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Measuring the Shape 
of the Universe

Neil J. Cornish and Jeffrey R. Weeks

Introduction
Since the dawn of civilization, humanity has grap-
pled with the big questions of existence and cre-
ation. Modern cosmology seeks to answer some of
these questions using a combination of math-
ematics and measurement. The questions people
hope to answer include How did the universe
begin?, How will the universe end?, Is space finite
or infinite?. After a century of remarkable progress,
cosmologists may be on the verge of answering at
least one of these questions: Is space finite? Using
some simple geometry and a small NASA satellite
set for launch in the year 2000, the authors and
their colleagues hope to measure the size and
shape of space. This article explains the math-
ematics behind the measurement and the cos-
mology behind the observations.

Before setting out, let us first describe the broad
picture we have in mind. Our theoretical framework
is provided by Einstein’s theory of general relativity
and the hot big bang model of cosmology. General
relativity describes the universe in terms of geom-
etry, not just of space, but of space and time. Ein-
stein’s equation relates the curvature of this space-
time geometry to the matter contained in the
universe.

A common misconception is that the curvature
of space is all one needs to answer the question,
Is space finite or infinite?. While it is true that

spaces of positive curvature are necessarily finite,
spaces of negative or zero curvature may be either
finite or infinite. In order to answer questions
about the global geometry of the universe, we need
to know both its curvature and its topology. Ein-
stein’s equation tells us nothing about the topol-
ogy of spacetime, since it is a local equation relating
the spacetime curvature at a point to the matter
density there. To study the topology of the uni-
verse, we need to measure how space is connected.
In doing so we will not only discover whether space
is finite but also gain insight into physics beyond
general relativity.

The outline of our paper is as follows: We begin
with an introduction to big bang cosmology, fol-
lowed by a review of some basic concepts in geom-
etry and topology. With these preliminaries out of
the way, we go on to describe the plan to measure
the size and shape of the universe using detailed
observations of the afterglow from the big bang.

Big Bang Cosmology
The big bang model provides a spectacularly suc-
cessful description of our universe. The edifice is
supported by three main observational pillars: (1)
the uniform expansion of the universe, (2) the
abundances of the light elements, (3) the highly uni-
form background of microwave radiation.

The primary pillar was discovered by Edwin
Hubble in the early 1920s. By comparing the spec-
tral lines in starlight from nearby and distant galax-
ies, Hubble noticed that the vast majority of dis-
tant galaxies have their spectra shifted to the red,
or long wavelength, part of the electromagnetic
spectrum. Moreover, the redshift was seen to be
larger for more distant galaxies and to occur uni-
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formly in all directions. A simple explanation for
this observation is that the space between the
galaxies is expanding isotropically. By the princi-
ple of mediocrity—i.e., we do not live at a special
point in space—isotropic expansion about each
point implies homogenous expansion. Such a ho-
mogeneous and isotropic expansion can be char-
acterized by an overall scale factor a(t) that de-
pends only on time. As the universe expands, the
wavelength λ of freely propagating light is
stretched so that

(1) λ(t0) = λ(t)
a(t0)
a(t)

,

where t0 denotes the present day and t denotes
the time when the light was emitted. Astronomers
define the redshift z as the fractional change in the
wavelength:

(2) z =
λ(t0)− λ(t)

λ(t)
.

Since we expect atoms to behave the same way in
the past, we can use atomic spectra measured on
Earth to fix λ(t). Using equation (1), we can relate
the redshift to the size of the universe:

(3) a =
a0

(1 + z)
.

We have adopted the standard shorthand
a0 = a(t0) for denoting quantities measured today
and a = a(t) for denoting quantities measured at
a generic time t . By measuring the redshift of an
object, we can infer how big the universe was when
the light was emitted. The relative size of the uni-
verse provides us with a natural notion of time in
cosmology. Astronomers like to use redshift z as
a measure of time (z = 0 today, z =∞ at the big
bang), since, unlike the time t, the redshift is a mea-
surable quantity.

A photon’s energy E varies inversely with its
wavelength λ. A gas of photons at temperature T
contains photons with energies in a narrow band
centered at an energy E that is proportional to the
temperature. Thus T ∼ E ∼ λ−1, and the temper-
ature of a photon gas evolves as

(4)
T
T0

=
E
E0

=
λ0

λ
=
a0

a
= 1 + z .

