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Abstract: We study the connection between quark and lepton mass matrices in a super-

symmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical

quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pat-

tern of mass matrices and high-energy CP violating phases. The hierarchy of up and down

quark masses determines the CKM matrix and most charged lepton and neutrino masses

and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of

the up and down quark mass hierarchies. The effective CP violating phases in the quark

sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can

accomodate naturally sin θ23 ∼ 1, sin θ13 . 0.1 and m1 . m2 ∼
√

∆m2
sol < m3 ∼

√
∆m2

atm.
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1. Introduction

Grand unified theories (GUTs) appear to be the most promising framework [1, 2] to address

the still challenging question of quark and lepton masses and mixings. During the past

years new results from neutrino physics have shed new light on this problem, and the large

differences between the mass hierarchies and mixing angles of quarks, charged leptons and

neutrinos impose strong constraints on unified extensions of the Standard Model (SM) [3, 4].

Massive neutrinos are most easily incorporated in theories with right-handed neutrinos,

which leads to SO(10) as preferred GUT gauge group [5, 6].

Higher-dimensional theories offer new possibilities to describe gauge symmetry break-

ing, the notorious doublet-triplet splitting and also fermion masses. A simple and elegant

scheme is provided by orbifold compactifications which have recently been considered for

GUT models in five and six dimensions [7 – 12]. In this paper we analyse in detail the con-

nection between quark and lepton mass matrices in the six-dimensional (6D) GUT model

suggested in [13], for which also proton decay [14], supersymmetry breaking [15] and gauge

coupling unification [16] have been studied. An alternative SO(10) model in five and six

dimensions has previously been studied in [17]. For a recent discussion of CP violation in

a 5D orbifold GUT model, see [18].
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An important ingredient of orbifold GUTs is the presence of split bulk multiplets whose

mixings with complete GUT multiplets, localised at the fixed points, can significantly

modify ordinary GUT mass relations. This extends the known mechanism of mixing with

vectorlike multiplets [19 – 21]. Such models have a large mixing of left-handed leptons and

right-handed down quarks, while small mixings of the left-handed down quarks. In this

way large mixings in the leptonic charged current are naturally reconciled with small CKM

mixings in the quark current.

Our model of quark and lepton masses and mixings relates different orders of magnitude

whereas factors O(1) remain undetermined. Hence, we can only discuss qualitative features

of quark and lepton mass matrices. Recently, orbifold compactifications of the heterotic

string have been constructed which can account for the standard model in four dimensions

and which have a six-dimensional GUT structure as intermediate step very similar to

familiar orbifold GUT models [22 – 24]. In such models the currently unknown O(1) factors

are in principle calculable, which would then allow for quantitative predictions.

The goal of the present paper is twofold: As a typical example, we first study the

model [13] in more detail and explicitly compute the mass eigenstates, masses and mixing

angles. Second, we investigate the question of CP violation, both in the quark and lepton

sector and possible connections between the two. In previous studies, CP violation has

mostly been neglected assuming that, barring fortunate cancellations, the phases and mix-

ings are practically independent. Nevertheless this question and the flavour structure are

strongly interconnected, and we will see that a specific pattern of mass matrices can give

a distinct signature also in the CP violation invariants.

This paper is organised as follows: In section 2 we describe the 6D orbifold GUT

model and the diagonalisation of the mass matrices defining the low energy SM fermions.

In section 3 we discuss the CP violation in the quark sector, whereas section 4 is devoted to

the CP violation in the leptonic sector. Conclusions are given in section 5. Two appendices

provide details to the computation of the mass eigenstates and CP violation in extensions

of the SM.

2. SO(10) unification in six dimensions

We study an SO(10) GUT model in 6D with N = 1 supersymmetry compactified on the

orbifold T2/(ZI
2×ZPS

2 ×ZGG
2 ) [11, 12]. The theory has four fixed points, OI, OPS, OGG and

Ofl, located at the four corners of a ‘pillow’ corresponding to the two compact dimensions

(cf. figure 1). The extended supersymmetry is broken at all fixed points; in addition,

the gauge group SO(10) is broken to its three subgroups GPS = SU(4) × SU(2) × SU(2);

GGG = SU(5) × U(1)X ; and flipped SU(5), Gfl = SU(5)′ × U(1)′, at OPS, OGG and Ofl,

respectively. The intersection of all these GUT groups yields the standard model group

with an additional U(1) factor, GSM′ = SU(3) × SU(2) × U(1)Y × U(1)Y ′ , as unbroken

gauge symmetry below the compactification scale.

