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Abstract

We discuss causality properties of asymmetrically warped space-times and argue

that such scenarios may allow for timelike curves which can be closed via paths in the

extra-dimensional bulk. We find a metric where the null, weak and dominant energy

conditions are violated in the bulk, but satisfied on the brane. Such scenarios are in-

teresting, since in principle gravitons or gauge-singlet (“sterile”) fermions propagating

in the extra dimension may be manipulated in a way to test the chronology protection

conjecture experimentally.

1 Introduction

The physics of time travel has fascinated science fiction aficionados and scientists alike. In

particular, the seminal papers of Morris, Thorne and Yurtserver [1] on traversable wormholes

initiated a considerable research library of serious attempts to transmit information to the

past, i.e. to generate closed timelike curves (CTCs). Several space-time settings, mostly

contrived or oversimplified in some way, have been discussed in the literature. These include

Gödel’s rotating universe [2], van Stockum’s and Tipler’s rotating cylinders [3, 4], Gott’s

pair of moving cosmic strings [5], Wheeler’s space-time foam [6], regions inside the horizon of

Kerr- and Kerr-Newman geometries [7], Alcubierre’s warp drive [8], and Ori’s vacuum torus

[9]. Typically these space-times suffer from obstacles of either unphysically fast rotation

to tip the Lorentz cones, or the requirement of exotic matter with negative energy density

which violates the so-named null, weak, strong and dominant energy conditions. Several

analyses indicate possible instabilities of such space-times to classical perturbations and/or

quantum fluctuations [10]. This situation has inspired Stephen Hawking’s “chronology
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protection conjecture” [11], which states that the ultimate laws of physics prevent the

appearance of CTCs. Hawking’s “chronology horizon” [11] is a stable, special type of Cauchy

horizon, which separates space-time regions where CTCs occur from space-time regions

where chronology is protected. Although apparently plausible situations seem naively to

violate causality, quantum corrections to the stress-energy tensor diverge at the Cauchy

horizon. It has been argued that the backreaction to the metric would destroy the potential

time-machine on the horizon, leaving a protected region.

Whether Hawking’s chronology protection conjecture holds beyond the semi-classical

treatment, so that chronology is truly protected, is still not known. Very probably a better

understanding of quantum gravity will be necessary to resolve this issue in the future. In

the meantime, a study of physics under the unusual conditions surrounding the chronology

horizon may provide more insight into chronology protection. One might glimpse some fas-

cinating new physics proposed to avoid the obvious paradoxes associated with time travel.

These paradoxes include the Grandfather and Bootstrap paradoxes. In the Grandfather

paradox, one modifies the initial conditions that lead to one’s own existence; in the Boot-

strap pardox, an effect is its own cause. If the chronology protection conjecture is false,

even more wonderful discoveries may await the serious researcher. Proposals include non-

Hausdorff manifold geometry [12], where the same event has multiple futures or pasts,

and the many-world interpretation of quantum mechanics, with switching between parallel

histories [13].

The advent of theories with large extra dimensions in string theory has provided yet new

room for chronology violations (see e.g. [14]). Extra dimensions were originally motivated by

the consistency of string theory. More recently, large (or even infinite) extra dimensions have

been discussed as a possible new way to understand the hierarchy problem (Mweak ≪ MP )

[15, 16] and to keep neutrino masses small [17]. In many extra-dimension models, ordinary

Standard Model (SM) fields are confined on a brane (our three-surface), while gravitons and

SM singlets are allowed to propagate also in the extra-dimensional bulk. A generic feature

of such space-times seems to be the existence of signals, mediated by the graviton or SM

singlets, taking “shortcuts” through the extra dimension. As viewed from our brane world,

these shortcuts appear as superluminal communication [18]. Such apparent superluminal

communication, via graviton shortcuts in the bulk [19], or earlier, via wormholes [20], has

been proposed as a possible solution to the cosmological horizon problem (obviating one

of the needs for an inflationary epoch in the early universe). While there seems to be

agreement in the literature that extra dimensional space-times admit bulk shortcuts under
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rather generic conditions, whether these shortcuts solve the horizon problem depends on

the details of the specific extra-dimensional model [21, 22, 23, 24].