This equation tells us that the universe should
have been much hotter in the past than it is today.
It should also have been much denser. If no par-
ticles are created or destroyed, the density of or-
dinary matter is inversely proportional to the oc-
cupied volume, so it scales as ρm ∼ a−3. If no
photons are created or destroyed, the number of
photons per unit volume also scales as a−3. How-
ever, the energy of each photon is decreasing in
accordance with equation (4), so that the energy
density of the photon gas scales as ργ ∼ a−4.

Starting at the present day, roughly 10 or 15 bil-
lion years after the big bang, let us go back through
the history of the universe. With time reversed we

see the universe contracting and the temperature
increasing. Roughly t ' 300,000 years from the
start, the temperature has reached several thou-
sand degrees Kelvin. Electrons get stripped from
the atoms, and the universe is filled with a hot
plasma. Further back in time, at t ' 1 second, the
temperature gets so high that the atomic nuclei
break up into their constituent protons and neu-
trons. Our knowledge of nuclear physics tells us
this happens at a temperature of 1010 ◦K. At this
point let us stop going back and let time move for-
ward again. The story resumes with the universe
filled by a hot, dense soup of neutrons, protons,
and electrons. As the universe expands, the tem-
perature drops. Within the first minute the tem-
perature drops to 109 ◦K, and the neutrons and
protons begin to fuse together to produce the nu-
clei of the light elements deuterium, helium, and
lithium. In order to produce the abundances seen
today, the nucleon density must have been 
roughly 1018 cm−3. Today we observe a nucleon
density of ∼ 10−6 cm−3, which tells us the universe
has expanded by a factor of roughly
(1018/10−6)1/3 = 108. Using equation (4), we 
therefore expect the photon gas today to be at a
temperature of roughly 10◦K. George Gamow made
this back-of-the-envelope prediction in 1946.

In 1965 Penzias and Wilson discovered a highly
uniform background of cosmic microwave radia-
tion at a temperature of ∼ 3◦K. This cosmic 
microwave background (CMB) is quite literally the
afterglow of the big bang. More refined nucleo-
synthesis calculations predict a photon tempera-
ture of ∼ 3◦K, and more refined measurements of
the CMB reveal it to have a black body spectrum
at a temperature of T0 = 2.728± 0.010 ◦K. Typical
cosmic microwave photons have wavelengths
roughly equal to the size of the letters on this
page.

The CMB provides strong evidence for the ho-
mogeneity and isotropy of space. If we look out in
any direction of the sky, we see the same mi-
crowave temperature to 1 part in 104. This implies
the curvature of space is also constant to 1 part
in 104 on large scales. This observed homogene-
ity lets cosmologists approximate the large-scale
structure of the universe, not by a general space-
time, but by one having well-defined spatial cross-
sections of constant curvature. In these Friedman-
Robertson-Walker (FRW) models the spacetime
manifold M is topologically the product R× Σ,
where the real line R represents time and Σ rep-
resents a 3-dimensional space of constant curva-
ture.1 The metric on the spacelike slice Σ(t) at
time t is given by the scale factor a(t) times the
standard metric of constant curvature

1Even though elementary particle theory suggests the
universe is orientable, both the present article and the re-
search program of the authors and their colleagues per-
mit nonorientable universes as well.
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current theories of the very early universe, in-
cluding the inflationary paradigm. Vacuum energy
with density ρΛ = 3Λ/8πG mimics the cosmolog-
ical constant Λ, which Einstein introduced into
his field equations in 1917 to avoid predicting an
expanding or contracting universe and later re-
tracted as “my greatest blunder.”

In a universe containing only ordinary matter
(Ωγ = ΩΛ = 0), the mass density scales as
ρ = ρ0(a0/a)3. Substituting this into equation (5),
one may find exact solutions for a(t). These solu-
tions predict that if Ω < 1, the universe will expand
forever; if Ω > 1, the expansion will slow to a halt
and the universe will recontract; and in the bor-
derline case Ω = 1, the universe will expand for-
ever, but at a rate ȧ approaching zero. These pre-
dictions make good intuitive sense: under the
definition of Ω as the ratio 8πGρ/3H2, Ω > 1
means the mass density ρ is large and/or the ex-
pansion rate H is small, so the gravitational at-
traction between galaxies will slow the expansion
to a halt and bring on a recollapse; conversely,Ω < 1 means the density is small and/or the ex-
pansion rate is large, so the galaxies will speed away
from one another faster than their “escape veloc-
ity”.

