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We estimate the rate at which collisions between ultra-high energy cosmic rays can form small black
holes in models with extra dimensions. If recent conjectures about false vacuum decay catalyzed
by black hole evaporation apply, the lack of vacuum decay events in our past light cone places
tight bounds on the black hole formation rate and thus on the fundamental scale of gravity in
these models. Conservatively, we find that the lower bound on the fundamental scale E∗ must be
within about an order of magnitude of the energy where the cosmic ray spectrum begins to show
suppression from the GZK effect, in order to avoid the abundant formation of semiclassical black
holes with short lifetimes. Our bound, which assumes a Higgs vacuum instability scale at the low
end of the range compatible with experimental data, ranges from E∗ ≥ 1018.8 eV for n = 1 extra
dimension down to E∗ ≥ 1018.1 eV for n = 6. These bounds are many orders of magnitude higher
than the previous most stringent bounds, which derive from collider experiments or from estimates
of Kaluza-Klein processes in neutron stars and supernovae.

I. INTRODUCTION

In models with extra dimensions, the fundamental scale
of gravity may be lower than the four-dimensional Planck
scale,MPl. This presents the possibility that high-energy
collisions between particles, for instance in colliders or
via cosmic rays, may form black holes if a high enough
center-of-mass energy is achieved [1–4]. Large extra di-
mensions, if discovered, would constitute new physics
and potentially provide an explanation for the relative
weakness of gravity in relation to the other fundamental
forces. In addition to searches for microscopic black holes
formed in particle collisions, experimental constraints on
extra dimensions have generally come from searches for
modifications of the inverse-square force law of gravity
at small scales or from signatures of Kaluza-Klein gravi-
tons or other exotic particles. Constraints on the higher-
dimensional fundamental scale depend on the number of
extra dimensions proposed, with collider limits in the TeV
range and astrophysical limits as high as O(102)-O(103)
TeV [1, 5].

We present new limits from black hole creation in the
context of recent work proposing that Hawking evapora-
tion of microscopic black holes can induce the decay of
the standard model Higgs vacuum [6–8]. These papers
argue that the nucleation of a bubble of true vacuum in
general precedes the final evaporation of the black hole,
suggesting that any production of black holes with evap-
oration times less than the age of the Universe in our
past light cone should have already led to vacuum decay.
The most recent work in the series [8] explicitly confirms
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that evaporating black holes formed in theories with ex-
tra dimensions are capable of seeding vacuum decay. The
decay of the false vacuum is a dramatic consequence that
presents an unmistakable (and fatal) observational sig-
nature of microscopic black hole production. Thus, its
non-observation allows us to place limits on the higher-
dimensional fundamental scale that are several orders of
magnitude more stringent than those derived from ex-
periments searching for micro black hole production in
other ways, such as via signs of Hawking evaporation in
colliders or from nearby cosmic ray collisions.

Our analysis relies on two main assumptions, both of
which come with some important caveats that we de-
scribe here. The first is the metastability of the Higgs
vacuum, as implied by recent measurements of the Higgs
boson and top quark masses [9]. This result is based on
the validity of the Standard Model of particle physics,
so any beyond-Standard-Model (BSM) physics may alter
the effective potential of the Higgs field in a way that
rescues our vacuum from metastability [10]. A high en-
ergy scale of inflation, were it to be confirmed, would
give evidence that new physics stabilizes the vacuum in
some way, since high-energy-scale inflationary fluctua-
tions would likely have instigated a transition to the true
vacuum in the early universe [11, 12]. While we fully
recognize (and, in fact, hope) that vacuum metastability
ends up being ruled out by BSM physics or a better un-
derstanding of inflation, we will, for the purpose of this
study, rely on the great successes of the Standard Model
to justify the apparent metastability of the Higgs vac-
uum as an observational tool for establishing constraints
on higher-dimensional theories. Second, we are assuming
that the results of [6, 7] hold in a qualitatively similar way
for theories with more than four spacetime dimensions,
i.e., that black hole evaporation can seed vacuum decay.
This was explored in [8], where the authors construct an

ar
X

iv
:1

80
9.

