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 698 W. S. MASSEY [December

 The purpose of this note is to give an explanation of this result which will be accessible to the
 average reader of this MONTHLY. We will actually give two theorems on this subject: the first uses
 purely algebraic techniques, and is based on a famous theorem proved by A. Hurwitz in 1898. The
 second theorem gives a stronger result; it depends on a deep theorem proved by J. F. Adams in
 1958. At the end of the paper we discuss some other results in this area.

 Our notation is standard: Rn denotes the real vector space consisting of n-tuples of real
 numbers,

 x *y =ExiYi

 is the dot product of x = (xl,..., x") and y = (Y1, * * *, Yn), and

 lXI = (X _ X)1/2

 denotes the norm or length of the vector x.

 THEOREM I. Assume n > 3 and a cross product is defined which assigns to any two vectors
 v, w e Rn a vector v X w e Rn such that the following three properties hold:

 (a) v x w is a bilinear function of v and w.
 (b) The vector v X w is perpendicular to both v and w, i.e., (v X w) * v = (v X w) w = 0.

 (c) Iv X w12 = IV121wI2 - (V W)2.

 Then n = 3 or 7.

 REMARK. Note that condition (c) is the usual condition that the length of v x w shall be equal
 to the area of the parallelogram spanned by v and w.

 Proof. The proof consists in showing that a cross product defined on Rn and having the three
 properties listed above implies the existence of a bilinear multiplication on Rn+ I which has very
 special properties. We will consider RnI 1 as an orthogonal direct sum:

 n+= 1 @ Rn

 Thus an element of Rn+ consists of an ordered pair (a, v), where a is a real number and v E Rn.

 The required product is defined by the following formula:

 (1) (a, v)(b, w) = (ab-v * w, aw + bv + v X w).

 This multiplication is obviously bilinear, and (1, 0) is a 2-sided unit. An easy computation using
 properties (b) and (c) shows that the norm of the product of two elements of Rn+ I is given by the
 following formula:

 (2) 1(a, v)(b, w)12 = I(a, v)l21(b, W)12
 Now this is exactly the situation considered by A. Hurwitz [4] in 1898. Hurwitz proved that if we
 have a bilinear multiplication with a unit defined on Rq such that the norm of the product of two
 vectors is the product of the norms (condition (2) above), then q must be 1, 2, 4, or 8, and the
 multiplication is isomorphic to that of the real numbers, the complex numbers, the quaternions, or
 the octonions of Cayley and Graves. For a lucid exposition of a modem version of this theorem of
 Hurwitz, see Jacobson, [5, pp. 417-427].

 Note that the uniquess assertion of Hurwitz's theorem shows that conditions (a), (b), and (c) of
 Theorem I characterize the cross products on R3 and R' uniquely up to isomorphism.
 . The interested reader is referred to pp. 408-409 of a paper by E. Calabi [2] for a list of

 additional properties of the cross product in R7 and an actual multiplication table for this cross
 product in terms of an orthonormal basis of R7.

 REMARK. The multiplication given by formula (1) has evidently been known for a long time. In
 1942 B. Eckmann referred to it as "einer bekannten, elementaren Konstruktion" (see [3, p. 338]).

 In our next theorem we show that we can significantly weaken conditions (a) and (c) of
 Theorem I without altering the conclusion.
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 THEOREM II. Assume n > 3 and that a cross product is defined which assigns to any two vectors

 v, w E Rn a vector v X w such that the following three properties hold:

 (a) v X w is a continuous function of the ordered pair (v, w).
 (b) The vector v X w is perpendicular to both v and w, i.e., (v X w) * v = (v X w) * w = 0.

 (c) If v and w are linearly independent, then v X w * 0.

 Then n = 3 or 7.

 Proof. For any vectors v, w E R', let

 A(v, w) = [v12W12 _-(V . W)2]1/2.

 Then A(v, w) is equal to the area of the parallelogram spanned by v and w; it is obviously a
 continuous function of the ordered pair (v, w). Using this area function, we define a function

 f: Rn x Rn Rn

 by the formula

 f(v, w) = A(vx w) (vXw) ifvxw+O,
 O if vxw=0.

 We assert that the function f thus defined is continuous. To prove this, it suffices to prove that if

 (Vk, Wk) is any infinite sequence of pairs of vectors such that

 lim (vk, wk) = (VO WO)
 k- oo

 then

 lim f(Vk, Wk) = f(vO wO).
 k oo

 There are various cases to consider, depending on the two cases in the definition of f(v, w), but
 the details are completely elementary.

 Note that the function f thus defined satisfies the following two conditions:

 (3) f(v, w) v =f(v, w) w =0,

 (4) If(v, w)12 = IA(v, W)12 = V12IW12 -(V . W)2.
 Exactly as before, we may consider R+ 1 as the direct sum R' @ Rn, and define a function

 tu: R n+1 X R n+1 R n+1

 by the formula

 (5) ,[(a, v), (b, w)] = (ab-v * w, aw + bv + f (v, w))

 (compare with (1)). Then ,u is obviously continuous and (1,0) is a 2-sided unit in the sense that

 ,[(1,0), (a, v)] = u[(a, v), (1,0)] = (a, v).
 Finally, we have the analog of formula (2):

 (6) IAt(x, y)12 = Ix121y12
 for any x, y e Rn+ 1. Now let Sn denote the unit n-dimensional sphere:

 sn = {x E Rn+IIIxI = 1).

 In view of formula (6), we see that if x andy belong to Sn, then ,.(x, y) E Sn also. Thus It defines
 a continuous multiplication with a 2-sided unit on the n-sphere sn.