Cosmologists have suffered from a persistent
misconception that a negatively curved universe
must be the infinite hyperbolic 3-space H3. This
has led to the unfortunate habit of using the term
“open universe” to mean three different things:
“negatively curved”, “spatially infinite”, and “ex-
panding forever”. Talks have even been given on
the subject of “closed open models”, meaning fi-
nite hyperbolic 3-manifolds (assumed to be com-
plete, compact, and boundaryless). Fortunately, as
finite manifolds are becoming more widely un-
derstood, the terminology is moving toward the fol-
lowing. Universes of positive, zero, or negative
spatial curvature (i.e., k = +1,0,−1) are called
“spherical”, “flat”, or “hyperbolic” respectively.
Universes that recollapse, expand forever with
zero limiting velocity, or expand forever with pos-
itive limiting velocity are called “closed”, “criti-
cal”, or “open” respectively. (Warning: This conflicts
with topologists’ definitions of “closed” and
“open”.)

Messengers from the Edge of Time
In the early 1990s the COBE satellite detected small
intrinsic variations in the cosmic microwave back-
ground temperature, of order 1 part in 105. This
small departure from perfect isotropy is thought
to be due mainly to small variations in the mass
distribution of the early universe. Thus the CMB
photons provide a fossil record of the big bang. The
field of “cosmic paleontology” is set for a major
boost in the next decade as NASA plans to launch
the Microwave Anisotropy Probe (MAP) and ESA, the
Planck Surveyor. These satellites will produce clean

2The abbreviation Mpc denotes a megaparsec, or one
million parsecs. A parsec is one of those strange units in-
vented by astronomers to baffle the rest of us. One par-
sec defines the distance from Earth of a star whose an-
gular position shifts by 1 second of arc over a 6-month
period of observation. i.e., a parsec is defined by paral-
lax with two Earth-Sun radii as the baseline. A parsec is
about three light-years.

k = +1,0, −1. The sectional curvature is k/a(t)2, so
when |k| = 1, the scale factor a(t) is the curvature
radius; when k = 0, the scale factor remains arbi-
trary.

The function a(t) describes the evolution of the
universe. It is completely determined by Einstein’s
field equation. In general Einstein’s equation is a
tensor equation in spacetime, but for a homoge-
neous and isotropic spacetime it reduces to the or-
dinary differential equation

(5)
( ȧ
a

)2
+
k
a2 =

8πG
3

ρ .

Here G is Newton’s gravitational constant, ρ is the
mass-energy density, ȧ = da/dt ; and we have cho-
sen units that make the speed of light c = 1.

The first term in equation (5) is the Hubble pa-
rameter H = ȧ/a , which tells how fast the uni-
verse is expanding or contracting. More precisely,
it tells the fractional rate of change of cosmic dis-
tances. Its current value H0, called the Hubble con-
stant, is about 65 (km/sec)/Mpc.2 Thus, for exam-
ple, the distance to a galaxy 100 Mpc away would
be increasing at about 6,500 km/sec, while the
distance to a galaxy 200 Mpc away would be in-
creasing at about 13,000 km/sec.

Substituting H = ȧ/a into equation (5) shows
that when k = 0, the mass-energy density ρ must
be exactly 3H2/8πG. Similarly, when k = +1 (resp.
k = −1), the mass-energy density ρmust be greater
than (resp. less than) 3H2/8πG. Thus, if we can
measure the current density ρ0 and the Hubble
constant H0 with sufficient precision, we can de-
duce the sign k of the curvature. Indeed, if k 6= 0,
we can solve for the curvature radius

(6)

a =
1
H

√
k

8πGρ/3H2 − 1
=

1
H

√
kΩ− 1

, k 6= 0 ,

where the density parameter Ω is the dimension-
less ratio of the actual density ρ to the critical den-
sity ρc = 3H2/8πG.

The universe contains different forms of mass-
energy, each of which contributes to the total den-
sity:

(7) Ω =
ρ
ρc

=
ργ + ρm + ρΛ

ρc
= Ωγ +Ωm +ΩΛ ,

where ργ is the energy density in radiation, ρm is
the energy density in matter, and ρΛ is a possible
vacuum energy. Vacuum energy appears in many
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all-sky maps of the microwave sky with one fifth
of a degree resolution. In contrast, the COBE satel-
lite produced a very noisy map at ten degree res-
olution [1]. But where are the CMB photons com-
ing from, and what can they tell us about the
curvature and topology of space?

The first thing to realize about any observation
in cosmology is that one cannot talk about “where”
without also talking about “when”. By looking out
into space, we are also looking back in time, as all
forms of light travel at the same finite speed. Re-
call that about 300,000 years after the big bang,

at a redshift of z ' 1400, the entire uni-
verse was filled with an electron-ion-
photon plasma similar to the outer lay-
ers of a present-day star. In contrast to
a gas of neutral atoms, a charged plasma
is very efficient at scattering light and is
therefore opaque. We can see back to, but
not beyond, the surface of last scatter at
z ' 1200.