The field content of the theory is strongly constrained by imposing the cancellation of

irreducible bulk and brane anomalies [25]. The model proposed in ref. [13] contains three

– 2 –
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Oi [SO(10)]

Ogg [Ggg] Ofl [Gfl]

Ops [Gps]

Figure 1: The three SO(10) subgroups at the corresponding fixed points (branes) of the orbifoldT2/(ZI

2 × ZPS
2 × ZGG

2 ).

spinors ψi(16), i = 1 . . . 3, as brane fields as well as six vectorial fields Hj(10), j = 1 . . . 6,

and two pairs of spinors, Φ(16) + Φc(16) and φ(16) + φc(16) as bulk hypermultiplets.

The massless zero modes N(Φ) and N c(Φc) acquire vacuum expectation values (vevs),

vN = 〈N〉 = 〈N c〉, breaking B − L and thus GSM′ to GSM. The breaking scale is close to

the compactification scale so that v2
N/M∗ ∼ 1014 GeV, where M∗ is the cutoff of the 6D

theory. At the weak scale, the doublets Hd(H1) and Hu(H2) acquire vevs, v1 = 〈Hd〉 and

v2 = 〈Hu〉, breaking the electroweak symmetry.

The three sequential 16-plets are located on the three branes where SO(10) is broken

to its three GUT subgroups; in particular, we place ψ1 at OGG, ψ2 at Ofl and ψ3 at OPS.

The parities of H5, H6, φ, and φc are chosen such that their zero modes,

L(φ) =

(
ν4

e4

)
, Lc(φc) =

(
νc
4

ec
4

)
, dc

4(H5) , d4(H6) , (2.1)

have the quantum numbers of a lepton doublet and antidoublet as well as anti-down and

down-quark singlets, respectively. Both L(φ) and Lc(φc) are SU(2)L doublets. Together

these zero modes act as a fourth vectorial generation of down quarks and leptons.

The three ‘families’ ψi are separated by distances large compared to the cutoff scale

M∗. Hence, they can only have diagonal Yukawa couplings with the bulk Higgs fields;

direct mixings are exponentially suppressed. The brane fields, however, can mix with the

bulk zero modes for which we expect no suppression. These mixings take place only among

left-handed leptons and right-handed down quarks, leading to a characteristic pattern of

mass matrices [13, 14].

The mass terms assume the characteristic form,

W = uim
u
i uc

i + dαmd
αβdc

β + ec
αme

αβeβ + νc
αmD

αβνβ + 1
2 νc

i m
N
i νc

i , (2.2)

where latin indices only span 1, 2, 3, while greak indices include the forth generation states.

The up quark and Majorana neutrino mass matrices, mu and mN , are diagonal 3 × 3

matrices,

mu =




hu
11v2 0 0

0 hu
22v2 0

0 0 hu
33v2


 , mN =




hN
11

v2

N

M∗

0 0

0 hN
22

v2

N

M∗

0

0 0 hN
33

v2

N

M∗


 . (2.3a)
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Since νc
4 is part of an SU(2)L doublet, it cannot couple to the other SM singlets in ψi

via the B − L breaking field. Furthermore, there is no other coupling giving it a direct

Majorana mass.

The Dirac mass matrices of down quarks, charged leptons and neutrinos, md, me and

mD, respectively, are 4 × 4 matrices instead, due to the mixing with the bulk field zero

modes,

md =




hd
11v1 0 0 gd

1
vN

M∗

v1

0 hd
22v1 0 gd

2
vN

M∗

v1

0 0 hd
33v1 gd

3
vN

M∗

v1

f1vN f2vN f3vN Md


 , (2.3b)

me =




hd
11v1 0 0 he

14v1

0 he
22v1 0 he

24v1

0 0 hd
33v1 he

34v1

M l
1 M l

2 M l
3 M l

4


 , mD =




hD
11v2 0 0 hD

14v2

0 hu
22v2 0 hD

24v2

0 0 hu
33v2 hD

34v2

M l
1 M l

2 M l
3 M l

4


 , (2.3c)

up to corrections O(v2
N/M2

∗ ). The diagonal elements satisfy four GUT relations which

correspond only to the local unbroken groups, i.e., SU(5), flipped SU(5) and Pati-Salam

subgroups of SO(10). The hypothesis of a universal strength of Yukawa couplings at each

fixpoint leads to the identification of the diagonal and off-diagonal elements of mu/ tan β,

md, me, and mD/ tan β, where tan β = v2/v1, up to coefficients of order one. This implies

an approximate top-bottom unification with large tanβ and a parametrisation of quark

and lepton mass hierarchies in terms of the six parameters µi and µ̃i.