In this paper we discuss causality violations arising in asymmetrically warped brane-

bulk models. As a rule of thumb, once a space-time model admits effective faster-than-light

travel on a background having global Lorentz invariance, then the twin pseudo-paradox of

special relativity is elevated to the time travel paradox [12] whereby a signal may arrive at

the spatial point from which it was emitted at a time before it was emitted!1. This occurs

whether the source of the superluminal signal is wormholes, warp drives, geodesics in extra

dimensions, etc. Thus, we seek a metric (i) describing a globally Lorentz invariant brane,

and (ii) admitting shortcut geodesics through the bulk. We show by construction that it is

not difficult to find such a metric.

2 Causality of asymmetrically warped space-times

In space-times allowing for shortcuts in the extra dimensions, the brane defines a hypersur-

face which in general is not “totally geodesic”, meaning that an on-brane geodesic is not in

general a geodesic in the brane+bulk space-time (and vice versa) [21]. It is thus crucial to

discuss Lorentz invariance on the brane separately from invariance in the brane+bulk, i.e.

to analyze which line element remains invariant under Lorentz transformations. The pos-

sibility that the complete extra-dimensional line element ds2 is invariant can be discarded,

as Lorentz invariance will be broken by compactifying and orbifolding or warping the bulk

(compare the discussion in [26]). Thus Lorentz invariance holds on the brane but not in the

bulk, or it is broken both in the bulk and on brane. In the latter case, Lorentz violation

would be observable experimentally, for example, as bremsstrahlung due to inertial motion

on the brane. The latter case includes space-times where the extrinsic brane curvature

generates the effective superluminality as observed on the brane, somewhat analogous to

light propagating in a curved fiber cable. Examples in the literature are described by the

line elements (17) in [19] and (8) in [27]. Here, we credit the apparently good Lorentz sym-

metry of our world, and pursue the former case where Lorentz invariance is intact on our

brane. Interestingly, bulk shortcuts in this scenario resemble simple examples of wormhole

space-times.

1For a careful discussion of why superluminal travel in a space-time without global Lorentz invariance

does not necessarily lead to CTCs, see, e.g. [25].
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Consider the asymmetrically warped line element with extra dimension “u”

ds2 = dt2 −
∑

i

α2(u) (dxi)2 − du2, (1)

i = 1, 2, 3, with our brane located at the u = 0 submanifold. The warped space-time of (1)

allows shortcut geodesics connecting spacelike-separated events on the brane, if |α(u)| <

|α(0)| for any u 6= 0.

Variants of this warped space-time (1) can be generated by AdS-Schwarzschild or AdS-

Reissner-Nordström black holes in the bulk [28], and have been discussed as solutions to

the cosmological horizon problem [19], and as a possible way around Weinberg’s no-go

theorem for the adjustment of the cosmological constant [28]. Very recently it has been

shown that sterile neutrinos propagating in such a space-time can account for the LSND

neutrino oscillation evidence, without the problems faced by conventional four-dimensional

four-neutrino scenarios [27].

The metric in (1) is in Gaussian normal form with respect to u (i.e., gtu = gxiu =

0), so the induced metric on each hypersurface with constant u is simply given by the

extra-dimensional metric evaluated on the hypersurface. These induced metrics are purely

Minkowskian, albeit with a different constant limiting velocity c(u) = α−1(u) on each

hypersurface 2. This means that a Lorentz symmetry can be defined for each hypersurface,

but each hypersurface’s Lorentz symmetry will not hold on any other hypersurface, as we

now discuss.

It is natural to choose c(u = 0) = 1 such that the induced metric on the brane is given by

ds2
brane = dt2−dx2 (we set x1 ≡ x and will omit the transverse coordinates x2,3 for brevity).

There then follows the usual Lorentz symmetry under the familiar transformations on our

brane:

x′ = γ (x − βt) , t′ = γ (t − βx) , u′ = u = 0, (2)

or equivalently, the inverse transformation

x = γ (x′ + βt′) , t = γ (t′ + βx′) , (3)

with the usual definition γ = (1−β2)−1/2. However, physics at u 6= 0 (in the “bulk”) is not

invariant under this transformation.

2Note that in the limiting case of vanishing α the space-time (1) becomes equivalent to Minkowski

space-time on the brane with all space-time points being identified through the bulk, i.e. an “ubiquitous

wormhole”. As it is well known, that wormhole space-times allow for CTCs, it is not too surprising that

CTCs can be generated also in the case of finite α presented in this paper.
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Figure 1: Closed timelike curve in an asymmetrically warped universe: (i) A signal takes a

spacelike shortcut via a path of constant u = u1 from point O to point B. (ii) A Lorentz

boost transforms B into B′ with negative time coordinate. (iii) A return shortcut at constant

u = u2 closes the timelike curve.