Once the plasma condensed to a gas,
the universe became transparent, and
the photons have been travelling largely
unimpeded ever since. They are distrib-
uted homogeneously throughout the uni-
verse and travel isotropically in all di-
rections. But the photons we measure
with our instruments are the ones ar-
riving here and now. Our position defines
a preferred point in space, and our age
defines how long the photons have been
travelling to get here. Since they have all
been travelling at the same speed for
the same amount of time, they have all
travelled the same distance. Conse-
quently, the CMB photons we measure
today originated on a 2-sphere of fixed
radius, with us at the center (see Figure
1). An alien living in a galaxy a billion
light years away would see a different
sphere of last scatter.

To be precise, the universe took a fi-
nite amount of time to make the transi-
tion from opaque to transparent (be-
tween a redshift of z ' 1400 and
z ' 1200), so the sphere of last scatter
is more properly a spherical shell with
a finite thickness. However, the shell’s
thickness is less than 1% of its radius, so
cosmologists usually talk about the
sphere of last scatter rather than the
shell of last scatter.

Now that we know where (and when)
the CMB photons are coming from, we
can ask what they have to tell us. In a per-
fectly homogeneous and isotropic uni-
verse, all the CMB photons would arrive
here with exactly the same energy. But
this scenario is ruled out by our very ex-

istence. A perfectly homogeneous and isotropic
universe expands to produce a perfectly homoge-
neous and isotropic universe. There would be no
galaxies, no stars, no planets, and no cosmolo-
gists. A more plausible scenario is to have small
inhomogeneities in the early universe grow via
gravitational collapse to produce the structures we
see today. These small perturbations in the early
universe will cause the CMB photons to have
slightly different energies: photons coming from
denser regions have to climb out of deeper po-
tential wells and lose some energy while doing so.

Figure 1. (Left) A block of space at the time of last scatter sliced open to
show the surface of last scatter seen by us today. The dot marks the point
where the Earth will eventually form. (Right) A cut-away view showing the
spherical shell we refer to as the last scattering surface.

Figure 2. The temperature variations in the CMB measured by the COBE
satellite. The northern and southern hemispheres of the celestial sphere
have been projected onto flat circular disks. Here the equator is defined by
the galactic plane of the Milky Way. The black pixels correspond to portions
of the sky where the data were badly contaminated by galactic emissions.
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There will also be line-of-sight ef-
fects as photons coming from dif-
ferent directions travel down dif-
ferent paths and experience
different energy shifts. However,
the energy shifts en route are typ-
ically much smaller than the in-
trinsic energy differences im-
printed at last scatter. Thus, by
making a map of the microwave
sky, we are making a map of the
density distribution on a 2-di-
mensional slice through the early
universe. Figure 2 shows the map
produced by the COBE satellite [1].
In the sections that follow we will
explain how we can use such maps
to measure the curvature and
topology of space. But first we need
to say a little more about geometry and topology.

Geometry and Topology

Topology Determines Geometry
For ease of illustration, we begin with a couple of
2-dimensional examples. A flat torus (Figure 3a)
may be constructed as either a square with oppo-
site sides identified (the “fundamental domain” pic-
ture) or as the Euclidean plane modulo the group
of motions generated by x→ x + 1 and y → y + 1
(the “quotient picture”). Similarly, an orientable
surface of genus two (Figure 3b) may be con-
structed as either a regular hyperbolic octagon
with opposite sides identified or as the hyperbolic
plane modulo a certain discrete group of motions.
In this fashion, every closed surface may be given
a geometry of constant curvature.

Note that in the construction of the torus the
square’s four corners come together at a single
point in the manifold itself, so it is crucial that the
square’s angles be exactly (2π )/4 = π/2. In other
words, it is crucial that we start with a Euclidean
square; a hyperbolic square (with corner angles less
than π/2) or a spherical square (with corner an-
gles greater than π/2) would not do. Similarly, in
the construction of the genus-two surface, the oc-
tagon’s eight corners come together at a single
point in the manifold itself, so it is crucial that the
angles be exactly (2π )/8 = π/4. A Euclidean or
spherical octagon would not do. In fact, even a
smaller (resp. larger) hyperbolic octagon would
not do, because its angles would be greater (resp.
less) than π/4. More generally, in any constant cur-
vature surface the Gauss-Bonnet theorem∫
k |dA| = 2πχ forces the sign of the curvature k

to match the sign of the Euler number χ.
The constructions of Figure 3 generalize to three

dimensions. For example, a 3-torus may be con-
structed as either a cube with opposite faces iden-
tified or as the 3-dimensional Euclidean space E3

modulo the group generated by x→ x + 1 ,
3In the hyperbolic case this result is a special case of the
Mostow Rigidity Theorem.