05
08

9v
1 

 [
he

p-
ph

] 
 1

3 
Se

p 
20

18

mailto:kmack@ncsu.edu
https://twitter.com/AstroKatie
mailto:rmcnees@luc.edu
https://twitter.com/mcnees


2

approximate instanton solution for a braneworld black
hole in a theory with one extra dimension and then es-
timate that their results extend to regimes where small
black holes are produced in particle collisions. We will
apply these results beyond one extra dimension, though
earlier calculations suggest the effect may be somewhat
suppressed [6].1 More importantly, the conclusions of [8]
require the instability scale ΛI of the Higgs vacuum to lie
below the fundamental scale E∗ of the higher-dimensional
theory. Otherwise, the Standard Model calculation of the
Higgs potential no longer applies. For our analysis, we
must assume that the instability scale is at the low end of
the range consistent with experimental limits. The most
likely range calculated by [9] is ΛI ∼ 1019 − 1020 eV,
with some uncertainty around that value. For our anal-
ysis to be fully reliable, we require scales no higher than
ΛI ∼ 1018 eV for theories with one or two extra dimen-
sions and ΛI ∼ 1017 eV for theories with up to six. This
is an important qualifier on our main results, and will be
discussed in more detail at the end of the paper.

The structure of our calculation is as follows. Assuming
that the Higgs vacuum is metastable and that its decay
is catalyzed by black hole evaporation, we take its persis-
tence as evidence against black hole evaporation in our
past light cone. While this observation can also constrain
the production of low mass primordial black holes in the
early universe, we apply it here to the production of mi-
croscopic black holes in particle collisions. Specifically,
we consider the formation of black holes in collisions be-
tween ultra-high-energy (UHE) cosmic rays, in theories
with extra dimensions and a fundamental scale well be-
low the four-dimensional Planck scale. If the instability
scale for the Higgs vacuum is low enough, this allows us
to place lower bounds on the fundamental scale of such
theories which are in general much more stringent than
current lower bounds from both accelerator and astro-
physical processes. For a given value of the fundamen-
tal scale, we use the UHE cosmic ray spectrum from the
Auger experiment (see Section II and ref. [13]) to make a
conservative estimate of the number of black holes formed
in particle collisions in our past light cone. We note that
the measured cosmic ray spectrum includes a steep drop-
off at high energies. This is believed to be due to the
GZK effect [14, 15], which prevents the highest-energy
cosmic rays from traveling unimpeded across cosmologi-
cal distances. If this is the case then it is likely that even
more energetic particles are plentiful in parts of the cos-
mos where high-energy astrophysical processes accelerate
them. But without knowing more about the mechanisms
involved we restrict our analysis to cosmic rays with ener-
gies below the GZK cut-off. Thus, our calculation proba-
bly under-estimates both black hole formation rates and

1 The reduced branching ratio of false vacuum decay rate to the
Hawking evaporation rate may be offset by the production of
large numbers of black holes.

the maximum center-of-momentum energies achieved in
collisions. As a result, bounds on the fundamental scale
of theories with extra dimensions may be even higher
than the values we present here.

In Section II we discuss a method for estimating the num-
ber of collisions that have taken place in our past light
cone between UHE cosmic rays, and review the Pierre
Auger Observatory’s spectrum of these particles. In Sec-
tion III we extend this to collisions capable of forming
black holes in higher-dimensional theories, obtain bounds
on the fundamental scale of these theories in Section IV,
and then discuss these results in Section V. Appendix A
considers the various criteria that must be satisfied for
a reliable semiclassical analysis of black hole formation,
and Appendix B discusses an analytical result for black
hole formation rates that supports the numerical results
used in the main text.

II. COLLISIONS OF ULTRA-HIGH-ENERGY
COSMIC RAYS

At ultra-high energies, cosmic rays are rare enough that
we expect interactions between them to be exceedingly
infrequent. But on timescales comparable to the age of
the Universe, even a low rate can lead to an apprecia-
ble number of collisions with center-of-momentum (CM)
energies several orders of magnitude greater than any-
thing that can be achieved in existing accelerators. Let
us quickly review the estimate of collisions between UHE
cosmic rays with energies above 1020 eV given by Hut and
Rees in [16].

