pm

cos

µ
mz 2

5
4

p

∂
,

p
z Y2�mz� 	

s
2

pm
sin

µ
mz 2

5
4

p

∂
.

(13)

Let us now consider what happens when we reintroduce the
regulator brane at yc � prc, that is, zc � �ekprc 2 1��k.
It simply corresponds to a new boundary condition at zc,

≠zĉ�zc� � 2
3k2

2�kzc 1 1�
ĉ�zc� . (14)

It is easy to check that our zero mode satisfies this new
condition. The KK excitations are now quantized by this
condition, however. For large zc they are all in the plane-
wave asymptotic regime of Eq. (13) when they satisfy the
new condition. Therefore their masses are approximately
quantized in units of 1�zc. Furthermore, their normaliza-
tion constants are predominantly those of plane waves, in
particular, Nm 	 pm3�2��4k2pzc�.

Having obtained the large but finite rc asymptotics we
can determine the proper measure for sums over the con-
4692
tinuum states in the rc ! ` limit. Because these asymp-
totics were dominated by plane-wave behavior, this mea-
sure is simply dm�k after dropping the 1�pzc factor in
Nm to go to a continuum normalization. We have also
demonstrated the claim made in Ref. [2] that when zc

is kept large but finite, the KK states are quantized in
units of 1�zc, which in that paper corresponded to the
TeV scale. Also note that the normalized KK wave func-
tions at the brane at zc are all of order 1�pzc since they
are all plane waves at a maximum or minimum according
to Eq. (14), which is kzc times larger than ĉ0�zc�. This
proves the claim of Ref. [2] that the KK states couple 1015

more strongly to matter on the brane at zc than does the
massless graviton.

By taking rc ! ` we have obtained a semi-infinite
extra dimension. It is trivial to extend this to a fully
infinite extra dimension by simply allowing even and odd
functions of z rather than the restriction to purely even
functions demanded by the orbifold conditions. From
now on we will consider this to be the case.

We can now compute the effective nonrelativistic
gravitational potential between two particles of mass m1
and m2 on our brane at z � 0, that is, the static potential
generated by exchange of the zero-mode and continuum
Kaluza-Klein mode propagators. It is

V �r� 	 GN
m1m2

r
1

Z `

0

dm
k

GN
m1m2e2mr

r
m
k

. (15)

Note there is a Yukawa exponential suppression in the
massive Green’s functions for m . 1�r , and the extra
power of m�k arises from the suppression of continuum
wave functions at z � 0 following from Eq. (11), due to
the analog tunneling effect discussed above. Therefore,
the potential behaves as

V �r� � GN
m1m2

r

µ
1 1

1
r2k2

∂
. (16)

This is why our theory produces an effective four-
dimensional theory of gravity. The leading term due to
the bound state mode is the usual Newtonian potential; the
KK modes generate an extremely suppressed correction
term, for k of order the fundamental Planck scale and
r of the size tested with gravity. Furthermore, since
our propagators are relativistic in general, going beyond
the nonrelativistic approximation we find all the proper
relativistic corrections, again with negligible corrections
from the continuum modes.

Gravitational radiation is described by “cutting” our
relativistic propagators. From the small m limit, we also
learn that the production of the continuum modes from the
brane at z � 0 is suppressed by �dm�k� �m�k� due to the
continuum wave function suppression there. This is very
important, because it means the amplitude to produce the
continuum modes in low-energy processes on the brane
is extremely small. Were this not the case, we would be
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continuously losing energy to the additional dimension.
Because of this suppression factor, the probability of
producing KK modes is suppressed by �p�k�2 relative to
the zero mode, where p is the momentum of a process.
For k of order the Planck scale, this is extraordinarily
small for any process we presently observe, or are ever
likely to observe.

So far, we have shown that a scenario with an infinite
fifth dimension in the presence of a brane can generate a
theory of gravity which mimics purely four-dimensional
gravity, both with respect to the classical gravitational
potential and with respect to gravitational radiation.
However, we have yet to consider the gravitational self-
couplings. This is important, because these couplings
have been tested at the 1023 level of precision. However,
the constraint is really on the graviton coupling to matter
fields with gravitational strength. Because the KK modes
have p�k-suppressed coupling to matter on the brane,
relative to the zero mode, they are negligible. The zero
mode exchanges and self-couplings are just those of a
four-dimensional general relativistic dynamics described
by Eq. (6).

However, it is important to verify that the energy loss
induced by gravitational self-interactions is also insignifi-
cant, that is, the coupling of the zero mode to KK modes
which do not ultimately couple back to matter on the
brane. By expanding the gravitation action, it can be seen
that for any finite energy, the graviton self-coupling gets
large at an energy-dependent value of the coordinate z.
However, fluctuations originating on the brane in low-
energy processes have only a small probability to get to
this large z. Graviton emission and the associated miss-
ing energy can be bounded within the framework of our
low-energy effective theory and can be shown to be small.

To conclude, we have found that we can consistently
exist with an infinite fifth dimension, without violating
known tests of gravity. The scenario consists of a single
3-brane in (a piece of) AdS5 in the bulk and an appro-
priately tuned tension on the brane. The need for this
delicate adjustment is the equivalent of the cosmological
constant problem in this context and is taken as a given
and not solved.

In this setup, we have found that an inevitable conse-
quence is a bound state graviton mode, whose shape is
determined by the brane tension and bulk cosmological
constant. There are no very large or small numbers as-
sumed for the different mass scales in the problem, so the
four-dimensional Planck scale is comparable to the fun-
damental mass scale of the higher-dimensional theory. In
addition to the bound state mode, there is a continuum
of Kaluza-Klein modes. These have very weak coupling
to low-energy states on the brane, but are essential to the
consistency of the full theory of gravity and would couple
strongly to Planck-energy brane processes.

Notice that one interpretation of our result is as a
solution to the moduli problem, for the particular modulus
determining the distance between two branes. It says
that the usual disasterous possibility, namely, that the
modulus runs away to infinity, is perfectly acceptable.
Furthermore, in the rc ! ` limit, the modulus is not
coupled to matter on the brane, and the need for a modulus
mass is eliminated. It is an interesting question whether
one can eliminate further moduli by not compactifying,
and whether geometric compactification from a higher-
dimensional setup is essential.

Our effective theory is clearly very different from
truly compactified theories. The low-dimensional Planck
scale and all physical parameters of the effective four-
dimensional theory are independent of rc, so long as it is
much greater than 1�k. At sufficiently low energies, the
probability of losing energy to the KK states is very small.
From these perspectives, the theory provides a well-
defined alternative to geometric compactification. Many
interesting questions remain to be addressed; perhaps this
new setup can help resolve some unanswered questions in
conventional and quantum gravity and cosmology.
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