y → y + 1, z → z + 1. Similar constructions yield
hyperbolic and spherical manifolds. In the spher-
ical and hyperbolic cases, the connection between
the geometry and the topology is even tighter than
in two dimensions. For spherical and hyperbolic
3-manifolds, the topology completely determines
the geometry, in the sense that if two spherical or
hyperbolic manifolds are topologically equivalent
(homeomorphic), they must be geometrically iden-
tical (isometric) as well.3 In other words, spherical
and hyperbolic 3-manifolds are rigid. However,
this rigidity does not extend to Euclidean 3-man-
ifolds: a 3-torus made from a cube and a 3-torus
made from a parallelepiped are topologically equiv-
alent but geometrically distinct. The final section
of this article will explain how the rigidity of a
closed spherical or hyperbolic universe may be
used to refine the measured radius of the last scat-
tering sphere.

When we look out into the night sky, we may
be seeing multiple images of the same finite set of
galaxies, as Figure 3 suggests. For this reason cos-
mologists studying finite universes make heavy use
of the “quotient picture” described above, model-
ling a finite universe as hyperbolic 3-space, Eu-
clidean 3-space, or the 3-sphere, modulo a group
of rigid motions. If we could somehow determine
the position and orientation of all images of, say,
our own galaxy, then we would know the group of
rigid motions and thus the topology. Unfortu-
nately, we cannot recognize images of our own
galaxy directly. If we are seeing it at all, we are see-
ing it at different times in its history, viewed from
different angles; and we do not even know what it
looks like from the outside, in any case. Fortu-
nately, we can locate the images of our own galaxy
indirectly, using the cosmic microwave background.
The section “Observing the Topology of the Uni-
verse” will explain how.

Figure 3. (a, left) Flat torus. (b, right) Closed hyperbolic manifold.
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stant H0 and the density parameter Ω0. If Ω0 = 1,
space is flat. Otherwise, equation (6) shows the cur-
vature radius a0. The parameters H0 and Ω0 may
be deduced from observations of “standard can-
dles” or the CMB.
Standard Candle Approach
Astonomers observe objects like Cepheid variables
and type Ia supernovae whose intrinsic luminos-
ity is known. In a static Euclidean space the ap-
parent brightness of such standard candles would
fall off as the square of their distance from us. In
an expanding, curved universe the distance-bright-
ness relationship is more complicated. Different
values of H0 and Ω0 predict different relation-
ships between a standard candle’s apparent bright-
ness F and its redshift z . Sufficiently good ob-
servations of F and z for sufficiently good
standard candles will tell us the values of H0 andΩ0 and thence the curvature radius a0.

The results of standard candle observations are
still inconclusive. Some recent measurements [2]
have yielded results inconsistent with the as-
sumption of a matter-dominated universe and
point instead to a vacuum energy ΩΛ exceeding the
density Ωm of ordinary matter! More refined mea-
surements over the next few years should settle
this issue.
CMB Approach
The temperature fluctuations in the CMB (recall Fig-
ure 2) are, to a mathematician, a real-valued func-
tion on a 2-sphere. As such they may be decom-
posed into an infinite series of spherical harmonics,
just as a real-valued function on a circle may be
decomposed into an infinite series of sines and
cosines. And just as the Fourier coefficients of a
sound wave provide much useful information
about the sound (enabling us to recognize it as, say,
the note A[ played on a flute), the Fourier coeffi-
cients of the CMB provide much useful informa-
tion about the dynamics of the universe. In par-
ticular, they reflect the values of H0, Ω0, ΩΛ, and
other cosmological parameters.

In the year 2002, when data from the MAP satel-
lite become available, one of two things will hap-
pen: either the spectrum of Fourier coefficients will
match some choice of H0, Ω0, etc., and we will
know the basic cosmological parameters to un-
precedented accuracy, or Mother Nature will sur-
prise us with a spectrum inconsistent with our
current understanding of big bang physics. The
reader may decide which possibility is more ap-
pealing.