Assuming a homogeneous and isotropic distribution, the
density of UHE cosmic rays with energy greater than E
is proportional to the integrated flux

ρ(E) =
4π

c

∫ ∞
E

dE′ J(E′) , (1)

where J(E) is the differential flux. For constant density
ρ and cross section σ, the rate of collisions per particle is
ρσc, and the overall rate of collisions per unit volume is

R = ρ2σc . (2)

The total number of collisions in our past light cone is
given by this rate times the spacetime volume

N = Rc3T 4 , (3)

where T is the time over which these collisions have oc-
curred and our assumptions hold. Hut and Rees calcu-
lated the density of cosmic rays above 1020 eV using the
differential flux given by Cunningham et. al. in [17]

J(E) =
1.14× 10−33

m2 · s · sr · eV

(
1019 eV
E

)2.31

. (4)
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Then (1) gives a density of 1.8 × 10−23 m−3. The cross
section is taken to be of order the Compton wavelength
squared

σ(E) '
(

2π~c
E

)2

, (5)

which at 1020 eV gives 1.5 × 10−52 m2. For their order
of magnitude estimate, Hut and Rees use σ ' 10−52 m2.
The per-particle rate of collision is then ' 3× 10−67 s−1,
and the rate of collisions per unit volume comes out to
R ' 3 × 10−90 m−3 s−1. Taking the age of the Universe
to be about T = 1010 yr, the number of collisions in the
past light cone is roughly N ' 8 × 105. Hut and Rees
give a final estimate of N ≈ 105.

For our calculations, we will use more recent results for
the differential flux of UHE cosmic rays in place of (4).
The Pierre Auger Observatory is a hybrid cosmic-ray ob-
servatory consisting of surface Cerenkov detectors and
air-shower observing telescopes, which allows it to collect
large samples of cosmic rays across a wide range of ener-
gies. Its measurements of the cosmic ray energy spectrum
above 1018 eV are well described by a series of power laws
with free breaks between them, or else by broken power
laws with an additional smooth suppression factor at the
highest energies [13, 18–20]. Here we adopt the values
given in [13], with the differential flux in each range of
energies taking the form

J(E) ∝ E−γ . (6)

The flux is shown in Fig. 1. Below the ‘ankle’ en-
ergy, Eankle = 1018.61±0.01 eV, the spectral index is γ1 =
3.27±0.02. Above the ankle energy, but below the ‘break’
energy Ebreak = 1019.46±0.03 eV, the spectral index flat-
tens to γ2 = 2.59 ± 0.02. Above the break energy the
spectral index drops off to γ3 = 4.3± 0.2. The spectrum
between Eankle and Ebreak is thought to possibly repre-
sent the transition to a population of extragalactic cos-
mic rays, while the steep fall off above Ebreak is likely due
to the GZK effect [14, 15].

Repeating the estimate of Hut and Rees with the Auger
spectrum yields fewer collisions above 1020 eV – on the
order of a few thousand – because of the steep drop off
in the flux above Ebreak that is not accounted for in (4).
Indeed, the presence of this feature in the spectrum sug-
gests that the upper limit in (1) should not extend to ar-
bitrarily high energies. The GZK effect prevents cosmic
rays from traveling cosmological distances with energies
greater than Ebreak.2 So it seems unwarranted to assume

2 It is possible that the GZK effect is only partly responsible for the
drop-off in flux above Ebreak, which may also reflect, for instance,
the maximum energies that can be achieved by the sources that
accelerate the particles [18]. While its origin does not impact
our estimates, we interpret Ebreak as the scale associated with
the GZK effect.

FIG. 1. The Auger spectrum of UHE cosmic rays with E >
1018 eV, approximated as a set of power laws [13].

a homogeneous and isotropic distribution for cosmic rays
at those energies over the full volume of our past light-
cone. Without knowing more about the origin of UHE
cosmic rays, we will conservatively limit all of our cal-
culations to cosmic rays with energies below the break
energy in the Auger spectrum.

The approximation (2) for the rate of collisions per unit
volume treats all particles as if they had roughly the
same energy, with a constant cross section for collisions.
We can refine the estimate by dropping these assump-
tions, accounting instead for all collisions above a given
CM energy and including the energy dependence of the
cross section. Assuming once again a homogeneous and
isotropic distribution of UHE cosmic rays, the rate per
unit volume of collisions with CM energy greater than E
is given by

R =
16π2

c

∫ Ebreak

Emin

dE′dE′′
∫ 1

0

duσ(ECM)

J(E′)J(E′′) Θ(ECM − E) , (7)

where u = (1−cosψ)/2 is related to the angle ψ between
the momenta of the colliding particles, ECM = 2

√
E′E′′u

is the CM energy, and the Heaviside theta function re-
stricts the domain of integration to collisions with ECM >
E. The upper limit in the energy integrals is taken to be
Ebreak, which restricts the calculation to cosmic rays with
energies below the GZK cut-off, while the lower limit is

Emin =
E2

4Ebreak

, (8)

which is the minimum energy of a particle that can par-
ticipate in a collision with CM energy of at least E. As
before, the number of events in our past lightcone is
N = Rc3T 4. In our calculations, we will take T = 1010

years. This may be a conservative assumption, as the
production rate for UHE cosmic rays is likely to have
been higher toward the early part of that time window,
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closer to the peak of active galactic nucleus (AGN) ac-
tivity around a redshift of 2.