In the following we consider a signal following a particular path as given in Fig. 1. The

signal leaves our brane at the space-time point O = (t = 0, x = 0, u = 0), and propagates

on the hypersurface at u1 for a travel time t with the limiting velocity (α(u1))
−1 ≡ α−1

1 . We

will assume that 0 < α1 < 1, so that the travel speeds in the bulk is superluminal relative

to travel speed on our metric. At time t, the signal may reenter our brane. In the limit

u1 ≪ α−1
1 t, which is always fulfilled for sufficiently large t, the reentry point on our brane

is Bµ ≈ (t, x = α−1
1 t, u = 0). Since the distance to the reentry point Bµ is spacelike (i.e.

outside the brane’s lightcone), it may be transformed to negative time by a boost on our

brane. The boosted point B′µ is obtained by using the transformation (2). The point B′µ

has coordinates

x′ = γ t
(

α−1
1 − β

)

, t′ = γ t
(

1 − βα−1
1

)

. (4)

It is clear that for

0 < α1 < β < 1 (5)

an observer in the boosted frame on our brane sees the signal arrive in time with t′ < 0,

i.e., before it was emitted. This result alone does not imply any conflict with causality. In

particular, it does not necessarily imply that space-time is blessed with CTCs. To close the

timelike curve, one has to show that the time t′ during which the signal traveled backwards in

time, is sufficiently large to allow a return from the space-time point B′µ = (t′, (x = α−1
1 t)′, 0)

to the space-time point of origin, O = O′ = (0, 0, 0). The speed required to close the lightlike
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curve of the signal, as seen by the boosted observer on the brane, is

c′req =
(x = α−1

1 t)′

|t′|
=

1 − βα1

β − α1

, (6)

where the latter expression results from inputting Eq. (2). It is easy to show that the

condition 0 < α1 < β < 1 implies that c′req itself is superluminal. Thus there is no return

path on our brane which leads to a CTC. To generate a CTC the signal has to traverse

another path (say, at constant u2) which has a limiting velocity satisfying c′bulk ≥ c′req in the

boosted frame.

The complete metric in the boosted system is given by the tensor transformation law

g′

αβ =
∂xµ

∂x′α

∂xν

∂x′β
gµν , (7)

where gµν = diag(1,−α2,−1) is the Gauss-normal metric of Eq. (1). Using Eq. (3), the

resulting boosted metric is

g′

µν =











γ2(1 − β2α2) 1
2
γ2β(1 − α2) 0

1

2
γ2β(1 − α2) −γ2(α2 − β2) 0

0 0 −1











. (8)

Notice that only for α2 = 1 is the metric Lorentz invariant. Such is the case on our brane,

but generally not the case on other hypersurfaces, where the limiting velocity as seen by

local inhabitants in the rest frame is α−1(uj) ≡ α−1
j . However, these limiting velocities are

not invariant under Lorentz boosts defined on our brane. Using the general expression for

the metric in Eq. (8), the null line element for this hypersurface is

0 = ds′2 = γ2
{(

1 − β2α2
2

)

dt′2 − β
(

α2
2 − 1

)

dx′dt′ −
(

α2
2 − β2

)

dx′2 − du′2
}

. (9)

There results a quadratic equation for c′bulk, with solutions

c′bulk ≡
dx′

dt′
=

β(1 − α2
2)

2(α2
2 − β2)

±

√

√

√

√

β2(1 − α2
2)

2

4(α2
2 − β2)2

+
1 − β2α2

2

α2
2 − β2

. (10)

We choose α2 > β to maintain the negative sign for the x′ − x′ metric component 3.

Including the ordering 0 < α1 < β < 1 noted previously, we arrive at 0 < α1 < β < α2 < 1.