Observing the Topology of the Universe
In a finite universe we may be seeing the same set
of galaxies repeated over and over again. Like a hall
of mirrors, a finite universe gives the illusion of
being infinite. The illusion would be shattered if
we could identify repeated images of some easily
recognizable object. The difficulty is finding ob-

1468 NOTICES OF THE AMS VOLUME 45, NUMBER 11

Geometric Models
Elementary linear algebra provides a consistent
way to model the 3-sphere, hyperbolic 3-space,
and Euclidean 3-space.

Our model of the 3-sphere S3 is the standard
one. Define Euclidean 4-space E4 to be the 
vector space R4 with the usual inner product
〈u, v〉 = u0v0 + u1v1 + u2v2 + u3v3. The 3-sphere is
the set of points one unit from the origin, i.e.,
S3 = {v | 〈v, v〉 = 1}. The standard 4× 4 rotation
and reflection matrices studied in linear algebra
naturally represent rigid motions of S3, both in the-
oretical discussions and in computer calculations.
These matrices generate the orthogonal group
O(4).

Our model of the hyperbolic 3-space H3 is 
formally almost identical to our model of the 
3-sphere. Define Minkowski space E1,3 to be 
the vector space R4 with the inner product
〈u, v〉 = −u0v0 + u1v1 + u2v2 + u3v3 (note the
minus sign!). The set of points whose squared “dis-
tance” from the origin is −1 is, to our Euclidean
eyes, a hyperboloid of two sheets. Relative to the
Minkowski space metric, though, each sheet is a
copy of hyperbolic 3-space. Thus, our formal def-
inition is H3 = {v | 〈v, v〉 = −1, v0 > 0} . The rigid
motions of H3 are represented by the “orthogo-
nal matrices” that preserve both the Minkowski
space inner product and the sheets of the hyper-
boloid. They comprise an index-2 subgroup of the
Lorentz group O(1,3).

The tight correspondence between our models
for S3 and H3 extends only partially to the Eu-
clidean 3-space E3. Borrowing a technique from the
computer graphics community, we model E3 as the
hyperplane at height 1 in E4 and represent its
isometries as the subgroup of GL4(R) that takes
the hyperplane rigidly to itself.
Natural Units
Spherical geometry has a natural unit of length.
Commonly called a radian, it is defined as the 3-
sphere’s radius in the ambient Euclidean 4-space
E4. Similarly, hyperbolic geometry also has a nat-
ural unit of length. It too should be called a radian,
because it is defined as (the absolute value of) the
hyperbolic space’s radius in the ambient Minkowski
space E1,3. The scale factor a(t) introduced in the
“Big Bang Cosmology” section connects the math-
ematics to the physics: it tells, at each time t , how
many meters correspond to one radian. In both
spherical and hyperbolic geometry the radian is
more often called the curvature radius, and quan-
tities reported relative to it are said to be in cur-
vature units. Euclidean geometry has no natural
length scale, so all measurements must be re-
ported relative to some arbitrary unit.

Measuring the Curvature of the Universe
To determine the curvature of the universe, cos-
mologists seek accurate values for the Hubble con-
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jects that can be recognized at different times
and at different orientations. A more promis-
ing approach is to look for correlations in the
cosmic microwave background radiation. The
CMB photons all originate from the same epoch
in the early universe, so there are no aging ef-
fects to worry about. Moreover, the shell they
originate from is very thin, so the surface of
last scatter looks the same from either side. The
importance of this second point will soon be-
come clear.

Consider for a moment two different views
of the universe: one from here on Earth and the
other from a faraway galaxy. As mentioned
earlier, an alien living in that faraway galaxy
would see a different surface of last scatter (see
Figure 4). The alien’s CMB map would have a
different pattern of hot and cold spots from
ours. However, so long as the alien is not too
far away, our two maps will agree along the cir-
cle defined by the intersection of our last scat-
tering spheres. Around this circle we would
both see exactly the same temperature pat-
tern, as the photons came from exactly the
same place in the early universe. Unless we get
to exchange notes with the alien civilization,
this correlation along the matched circles plays
no role in cosmology.

But what if that faraway galaxy is just an-
other image of the Milky Way, and what if we
are the aliens? (Recall the flat torus of Figure
3a, whose inhabitants would have the illusion
of living in an infinite Euclidean plane con-
taining an infinite lattice of images of each ob-
ject.) Cornish, Spergel, and Starkman [3] real-
ized that in a finite universe the matched circles
can transform our view of cosmology, for then
the circles become correlations on a single
copy of the surface of last scatter: i.e., the
matched circles must appear at two different
locations on the CMB sky. For example, in a uni-
verse with 3-torus topology we would see
matched circles in opposite directions on the sky.
More generally, the pattern of matched circles
varies according to the topology. The angular di-
ameter of each circle pair is fixed by the distance
between the two images. Images that are displaced
from us by more than twice the radius of the last
scattering sphere will not produce matched circles.
By searching for matched circle pairs in the CMB,
we may find proof that the universe is finite.