In the next section we will employ (7) to estimate the rate
of black hole formation in models where the fundamen-
tal scale of gravity is below the maximum CM energies
accessible in collisions between UHE cosmic rays.

III. BLACK HOLE FORMATION VIA COSMIC
RAY COLLISION

In higher-dimensional theories the fundamental scale of
gravity may be lower than MPl. We will consider a
generic 4 +n-dimensional theory with fundamental scale
M∗ = E∗/c

2 related to the Newton’s constant by

G (4+n)
N =

cn+5 ~n+1

E∗2+n
. (9)

If the scale E∗ is low enough, collisions between UHE
cosmic rays at sufficiently high CM energy are expected
to form black holes of mass MBH ∼ ECM/c

2.

For our estimates of black hole formation via scattering
to make sense, the black holes should be large enough
that a semiclassical treatment is appropriate. We enforce
this by considering only black holes with entropy above
some minimum value Smin (see Appendix A for a brief
discussion). This implies that the ratio of MBH/M∗ must
be greater than

λ =
n+ 2

4π

(
π

n+3
2

2 Γ(n+3
2 )

) 1
n+2 (

Smin

)n+1
n+2 . (10)

We will typically take Smin = 102, which implies that
MBH must be greater than M∗ by a factor that is O(10)
for n = 1 and increases to O(102) for n = 6. Neglecting
energy loss during the formation process, MBH = ECM/c

2

and collisions with ECM ≥ λE∗ are considered to form
semiclassical black holes.

We also require that the black holes be small enough
compared with the compactification scale L that a flat-

space approximation is valid. For a discussion of this
requirement, see Appendix A.

For the collisions between UHE cosmic rays in the previ-
ous section, the cross section (5) was proportional to the
square of the Compton wavelength and hence decreased
at higher energies. But at CM energies well above E∗ the
cross section for black hole formation exhibits the oppo-
site behavior. The geometric cross section for black hole
formation is [21]-[22]

σBH = O(1)πr2H , (11)

where rH is the horizon radius of a black hole of mass
MBH = ECM/c

2, and an overall factor of order 1 reflects
various corrections. Collisions at higher energies produce
black holes with larger mass, and hence larger horizon
radius, resulting in a cross section that grows as a positive
power of ECM.

Assuming the collision forms a Schwarzschild black hole,
the horizon radius in 4 + n dimensions is [23]

rH =
~ c
E∗

(
MBHc

2

E∗

) 1
n+1

(
8π

n+ 2

Γ( 3+n
2 )

π
3+n
2

) 1
n+1

. (12)

Then, up to the O(1) factor in Eq. (11), the cross section
for a collision forming a black hole with MBH = ECM/c

2

is

σ(4+n)
BH =

(
~ c
E∗

)2 (
ECM

E∗

) 2
n+1

(
8 Γ( 3+n

2 )

n+ 2

) 2
n+1

. (13)

Using this cross section in (7), we can estimate the rate
at which black holes are formed by collisions between
UHE cosmic rays in a higher-dimensional theory with
fundamental scale E∗.

As an example, consider a theory with one extra di-
mension (n = 1). Using (10), black holes with entropy
SBH ≥ 102 have mass MBH ≥ 8.76M∗. The number of
such black holes formed in our past light cone by colli-
sions between UHE cosmic rays is approximately

N = c3 T 4 128π2

3 c

(
~ c
E∗

)2 ∫ Ebreak

Emin

dE′dE′′
∫ 1

0

du

√
E′E′′ u

E∗
J(E′)J(E′′) Θ

(
2
√
E′E′′ u− 8.76E∗

)
. (14)

Fixing a fundamental scale allows us to evaluate this ex-
pression explicitly to determine a number of black hole-
producing events above that scale. As an illustrative cal-
culation, we use the Auger results for the differential flux,