The crucial feature of the matrices md, me and mD are the mixings between the six

brane states and the two bulk states. The first three rows of the matrices are proportional

to the electroweak scale. The corresponding Yukawa couplings have to be hierarchical

in order to obtain a realistic spectrum of quark and lepton masses. This corresponds to

different strengths of the Yukawa couplings at the different fixed points of the orbifold.

The fourth row, proportional to Md, M l and vN , is of order the unification scale and, we

assume, non-hierarchical.

The mass matrices md, me and mD are of the common form

m =




µ1 0 0 µ̃1

0 µ2 0 µ̃2

0 0 µ3 µ̃3

M̃1 M̃2 M̃3 M̃4


 , (2.4)

where µi, µ̃i = O(v1,2) and M̃i = O(MGUT). This matrix can be diagonalised using the

unitary matrices

m = U4U3D V †
3 V †

4 (2.5)

where the matrices U4 and V4 single out the heavy mass eigenstate, that can then be

integrated away, while U3 and V3 act only on the SM flavour indices and perform the final

– 4 –
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diagonalisation also in the 3×3 subspace. The explicit expressions for the mixing matrices

and the mass eigenstates are given in appendix A.

The parameters in the matrix eq. (2.4) are generally complex; however, we can absorb

seven phases with appropriate field redefinitions and choose the remaining three physical

phases to be contained into the diagonal parameters µi,

m =




|µ1| eiθ1 0 0 µ̃1

0 |µ2| eiθ2 0 µ̃2

0 0 |µ3| eiθ3 µ̃3

M̃1 M̃2 M̃3 M̃4


 . (2.6)

This is the maximal number of physical phases for four generations of Dirac fermions, given

as usual by (n − 1)(n − 2)/2 for n generations, so our texture above does not reduce the

CP violation from the typical n = 4 case. We will see that the phases survive in the low

energy parameters, but that only one combination defines the single phase characteristic

of three generations.

With this choice, the matrix V4 is real, while U4 contains complex parameters; however,

the imaginary part is suppressed by |µi| /M̃ so that their effect on the low energy CP

violation is negligible as long as the mass of the heavy eigenstate is large compared to the

electroweak scale. From the unification of the gauge couplings, we expect indeed M̃ to be

of the order of the GUT scale [16]. Then the discussion of the low energy CP violation,

which would in general be characterised by many CP invariants [26, 27], reduces to the

case of three light generations (see appendix B).

The effective mass matrix is given by m̂, the 3 × 3 part of

m′ = U †
4mV4 =

(
m̂ 0

0 M̃

)
+ O

(
v2

M̃2

)
, m̂ =




µ1(V4)1j + µ̃1(V4)4j

µ2(V4)2j + µ̃2(V4)4j

µ3(V4)3j + µ̃3(V4)4j


 ; (2.7)

in terms of the parameters in eq. (2.4), it reads

m̂ =




µ1
fM4q

fM2

1
+fM2

4

− µ̃1
fM1q

fM2

1
+fM2

4

0 −µ1

fM1

q
fM2

2
+fM2

3

fM
q

fM2

1
+fM2

4

− µ̃1

fM4

q
fM2

2
+fM2

3

fM
q

fM2

1
+fM2

4

− µ̃2
fM1q

fM2

1
+fM2

4

µ2
fM3q

fM2

2
+fM2

3

µ2

fM2

q
fM2

1
+fM2

4

fM
q

fM2

2
+fM2

3

− µ̃2

fM4

q
fM2

2
+fM2

3

fM
q

fM2

1
+fM2

4

− µ̃3
fM1q

fM2

1
+fM2

4

−µ3
fM2q

fM2

2
+fM2

3

µ3

fM3

q
fM2

1
+fM2

4

fM
q

fM2

2
+fM2

3

− µ̃3

fM4

q
fM2

2
+fM2

3

fM
q

fM2

1
+fM2

4




.