At present we do not have a good enough CMB
map to perform the search, but this will soon
change. The CMB map produced by COBE (repro-
duced here in Figure 2) has a resolution of 10 de-
grees, and 30 percent of what one sees is noise, not
signal. However, by 2002 the MAP satellite will
have furnished us with a far superior map at bet-
ter than 0.5◦ resolution. In the interim we can test
our search algorithms on computer-generated sky
maps. One example of a synthetic sky map is

shown in Figure 5. The model has a cubical 3-torus
topology and a scale invariant spectrum of density
perturbations. The nearest images are separated
by a distance equal to the radius of the last scat-
tering surface. Consequently, there are thirteen
matched circle pairs and three matched points
(circles with angular diameter 0). The matched cir-
cles are indicated by black lines. With good eyes
and a little patience, one can follow the tempera-
ture pattern around each pair of matched circles
and convince oneself that the temperatures at cor-
responding points are correlated.

An automated search algorithm has been de-
veloped [3] to search for matched circle pairs. The
computer searches over all possible positions, di-
ameters, and relative phases. On a modern super-
computer the search takes several hours at 1◦ res-
olution. Our prospects for finding matched circles
are greatly enhanced if the universe is highly

Figure 4. (Left) A block of space at the time of last scatter sliced open
to show two different surfaces of last scatter. The dot marks our
vantage point, and the triangle marks the alien’s vantage point.

(Right) An outside view showing how our shell of last scatter
intersects the alien’s.

Figure 5. The northern and southern hemispheres of the CMB sky in a
3-torus universe. The thirteen matched circle pairs are marked by

black lines.
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curved. The rigidity described in the previous sec-
tion means that the distance between images is
fixed by the curvature scale and the discrete group
of motions. We will be most interested in hyper-
bolic models, since observations suggest Ω0 ≈ 0.3.
In most low-volume hyperbolic models our near-
est images are less than one radian away. The cru-
cial quantity then becomes the radius of the last
scattering surface expressed in curvature units:

(8) η =
Rsls
a0

' arcsinh
(

2
√

1−Ω0Ω0

)
.

In a universe with Ω0 = 0.3 we find η ≈ 2.42, so
all images less than 2η ≈ 4.84 radians away will
produce matched circle pairs. However, we may
have difficulty reliably detecting matched circles
with angular diameters below θ = 10◦; we there-
fore restrict ourselves to images within a ball of
radius 4.6 radians. In the universal cover H3, a
sphere of radius 4.6 encloses a volume of about
15,000; so if the universe is a hyperbolic manifold
of volume less than about 100, there will be an
abundance of matched circles.

Reconstructing the Topology of the
Universe
If at least a few pairs of matching circles are found,
they will implicitly determine the global topology
of the universe [4]. This section explains how to
convert the list of circle pairs to an explicit de-
scription of the topology, both as a fundamental
domain and as a quotient (cf. the section “Geom-
etry and Topology”). The fundamental domain pic-
ture is more convenient for computing the man-
ifold’s invariants (such as its volume, homology,
etc.) and for comparing it to known manifolds,
while the quotient picture is more convenient for
verifying and refining the astronomical obser-
vations. Assume for now that space is finite and
that all circles have been observed with perfect
accuracy.

The fundamental domain we construct is a spe-
cial type known as a Dirichlet domain. Imagine in-
flating a huge spherical balloon whose center is
fixed on our galaxy and whose radius steadily in-
creases. Eventually the balloon will wrap around
the universe and meet itself. When it does, let it
keep inflating, pressing against itself just as a real
balloon would, forming a planar boundary. When
the balloon has filled the entire universe, it will have
the form of a polyhedron. The polyhedron’s faces
will be identified in pairs to give the original man-
ifold.