T = 1010 yr, and a fundamental scale of 1018.5 eV. The
numerical evaluation of this integral givesN ' 1.6×1011.
Raising the fundamental scale to 1018.8 eV lowers the
number of events to N ' 2.6× 106.
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Since we restrict our attention to UHE cosmic rays with
energy below the GZK cut-off at Ebreak = 1019.46 eV,
the maximum possible CM energy in our analysis is
2Ebreak = 1019.76 eV. This places an upper limit on the
mass of the black hole, so the requirement MBH ≥ λM∗
implies that our analysis is valid only for E∗ < 2Ebreak/λ.
In this example with n = 1, the largest fundamental scale
we can consider is 1018.82 eV, andN plunges to zero as E∗
approaches this value. The drop-off is steep enough that
the difference between E∗ for N ∼ 106 and N ∼ 103

is much less than the uncertainties in Ebreak and other
factors. If vacuum decay triggered by black hole evapo-
ration is as likely as the claims of [6–8], then essentially
any value of E∗ up to 2Ebreak/λ results in too many black
holes being formed.

Note that by raising the maximum cosmic ray energy in
(7), E∗ could be greater than 2Ebreak/λ by a factor of
∼5 and still allow a significant number of black holes to
form and evaporate over the history of our universe. But
the majority of those collisions would involve particles

with energies above the GZK cut-off, and as explained in
the previous section, our assumption of a homogeneous
and isotropic distribution seems questionable for that
population of UHE cosmic rays.

IV. BOUNDS ON E∗ FROM BLACK HOLE
FORMATION

Now we calculate the number of black holes formed via
collisions between UHE cosmic rays for different numbers
of extra dimensions n, and use this to establish lower
bounds on the fundamental scale E∗.

As in the previous section, we consider only black holes
with entropy above a minimum value Smin that justifies
the use of semiclassical methods. This implies MBH ≥
λM∗, where λ is given in (10). Then the number of
black holes formed is approximately

N = c3 T 4 16π2

c

∫ Ebreak

Emin

dE′dE′′
∫ 1

0

duσ(4 + n)

BH (ECM)J(E′)J(E′′) Θ
(
ECM − λE∗

)
, (15)

where ECM = 2
√
E′E′′u. Since we only consider UHE

cosmic rays with energies below Ebreak, these collisions
can only form semiclassical black holes when the funda-
mental scale satisfies E∗ ≤ 2Ebreak/λ. Because the Auger
spectrum is defined piecewise for different values of the
energy, (15) is most easily evaluated numerically. The
number of black holes formed as a function of E∗ is shown
in Fig. 2, for 1 ≤ n ≤ 6.

As in the n = 1 example, N � 1 for all values of E∗ up
to the maximum value 2Ebreak/λ that can be probed us-
ing our method. Thus, avoiding vacuum decay catalyzed
by the evaporation of black holes formed in collisions be-
tween UHE cosmic rays requires a fundamental scale

E∗ ≥
2Ebreak

λ
=

1019.76 eV
λ

, (16)

where λ is given in (10). For smaller values of E∗, colli-
sions between UHE cosmic rays that form rapidly evap-
orating black holes are plentiful within our past light
cone. Although they cannot be reliably estimated with
the method used here, collisions between cosmic rays at
even higher energies are of course possible, and would
raise the lower bound on E∗.

The lower bound on E∗ for different values of n is shown
in Fig. 3. For SBH ≥ 102, the lower bound on E∗ is more
or less within an order of magnitude of the Auger break
energy, and safely above our assumed instability scale

for the Higgs vacuum. A more conservative condition
SBH ≥ 103 would require larger black holes and may not
be consistent with the assumed instability scale. Fig. 4
translates the lower bound on E∗ (with SBH ≥ 102) into
an upper bound on the size of the extra dimensions (A7)
with the typical size of extra dimensions for TeV-scale
gravity [24] included for comparison. The values for E∗
and L are summarized in Table I.

n λ (Smin = 102) log10(E∗/eV) log10(L/m)

1 8.8 18.8 −7.8

2 16.1 18.6 −16.5

3 23.9 18.4 −19.4

4 31.5 18.3 −20.9

5 38.9 18.2 −21.7

6 46.0 18.1 −22.3

TABLE I. Lower bounds on the fundamental scale E∗ and
upper bounds on the size L of extra dimensions (under the
assumption of a toroidal compactification).