As any matrix, m̂ can be transformed into upper triangular form just by basis redefinition

on the right,

m = m̂ V̂3 =




γµ1 µ1 βµ1

0 µ2 αµ2

0 0 µ3


 . (2.8)

– 5 –
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This form is particularly suitable in the case of the down quarks, where V̂3 acts on the

right-handed quarks and disappears from the low energy Lagrangian due to the absence

of right-handed current interactions. Note that we can reshuffle the phases, reabsorbing

three of them into the unitary transformation V̂3, but we are still left with three complex

parameters. We can exploit this freedom to obtain real diagonal elements µ2, µ3 and γµ1,

while α, β, and µ1 remain complex.

On the other hand, we can still redefine two phases on the left-hand side, keeping an

overall phase free, with a diagonal matrix

PL3 = diag
(
e−iζ1 , e−iζ2 , 1

)
. (2.9)

This transformation allows us to shift the phase of µ1 into γ, which will be convenient

later in the limit where γ vanishes. Again, such a phase shift does not reduce the number

of complex parameters in the down quark matrix, which remains three. Moreover, this

reparametrisation does not change the CKM matrix, since the up quark mass matrix is

diagonal and so such phase transformation can be compensated by an identical one for

both ui and uc
i .

The matrix V̂3 differs from the upper 3×3 part of the diagonalising matrix V3 = V̂3V
′
3 ;

however, they are very similar in the hierarchical case. The relation between these two

can be found in appendix A, together with the general expression for U3, the 3× 3 part of

which is the CKM matrix.

For the leptons, it is the matrix V4V3 that acts on the left-handed states, so the

mismatch between the charged leptons and neutrinos (see eq. (2.3c)) basis appears in the

charged current interaction and the definition of the flavour neutrino eigenstates. However,

the matrix V4 which contains large mixing angles and rotates away the heavy eigenstate

is the same for charged leptons and neutrinos since the heavy state is an SU(2)L doublet.

Therefore the PMNS matrix will be given only by the mismatch between the V̂3 ≃ V3

matrices for charged leptons and neutrinos.

The complete expressions for the parameters in m are given in appendix A; in this

section, we will only consider the limit of small µ1 as well as small µ̃1 and/or µ2. For

µ1 = µ̃1 = 0, the first row simply vanishes, whereas for µ1 = µ2 = 0, the two first rows of

the mass matrix are aligned (see eq. (2.6)). Therefore both cases correspond to vanishing

down-quark and electron mass.

Since µ̃1/µ̃2 gives Vus, we focus on the case µ1 = µ2 = 0, where1

α = β =
µ̃2

µ2

(
µ̃3

µ3
− M̃4

M̃

µ∗
3M̃3 + µ̃3M̃4

µ3M̃

)
, γ = 0 ,

µ1

µ̃1
=

µ2

µ̃2
=

|µ3|
µ3

√
M̃2

1 + M̃2
2

M̃
. (2.10)

1As mentioned above, it is instructive to choose the basis in which µ1 is real and the vanishing parameter

γµ1 complex. Then it is obvious that we are left with only two complex parameters in m, namely α and β,

containing the same phase.

– 6 –
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The eigenvalues of the heavier states are given by

m2
b = µ2

3 , (2.11a)

m2
s = µ2

2 + |µ1|2 = µ2
2

(
1 +

µ̃2
1

µ̃2
2

)
∼ µ2

2 , where
µ̃1

µ̃2
∼ Vus . (2.11b)

In this limit, only one single physical CP violating phase survives, even in the 4×4 picture;

it is contained in µ3 and so in α and β (see eq. (2.10)). We will see, however, that this

single phase is not sufficient to have low-energy CP violation.

The down-quark mass is indeed very small, so we will use these expressions as the

order zero approximation, together with the corrections proportional to |µ2| /µ2, which

determine the masses of the down-quark and the electron. Our expansion parameter will

therefore be of the order of the mass ratio of the down and strange-quark, md/ms. In fact,

for |µ1| ≪ |µ2| we have at leading order

md = γµ1 ≃ µ̃1
|µ2|
µ2

|µ3|
µ3

≃ |µ2|
|µ1|
µ2

≃ Vus |µ2| , (2.11c)

so our expansion parameter is

|µ2|
µ2

≃ md

msVus
∼ 0.23 . (2.12)

The mass ratio of electron and muon is much smaller than the ratio of down and

strange quark. This implies (µ2µ̃1/µ̃
2
2)e ≪ (µ2µ̃1/µ̃

2
2)d. Assuming that the difference is due

to the smallest matrix elements, this indicates (µ2)e/(µ2)d ≪ 1 and/or (µ̃1)e/(µ̃1)d ≪ 1 for

(µ̃2)e ≃ (µ̃2)d. This fact can easily be accommodated, as we see in eqs. (2.3): the presence

of the second generation on the flipped SU(5) brane leads to different values of µ2 for the

down quarks and charged leptons and the parameter µ̃1 stems from different couplings in

the superpotential.