The CTC is then established if we can find (α1, β, α2) satisfying the condition and satisfying

3To ensure that the signature of the metric g(2) for the t′ − x′ subspace is maintained, it is enough to

require Det(g(2)) < 0. It is easily verified that the choice α2 > β is sufficient to ensure this.
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c′bulk > c′req. This is demontrated as follows. We substitute into (10) the relation α2
2 = β2+ǫ,

with ǫ ≪ 1. The resulting solutions to (10) are

c′bulk+ =
β

γ2ǫ
+

1

β
(1 + β2)

(

1 + γ2ǫ + O(ǫ2)
)

, (11)

c′bulk− = −
1

β
(1 + β2)

(

1 + γ2ǫ + O(ǫ2)
)

. (12)

To lowest order in ǫ, the solution c′bulk− moving along negative x′ exceeds creq if 1

β
(1+β2) >

1−βα1

β−α1

, or equivalently, if α1 < β3; An acceptable set of parameters to close the CTC is thus

0 < α
1

3

1 < β < α2 < 1. It is almost always possible to find such a combination of parameters

for a given warp factor α(u).

It should be stressed that realistic graviton or bulk fermion signals, rather than following

restricted bulk trajectories with constant u as constructed here, will instead propagate on

the path of least action to minimize the travel time. Since the effectively superluminal

velocities in our constructed example produced a CTC, we expect that a truly geodesic

signal will also generate a CTC.

To summarize this section, we have identified a CTC beginning and ending on our brane

and superluminally transiting two parallel paths in an asymmetrically warped bulk.

3 Stress-energy tensor and energy conditions

As a check on the consistency of the picture, we should diagnose the stress-energy tensor

T µν which sources the extra-dimensional metric, for any pathologies. Thus, our task is to

construct the stress-energy tensor

Tµν =
1

8 π GN

Gµν (13)

for the space-time (1). It is straightforward to show that the only nonzero Christoffel

symbols

Γκ
λµ =

gκν

2

(

∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

(14)

for the metric (1) are

Γj
5j = Γj

j5 =
α′

α
, (15)

Γ5
jj = −αα′ , (16)

with α′ = ∂uα. Thus the non-vanishing terms in the Ricci tensor

Rµν = −
∂Γρ

µρ

∂xν
+

∂Γρ
µν

∂xρ
− Γσ

µρΓ
ρ
σν + Γσ

µνΓ
ρ
σρ, (17)
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Figure 2: Elements of the Einstein tensor Gµν , as a function of u, for the warp factor

α(u) = 1/(u2 + c2), with c = 1. While energy conditions are violated in the bulk, they are

conserved on the brane.
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are

Rjj = −(2α′2 + αα′′) (18)

R55 = −3
α′′

α
. (19)

Conseqently, the resulting curvature scalar is

R = gµνRµν = 6





α′′

α
+

(

α′

α

)2


 (20)

and finally, the Einstein tensor is given by

Gµν = Rµν −
1

2
gµνR, (21)

i.e.

G00 = 8 π GN ρ = −3





α′′

α
+

(

α′

α

)2


 , (22)

Gjj = 8 π GN pj =
1

α4
(α′2 + 2αα′′), (23)

G55 = 8 π GN p5 = 3

(

α′

α

)2

. (24)

The null, weak, strong and dominant energy conditions are defined by

NEC : ρ + pj ≥ 0 ∀j; (25)

WEC : ρ ≥ 0 and ∀j, ρ + pj ≥ 0; (26)

SEC : ∀j, ρ + pj ≥ 0 and ρ +
∑

j

pj ≥ 0; (27)

DEC : ρ ≥ 0 and ∀j, pj ∈ [ρ,−ρ]. (28)

It is not difficult to find a functional form for the warp factor α, which conserves some of

the energy conditions, at least on the brane. One such example is α(u) = 1/(u2 + c2). For

this case the elements of the Einstein tensor are shown as a function of u in Fig. 2. The

null, weak and dominant energy conditions are conserved on the brane, while the strong

energy condition is violated on the brane.

4 Discussion and Conclusion

We have demonstrated the existence of closed timelike curves (CTC) for a rather generic

asymmetrically warped metric. In addition, we have found a particular metric yielding

positive energy density on the brane.
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A thorough discussion of whether CTCs in the observable universe are prevented by

stable chronology horizons where the stress-energy tensor diverges (consult the discussion

in [29, 30]), is beyond the scope of this work. We have confined ourselves to the pragmatic

attitude that even if chronology is protected by some mechanism operative near the chronol-

ogy horizon, it remains a highly rewarding effort to study the physics near this horizon.

The CTC we have constructed is particularly interesting in this respect, since it is available

to particles which have previously been hypothesized to propagate in the extra-dimensional

bulk 4. Such particles include the graviton and sterile (gauge singlet) fermions.
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