The values of N used in Fig. 2 were calculated by nu-
merically evaluating (15). However, it is easy to show
that once E∗ is larger than about 0.8Ebreak/λ, both of
the UHE cosmic rays participating in the collision must
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FIG. 2. Number of collisions N forming a black hole with
entropy SBH ≥ 102 over the past T = 1010 yr, as a function
of the fundamental scale. The colored lines are for different
values of n, the number of extra dimensions. N drops off
rapidly as E∗ approaches 2Ebreak/λ.

FIG. 3. Lower bound on the fundamental scale for 1 ≤ n ≤ 6
for SBH ≥ 102, where n is the number of extra dimensions and
SBH is the entropy of the black hole, set to ensure the validity
of a semiclassical treatement. Note that the scales of existing
constraints (O(102)-O(103) TeV) are all below the plot range
shown here. The blue shaded region of the plot is excluded
by our constraints.

have E > Eankle. In that case, the relevant part of the
Auger differential flux is given by a single power law and
N can be evaluated analytically as a function of E∗ and
n. This is described in more detail in Appendix B.

V. DISCUSSION

We have presented constraints on the fundamental scale
and the size of extra dimensions in higher-dimensional
theories, based on the non-observation of vacuum decay

FIG. 4. Upper bound on the size of extra dimensions (blue),
with typical values for TeV-scale gravity (red), for different
values of the number of extra dimensions, n. The blue shaded
region of the plot is excluded by our constraints.

catalyzed by microscopic black holes. This scenario is
based on the mechanism outlined in [6–8], in which black
holes seed vacuum decay before their evaporation is com-
plete. It assumes the meta-stability of the Higgs vacuum,
supported by recent measurements of the mass of the
Higgs boson and top quark, at a scale below the funda-
mental scale of the higher-dimensional theory. While this
concept has been used to place limits on the production
of primordial black holes [6, 7], ours is the first analysis
to place quantitative limits on the fundamental scale of
extra dimensional theories based on this method.

Table II summarizes current limits on the fundamental
scale and/or size of extra dimensions from a range of
methods. Comparing with Table I, limits from vacuum
decay catalyzed by black hole evaporation are many or-
ders of magnitude more constraining for 1 ≤ n ≤ 6 extra
dimensions.

Our analysis is limited by the assumptions underlying
the conclusions of [6–8]. Given the values for the lower
bound on E∗ in Table I, the most important of these as-
sumptions is the requirement ΛI < E∗. The authors of
[8] quote ΛI ∼ 1017 eV as the lowest value consistent with
experimental limits on the top quark mass, which is well
below our lower bounds on E∗ for 1 ≤ n ≤ 6. They esti-
mate that for n = 1 extra dimension, with ΛI ∼ 1017 eV
and E∗ ∼ 1018 eV, vacuum decay would be caused by
black holes with MBH ∼ 1020 eV. For E∗ < 1018.8 eV,
we find that a significant number of black holes with
MBH ∼ 1020 eV are produced. Even if the instability
scale is as high as ΛI ∼ 1018 eV, our n = 1 (and pos-
sibly n = 2) value for E∗ seems high enough to justify
concerns about vacuum decay. However, the most likely
range of values for the instability scale ΛI appears to be
around 1019-1020 eV. In that case the fundamental scale
E∗ would have to be greater than 1020-1021 eV, which
is outside the regime that can be probed with this con-
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Method Reference n log10(E∗/eV) log10(L/m)

Grav force [25] 2 12.5 −4.36

SN1987A [26] 2 13.4 −6.18

3 12.4 −9.10

NS cooling [27] 1 −4.35

2 −9.81

3 −11.6

4 −12.5

5 −13.0

6 −13.4

CMS [28] 2 13.0

3 12.9

4 12.8

5 12.8

6 12.7

TABLE II. Current bounds on extra dimensions from: gravi-
tational force law tests [25]; constraints on the production of
Kaluza-Klein gravitons from the supernova 1987A [26]; con-
straints based on the expectation that Kaluza-Klein gravitons
would decay into photons and heat neutron stars [27]; and col-
lider searches, the most stringent of which currently provided
by the CMS collaboration [28]. We provide values for both E∗
and L when provided in the cited references. In other cases,
it is possible to deduce the corresponding value via equation
A7 for the toroidal compactifications considered here. It is of
note that the most stringent constraints (SN1987A and NS
cooling) require some assumptions about Kaluza-Klein gravi-
tons.

servative calculation. On the other hand, UHE cosmic
ray observatories have detected particles with energies as
high as E = 3×1020 eV.The propagation of such particles
on cosmological scales is suppressed by the GZK effect, so
our method for estimating the number of collisions form-
ing black holes is not applicable. But if collisions between
particles at these energies occur in regions where UHE
cosmic rays are produced, then CM energies ECM ∼ 1021

may be achieved. In that case rapidly evaporating black
holes may have been formed for fundamental scales as
high as E∗ ∼ 1020 eV, potentially inducing vacuum de-
cay even if the instability scale is ΛI ∼ 1019 eV, which is
in the most likely range of values [9]. For larger values
of the instability scale it seems unlikely that black hole
formation via UHE cosmic ray collisions could be used to
constrain E∗.