While we derived the fermion mass matrices (2.3) within a specific model, they can also

arise in other models, where additional matter is present at the GUT (or compactification)

scale. Thus we could take these matrices as a starting point for the following discussion,

leaving open the question of their origin.

3. CP violation in the quark sector

We will first consider the CP violation in the quark sector. As we have seen in the previous

section, our effective 3 × 3 down quark mass matrix contains three phases as a remnant

of the original 4 × 4 matrix, with the dominant complex element being αµ2. We will now

derive the combination of the three phases, which plays the role of the CKM phase.

To describe CP violation for three generations, as is the case in the SM, it is convenient

to use the Jarlskog invariant [28], Jq, which is given by

6 i∆M
2
u ∆M

2
d Jq = tr [Hu,Hd]

3 = 6 Im tr
(
H2

uH2
dHuHd

)
, (3.1)

– 7 –
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where H = m m† and

∆M
2 =

(
m2

3 − m2
2

) (
m2

3 − m2
1

) (
m2

2 − m2
1

)
; (3.2)

note that ∆M 2 has mass-dimension six. In our model, the up quark mass matrix is

diagonal, as is Hu. Then the invariant strongly simplifies and reads

Jq =
Im

(
H12

d H23
d H31

d

)

∆M 2
d

. (3.3)

It is clear from this expression, that any diagonal phase transformation of m on the left

does not have any effect on the Jarlskog invariant.

As discussed in appendix B, we can use the effective 3 × 3 mass matrix

Heff
d = m̂ m̂† = m m†. By means of eq. (2.8), we obtain

Heff
d =




|µ1|2
(
1 + |β|2 + |γ|2

)
µ1µ2 (1 + α∗β) µ1µ3β

µ∗
1µ2 (1 + αβ∗) µ2

2

(
1 + |α|2

)
µ2µ3α

µ∗
1µ3β

∗ µ2µ3α
∗ µ2

3


 , (3.4)

where µ2 and µ3 are real parameters, as displayed in eqs. (A.4). Then we have

Im

[(
Heff

d

)12 (
Heff

d

)23 (
Heff

d

)31
]

= |µ1|2 µ2
2µ

2
3 Imαβ∗ (1 + α∗β) (3.5)

= |µ1|2 µ2
2µ

2
3 Imαβ∗

= µ2µ
2
3 Im [(αµ2) (βµ1)

∗ µ1] .

We see that the Jarlskog invariant is always independent of the argument of γ and it

vanishes in the limit µ1, µ̃1 → 0 such that µ1 = 0. As we might expect, Jq vanishes for

α = β as well, i.e., in the limit µ1, µ2 → 0.

So the presence of a single phase in α is not sufficient to give CP violation in the

low energy: this phase cancels out in the Jarlskog invariant. This effect stems from the

alignment of the vectors in flavour space; however, even in the case of vanishing first

generation mass, the corresponding eigenvector does not decouple from the other two and

the mixing matrix does not reduce to the two-generational case. In fact, the CKM matrix

is given by (see appendix A)2

VCKM (md = 0) ≃




1
µ1

µ2

µ1α
µ3

− µ∗

1

µ2

1
µ2α
µ3

0 −µ2α∗

µ3

1


 , U3 =

(
V †

CKM 0

0 1

)
. (3.6)

Hence, we cannot conclude that the CP effects disappear due to the reduction of the system

to two generations, nor to the mass degeneracy between quarks. Instead the absence of

2We can exploit the phase transformation P3L (2.9) to absorb the phases of µ1, α and make all elements

of the CKM matrix real showing explicitly that the CP violation disappears.
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low energy CP violation is caused by the particular texture of m in exactly the same basis

for the left-handed quark doublet, where the up quark matrix is diagonal. This feature

is similar to the absence of CP violation in 4D SO(10) constructions, where a single ten-

dimensional Higgs field generates fermionic masses, yielding a trivial CKM matrix. Note

that there is still some CP violation effect arising from the dominant phase θ3 in µ3, but

it is only apparent in the mixings involving the fourth heavy state.