 This raises the following question: For what values of n does the n-sphere admit a continuous
 multiplication with a 2-sided unit? This was a famous problem for many years in algebraic
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 topology. It was finally resolved by Frank Adams in 1958 (see [1]). The answer is that such a
 continuous multiplication exists on S' only in the cases n = 1, 3, and 7. Examples of such

 multiplications arise from the multiplication of complex numbers, quatemions, and the

 Cayley-Graves octonions respectively, restricted to the unit sphere.

 Thus we see that by referring to this theorem of Adams we can complete the proof of Theorem

 II.

 We will conclude this note by considering other possible ways to generalize the definition of

 the cross product to higher dimensional Eucidean spaces. Let v and w be vectors in R3; recall the
 formula for the components of v x w in terms of the components of v and w. According to this
 formula, if

 v = (vI, v2, v3)

 W = (wI,W2,w3)

 then the kth component of v x w is the determinant of the 2 x 2 submatrix of the matrix

 VI Vl 2 V3
 W W1 W2 W3

 obtained by striking out the kth column. To be correct, we must multiply this determinant by
 I~)k.

 Analogously, in Rn we can define a cross product vI X v2 X ... X vn-1 of any ordered (n - 1)
 tuple of vectors by a similar process. Form a matrix whose successive rows are the vectors

 v1, v2,..., vn,-. The kth component of vI X v2 X ... X vn_ I is (- l)k times the determinant of
 the submatrix obtained by deleting the kth column. This generalized cross product enjoys many of
 the familiar properties of the cross product in 3-space: It is a multilinear, skew symmetric

 function. The norm of the product, v 1 X v2 X ... X vn-1, is the (n - 1)-dimensional volume (or
 measure) of the parallelopiped spanned by the vectors v1,..., vn_ 1 The vector v1 X V2 X ... X
 vn- 1 is perpendicular to Vk for k = 1,2,..., n - 1.

 This raises the following question: given integers k and n such that 2 < k < n - 1, can we

 define a cross product of any k-tuple of vectors vI, v2,..., Vk in Rn having similar properties? To
 make the question precise, let us demand the following properties, similar to those in Theorem II:

 (a) v1 X v2 X ... X Vk is a continuous function of the ordered k-tuple (vl,..., Vk).
 (b) (vI Xv2X .. xvk)*vi=0fori= 1,2,...,k.
 (c) If the vectors v1, v2,..., Vk are linearly independent, then vI X v2 X ... X Vk + 0.

 The answer, strangely enough, is that such a cross product does not exist, with a single exception:
 n = 8 and k = 3. For the proof of this, the reader is referred to a paper by George Whitehead [6];
 for explicit formulas for a cross product in this case, see Zvengrowski, [7].

 Another property of the cross product of vectors in 3-space is the following: For any rotation r
 (i.e., orthogonal transformation of determinant + 1) of 3-space and vectors v and w,

 (7) r(v x w) = (rv) x (rw).

 (Note that this equation is not true if v is an orthogonal transformation of determinant - 1). One
 can now prove the following:

 PROPOSITION. Assume that n > 2 and a cross product product is defined in Rn which is bilinear
 and satisfies equation (7) for any rotation of Rn; then n = 3.

 The proof depends on a knowledge of the real representations of the special orthogonal group
 SO(n); we do not have space in this note to go into details.

 This preservation of the cross product by rotations, expressed by equation (7), is less well
 known than the usual properties which are treated in our first theorem. It is normally only treated
 in advanced texts in theoretical physics or geometry.
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 A "COUNTEREXAMPLE" FOR THE SCHWARZ-CHUSTOFFEL TRANSFORM

 ELGIN JOHNSTON

 Department of Mathematics, Iowa State University, Ames, IA 50011

 The Schwarz-Christoffel Transform is a formula for a one-to-one analytic function that maps
 the upper half of the complex plane onto the inside of a polygon. As such the Schwarz-Christoffel
 Transform can be used to translate problems set in polygonal domains to more manageable
 problems set in the upper half plane. Such applications of the Schwarz-Christoffel Transform are
 common in problems involving two-dimensional flows, diffusion, potentials, etc. (see [1], [3], [5]).

 A statement of the Schwarz-Christoffel Transform can be found in most text books on
 elementary complex variables. One such statement is [4, p. 178]: The functions w = F(z) that map
 the upper half plane conformally onto polygons with interior angles sak (k = 1, 2,..., n) are of the
 form

 (1) F(z) = A | 1 ( ?-Xki) id + B

 where x1 < X2 < ... < Xn are points on the real axis, f3k = 1 - ak (k = 1, 2,. .., n) and A, B are
 complex constants. Since the sum of the exterior angles of a polygon is 2 , we have:

 (2) f1? I 32 ?r Jr fn = 2 with-1 < lfk < 1

 (The polygons with one or more f8k = ? 1 are those with some vertices at oo and/or some interior
 angles of 27T).

 It is well known that conditions (1) and (2) are necessary for F(z) to map the upper half plane
 conformally onto a polygon. However it is rarely stressed that these conditions are not sufficient
 for such a mapping and there appear to be few (if any) examples to this effect. In this paper we
 produce an example of a function F(z) that satisfies (1) and (2) but is not one-to-one in the upper
 half plane. We start with a third condition (involving the choice of the xk's) that is necessary for
 F(z) to be univalent.

 The following theorem gives some guidelines for the choice of the real numbers xk mentioned
 in the statement of the Schwarz-Christoffel Transform.

 THEOREM. Let (f3k}7n= I be given with -1 6; lk < 1 and let x1 <x2 < * <xn be real. If the
 function F(z) defined by (1) is univalent in the upper half plane, then

 fn k < 3
 (3) k= I ZO - Xk Im zO
 whenever Im zo > 0.

 The theorem is an immediate consequence of the following lemma which gives a necessary
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