The approach we have taken here comes with important
caveats described above and in the introduction. Nev-
ertheless, the possibility of establishing bounds on extra
dimensions that are many orders of magnitude stronger
than existing constraints makes this is a promising di-
rection for continued research. Additionally, our method

relies on qualitatively different physics than the tests re-
sponsible for the strongest existing constraints on extra
dimensions. It does not rely on assumptions about gravi-
tons or other BSM particle physics, and is therefore an
interesting complement to existing methods.

We expect that our analysis can be made more robust
with improved inferences about the instability scale from
collider data, along with a more complete accounting of
the full range of high-energy particle interactions in our
past light cone. In particular, collisions in regions where
UHE cosmic rays are accelerated to energies above the
GZK cut-off may achieve higher CM energies than we
considered. Such collisions could form black holes for
even larger values of the fundamental scale E∗, extending
our analysis to more likely values of the Higgs instability
scale.
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Appendix A: Black Hole Formation and
Semiclassical Methods

Our analysis is based on the formation of black holes in
collisions between UHE cosmic rays, which rapidly evap-
orate via Hawking radiation. Thus, we must consider
three questions. First, under what conditions can we
say that a collision has formed a black hole? Second,
when can those black holes be described semiclassically?
And third, since the extra dimensions of spacetime are
assumed to be small and compact, when can the black
holes be described using results that assume an asymp-
totically flat space time?

A basic criteria for saying that a black hole has formed is
that the decay time should be very long compared to the
time scale associated with the formation process. For
black holes formed via collision, we take that to mean
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that the decay time should be much longer than the time
needed for the particles to cross a region of linear size rH.
In 4 + n dimensions the decay time is of order

τD ∼
~

M∗c2

(
MBH

M∗

)n+3
n+1

, (A1)

while the crossing time τC ' rH/c is

τC =
~

M∗c2
1√
π

(
8 Γ( 3+n

2 )

n+ 2

) 1
n+1

(
MBH

M∗

) 1
n+1

. (A2)

In all cases of interest, the n-dependent factors in τC are
O(1), so the condition τD � τC is equivalent to(

MBH

M∗

)n+2
n+1

� 1 . (A3)

The power on the left-hand side of this inequality is al-
ways greater than 1, so black holes with MBH � M∗
satisfy τD � τC.

To justify a semiclassical treatment, the entropy of the
black hole should satisfy SBH � 1. In any dimension
the entropy is given by one-quarter of the horizon area in
units of the fundamental length scale. For a non-rotating
black hole this is:

SBH =
AHc

3

4 ~G(4+n)
N

=
ω2+n r

2+n
H c3

4 ~G(4+n)
N

, (A4)

where ω2+n = 2π
3+n
2 /Γ( 3+n

2 ) is the area of a unit 2 + n-
sphere. Using (9) and (12), the entropy can be expressed
as

SBH =

(
4π

n+ 2

)n+2
n+1

(
4

ωn+2

) 1
n+1

(
MBH

M∗

)n+2
n+1

. (A5)

The first two factors give a number greater than 1 for
1 ≤ n ≤ 9, and of O(1) out to n ∼ 35. So the condition
SBH � 1 is essentially the same as the previous condition,
τD � τC, in all cases of interest.

For a black hole of mass MBH = 10M∗, the entropy
ranges from SBH ' 120 when n = 1, down to SBH ' 20 for
n = 6. Since SBH decreases with n for fixed MBH/M∗, we
will always set a minimum entropy Smin that is sufficient
to justify semiclassical calculations, and then restrict our
attention to black holes with entropy at or above this
cut-off. Using (A5), this fixes the minimum value λ of
the ratio MBH/M∗ for a semiclassical black hole in our
analysis as

λ =
n+ 2

4π

(wn+2

4

) 1
n+2

(Smin)
n+1
n+2 . (A6)

This is shown for 1 ≤ n ≤ 6 in Fig. 5. Black holes with
MBH ≥ λM∗ have SBH ≥ Smin.