Constructing a Dirichlet domain for the uni-
verse, starting from the list of circle pairs, is quite
easy. Figure 6 shows that each face of the Dirich-
let domain lies exactly halfway between its center
(our galaxy) and some other image of its center. The
previous section showed that each circle-in-the-sky
also lies exactly halfway between the center of the
SLS (our galaxy) and some other image of that cen-
ter. Thus, roughly speaking, the planes of the cir-
cles and the planes of the Dirichlet domain’s faces
coincide! We may construct the Dirichlet domain
as the intersection of the corresponding half
spaces.4

Finding the rigid motions (corresponding to the
quotient picture in the “Geometry and Topology”
section) is also easy. The MAP satellite data will de-
termine the geometry of space (spherical, Euclid-
ean, or hyperbolic) and the radius for the SLS, as
well as the list of matched circles. If space is spher-
ical or hyperbolic, the radius of the SLS will be given
in radians (cf. the subsection “Natural Units”); if
space is Euclidean, the radius will be normalized
to 1. In each case, the map from a circle to its mate
defines a rigid motion of the space, and it is
straightforward to work out the corresponding
matrix in O(4), O(1,3), or GL4(R) (recall the sub-
section “Geometric Models”).

Why bother with the matrices? Most impor-
tantly, they can verify that the underlying data are
valid. How do we know that the MAP satellite mea-
sured the CMB photons accurately? How do we
know that our data analysis software does not
contain bugs? If the matrices form a discrete group,
then we may be confident that all steps in the
process have been carried out correctly, because
the probability that bad data would define a dis-
crete group (with more than one generator) is zero.
In practical terms, the group is discrete if the prod-
uct of any two matrices in the set is either another

4All but the largest circles determine planes lying wholly
outside the Dirichlet domain, which are superfluous in the
intersection of half spaces. Conversely, if some face of the
Dirichlet domain lies wholly outside the SLS, its “corre-
sponding circle” will not exist, and we must infer the face’s
location indirectly. The proof that the Dirichlet domain cor-
rectly models the topology of the universe is, of course,
simplest in the case that all the Dirichlet domain’s faces
are obtained directly from observed circles.

Figure 6. To construct a Dirichlet domain,
inflate a balloon until it fills the universe.
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matrix in the set (to within known error bounds)
or an element that is “too far away” to yield a cir-
cle. More spectacularly, the matrices correspond-
ing to the dozen or so largest circles should pre-
dict the rest of the data set (modulo a small number
of errors), giving us complete confidence in its va-
lidity.

We may take this reasoning a step further and
use the matrices to correct errors. Missing matri-
ces may be deduced as products of existing ones.
Conversely, false matrices may readily be recog-
nized as such, because they will not fit into the
structure of the discrete group; that is, multiply-
ing a false matrix by almost any other matrix in
the set will yield a product not in the set. This ap-
proach is analogous to surveying an apple orchard
planted as a hexagonal lattice. Even if large por-
tions of the orchard are inaccessible (perhaps they
are overgrown with vines), the locations of the
hidden trees may be deduced by extending the
hexagonal pattern of the observable ones. Con-
versely, if a few extra trees have grown between
the rows of the lattice, they may be rejected for not
fitting into the prevailing hexagonal pattern. Note
that this approach will tolerate a large number of
inaccessible trees, just so the number of extra
trees is small. This corresponds to the types of er-
rors we expect in the matrices describing the real
universe: the number of missing matrices will be
large because microwave sources within the Milky
Way overwhelm the CMB in a neighborhood of the
galactic equator, but the number of extra matrices
will be small (the parameters in the circle match-
ing algorithm are set so that the expected number
of false matches is 1). In practice, the Dirichlet do-
main will not be computed directly from the cir-
cles, as suggested above, but from the matrices, to
take advantage of the error correction.

Like all astronomical observations, the mea-
sured radius Rsls of the sphere of last scatter will
have some error. Fortunately, if space is spherical
or hyperbolic, we can use the rigidity of the geom-
etry to remove most of it! Recall that the hyper-
bolic octagon in Figure 3b had to be just the right
size for its angles to sum to 2π. The Dirichlet do-
main for the universe (determined by the circle
pairs; cf. above) must also be just the right size for
the solid angles at its vertices to sum to a multi-
ple of 4π. More precisely, the face pairings bring
the vertices together in groups, and the solid an-
gles in each group must sum to exactly 4π. If the
measured solid angle sums are consistently less
than (resp. greater than) 4π, then we know that the
true value of Rsls must be slightly less than (resp.
greater than) the measured value, and we revise it
accordingly. The refined value of Rsls lets us re-
fine Ω0 as well, because the two variables depend
on one another.
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About the Cover
An artist’s impression of a finite universe

showing galaxies inside a fundamental domain
of the Weeks manifold. The galaxy field is taken
from the Hubble Deep Field image (http://www.
stsci.edu/ftp/science/hdf/hdf.html)—our deep-
est and most detailed optical view of the uni-
verse. It is possible that one of the galaxies seen
in this image is our own Milky Way, and the light
we receive from it has made a complete trip
around the universe.
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