Now, the down quark is not massless and the real physical case corresponds to non-zero

µ1, µ2 and µ̃1. From the up quark phenomenology, we know that µ1 : µ2 is similar to the

mass ratio of up and charm-quark [13]; in addition, µ̃1 : µ̃2 is fixed by the Cabibbo angle.

We will therefore focus on the linear terms in µ2 and keep µ1 ≃ 0.

As is apparent in eq. (3.5), contributions to Jq come from the complex quantities αµ2,

βµ1, and µ1; however, βµ1 is independent of µ2 (see eq. (A.4)),

βµ1 = µ̃1

[
µ̃3

µ3
− M̃4

M̃

µ̃3M̃4 + µ∗
3M̃3

µ3M̃

]
. (3.7)

The first order terms are

δ(αµ2) = −µ2
M̃2

M̃

µ̃3M̃4 + µ∗
3M̃3

µ3M̃
,

δµ1 = µ̃1
µ∗

2

µ2

µ3

µ2
3

M̃2

M̃

µ̃3M̃3 − µ∗
3M̃4

µ3M̃
, (3.8)

and the Jarlskog invariant reads

Jq = − µ̃2
1µ̃

2
2µ̃

2
3

∆M 2
d

M̃2M̃3

M̃2

[(
1 − M̃2

4

M̃2

)
Im

µ3µ
∗
2

µ̃3µ̃2
+

M̃3M̃4

M̃2

|µ3|2
µ̃2

3

Im
µ2

µ̃2

]
. (3.9)

We see that Jq vanishes if either µ2 or µ3 vanish, so two complex quantities are needed to

obtain CP violation at low energies.

It is instructive to calculate Heff
d also from the matrix m̂, eq. (2.7). Here we notice

that the off-diagonal elements of such matrix are relatively simple since we can exploit the

unitarity of the matrix V4, which gives
∑3

k=1(V4)ik(V4)
∗
jk = δij − (V4)i4(V4)

∗
j4. So we have

for i 6= j

(
Heff

d

)ij
= µ̃iµ̃j

(
1 − aia

∗
j

)
, ai ≡

µ̃iM̃4 + µiM̃i

µ̃iM̃
, (3.10)

from which we get the simple expression

Im

[(
Heff

d

)12 (
Heff

d

)23 (
Heff

d

)31
]

= µ̃2
1µ̃

2
2µ̃

2
3

∑

cycl. perm ijk

(
1 + |ai|2

)
Im

(
a∗jak

)
. (3.11)

In the limit of vanishing µi, we see that ai = M̃4/M̃ ; thus for µ1 = µ2 = 0, the expression

simplifies to

Im

[(
Heff

d

)12 (
Heff

d

)23 (
Heff

d

)31
]

= µ̃2
1µ̃

2
2µ̃

2
3

(
1 +

M̃2
4

M̃2

)
Im

[
µ∗

3

M̃4

M̃
+ µ3

M̃4

M̃

]
= 0 .
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For µ1 = 0 but µ2 6= 0, we then obtain

Im

[(
Heff

d

)12 (
Heff

d

)23 (
Heff

d

)31
]

=µ̃2
1µ̃

2
2µ̃

2
3

M̃2M̃3

M̃2

[(
1 − M̃2

4

M̃2

)
Im

(
µ3µ

∗
2

µ̃3µ̃2

)
(3.12)

+
M̃3M̃4

M̃2

|µ3|2
µ̃2

3

Im

(
µ2

µ̃2

)
− M̃2M̃4

M̃2

|µ2|2
µ̃2

2

Im

(
µ3

µ̃3

)]
.

The complete expression for Jq is displayed in eq. (A.19); the dominant terms are exactly

those given in eq. (3.9).

For degenerate heavy masses M̃ , the result simplifies to

Jq =
1

16

µ̃2
1µ̃2

∆M 2
d

(
3 µ̃3 Im (µ3µ

∗
2) + |µ3|2 Im (µ2)

)
. (3.13)

Note that the numerical factor, 1
16 , is minimal for degenerate M̃ . Due to the hierarchy of

the down quarks, ∆M 2
d ≃ m2

sm
4
b ≃ µ2

2µ
4
3. So we finally obtain, substituting the order of

magnitude of the parameters, with µ̃3 ≃ |µ3|,

Jq ≃ Vus
mdms

m2
b

1

4
√

2
(3 sin (θ3 − θ2) + sin θ2) ≃ 10−5 (3 sin (θ3 − θ2) + sin θ2) . (3.14)

This is the right order of magnitude; the current experimental value is Jq = 3× 10−5 [29].