For the higher dimensional theories considered in this
paper we assume that n dimensions are compactified

FIG. 5. The ratio λ =MBH/M∗ for a black hole with entropy
Smin.

with length scale L. The formulas above assume that
spacetime is asymptotically flat, but we may regard
them as approximately true when the black hole radius
(12) is much smaller than the compactification scale:
rH � L. In the case of toroidal extra dimensions, the
four-dimensional Planck mass is related to the compact-
ification scale of the higher dimensional theory by

M 2
Pl = (2πL)n (M∗)

2+n c
n

~n
. (A7)

Ignoring factors of O(1), the condition rH � L becomes

(
MBH

M∗

) 1
n+1

�
(
MPl

M∗

) 2
n

(A8)

Thus, MBH/M∗ should be large enough to justify a semi-
classical calculation, but not so large that the black hole
begins to notice the extent L of the extra dimensions.
In the text we consider theories with fundamental scale
as large as E∗ ∼ 1019 eV, and limit ourselves to UHE
cosmic ray collisions with CM energy no greater than
ECM ∼ 1020 eV. In that case, for collisions forming black
holes with entropy greater than Smin, the ratio rH/L al-
ways satisfies

rH
L
≤ 2π

(
1.79× 1017

)− 1
n

(
(16π)2

(n+ 2)2ωn+2

) 1
n

(Smin)
− 1

n .

(A9)

For Smin = 102, this is of order 10−18 for n = 1, and of
order 10−3 for n = 6. In these cases, the black holes we
consider are all much smaller than the size of the extra
dimensions and the physics should be well-described by
formulas that assume an asymptotically flat spacetime.
A quick calculation shows that the size of extra dimen-
sions is also much larger than the fundamental length
scale L � `∗, so that quantum gravity corrections may
safely be neglected.
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Thus, for black holes with entropy SBH ≥ 102, the pro-
cess of formation via collision and subsequent evapora-
tion should be well described using semiclassical meth-
ods and asymptotically flat-space results for 1 ≤ n ≤ 6.
The case n = 7 is borderline, with the conditions de-
scribed above and the assumptions outlined elsewhere in
the paper beginning to break down.

Appendix B: Analytic expression for N

Since we consider cosmic rays with energies below the
GZK cut-off at Ebreak, the minimum energy of a cosmic
ray that can participate in a collision with CM energy
above λE∗ is

Emin =
(λE∗)

2

4Ebreak

. (B1)

If we express the fundamental scale as a fraction of the
maximum value that we can probe, E∗ = (1−χ) 2Ebreak/λ
with 0 ≤ χ < 1, then both cosmic rays must have energy
greater than Eankle when

1− χ >
√
Eankle

Ebreak

= 0.38 . (B2)

In this regime the differential flux in (15) is described
by a single power law, and the integral can be evaluated
analytically.

Expressing the particle energies in units of Ebreak, the
number of black holes with SBH ≥ Smin formed over the
past T = 1010 yr, in a theory with fundamental scale
E∗ = (1− χ) 2Ebreak/λ, is

N = 2.38× 105 (n+ 2)2 (Smin)2
(

1

1− χ

) 2(n+2)
n+1

∫ 1

(1−χ)2
de′de′′duu

1
n+1 (e′e′′)

1
n+1−γ2 Θ

(
e′e′′u− (1− χ)2

)
(B3)

where γ2 = 2.59 is the spectral index given by Auger
for cosmic rays with energies between Eankle and Ebreak.
Notice that N grows with the minimum entropy for semi-
classical calculations as (Smin)2. This is due to the fact
that as Smin goes up, the fundamental scales we probe go
down like 1/λ, resulting in a larger cross-section (13).

The full expression obtained from evaluating the integral
in (B3) is not especially illuminating, but was used to
verify the numerical results presented in section IV. For
χ � 1, the regime where E∗ is extremely close to the
maximum value for which we can estimate black hole

formation rates, N is well approximated by

N ' 2.38× 105 (Smin)2
4(n+ 2)2

3
χ3×(

1 + γ2 χ+
4n+ 5

2(n+ 1)
χ

)
. (B4)

For Smin = 102 and E∗ = 1018.8 eV (corresponding to
χ = 0.042) this approximation gives N = 2.55 × 106,
which is within about 2% of the result obtained directly
from (B3).
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