From eq. (3.14) we can conclude that a single complex parameter, with the other two

vanishing, is not enough to have low-energy CP violation in the quark sector and that the

CKM phase is a combination of the high-energy phases θi weighted by mass hierarchies.

Moreover, maximal phases seem to be needed to give the large low-energy phase observed.

4. CP violation in the leptonic sector

The charged lepton and Dirac neutrino mass matrices can be transformed like the down

quark mass matrix. The heavy state is an SU(2)L doublet, so V4 singles out the same state

for charged leptons and neutrinos.

The effective 3 × 3-matrices read (cf. eq. (2.7))

m̂e =




µ1(V4)1j + µ̃1(V4)4j

µ2(V4)2j + µ̃2(V4)4j

µ3(V4)3j + µ̃3(V4)4j


 , m̂D =




ρ1(V4)1j + ρ̃1(V4)4j

ρ2(V4)2j + ρ̃2(V4)4j

ρ3(V4)3j + ρ̃3(V4)4j


 . (4.1)

Within our model we assume the hierarchical patterns of µi and ρi as well as µ̃i and ρ̃i

(i = 1 . . . 3) to be the same as for down quarks. The precise values, however, can be

different since they originate from different Yukawa couplings, see eqs. (2.3c). Again, we

choose the couplings between the brane states, µi and ρi, complex.

Although some of the charged lepton and down quark parameters, namely µ1 and µ3,

are related by GUT symmetries, the corresponding phases after the redefinition leading to

eq. (2.6) are completely uncorrelated. Thus, there is no direct relation between the CP
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violation in the leptonic and in the hadronic observables, even though, barring cancella-

tions, we expect the leptonic CP violation to be large as well. Furthermore, we will see

that different combinations of the phases determine the experimental observables. Thus

even if there were relations between the phases in the quark and lepton sector, these would

not be observable. Some correlations, however, could survive between charged and neutral

leptons. As in the quark sector, we expect similar suppression for the CP violation due to

the specific mass texture in our model.

The discussion of the charged lepton masses closely follows the discussion of the down

quarks in the previous section. The parameters are chosen such that they match the ob-

served hierarchy, as described in appendix A.1. The light neutrino masses, however, result

from the seesaw mechanism, since we have heavy Majorana masses for the right-handed

neutrinos. This Majorana matrix is diagonal, but can have complex entries (cf. eq. (2.3a)),

mN =




M1e
2iφ1 0 0

0 M2e
2iφ2 0

0 0 M3e
2iφ3


 = e2iφ3




M1e
2i∆φ13 0 0

0 M2e
2i∆φ23 0

0 0 M3


 , (4.2)

where ∆φij = φi − φj . Altogether, we have nine independent phases in the lepton sector;

in the limit of small µ1 and ρ1, they reduce to seven. Since neutrinos are Majorana, we

have less freedom in the phase reshuffling. However, except for electroweak breaking effects

in U4, the heavy state is effectively an SU(2)-doublet of Dirac fermions. This allows us to

absorb some phases in the Dirac mass matrix and reduce the system to three generations

for both charged and neutral leptons at the same time. In the following, we will neglect any

effect of this heavy fourth generation doublet and concentrate on the three light generations

including the right-handed neutrinos. We expect this approximation to be valid as long as

M̃ ∼ MGUT is much larger than the Majorana masses Mi [16].

4.1 Seesaw mechanism and effective mass matrix

In the case of the leptons, neither m̂e nor m̂D is diagonal and therefore we will change the

basis in order to simplify the discussion of the CP violation. Luckily, the large rotations

of type V̂3, which bring the Dirac matrices into triangular form, are similar for charged

leptons and neutrinos, thanks to the same hierarchical structure.

To distinguish the flavour of the light neutrinos, we first act on the neutrino Dirac

mass matrix with exactly the same V̂3 that transforms the charged lepton mass matrix into

the upper triangular form, see eq. (2.8), and obtain

mD =




Aρ1 Dρ1 ρ1

Bρ2 Eρ2 ρ2

Cρ3 Fρ3 ρ3


 . (4.3)

At this stage the charged lepton mass matrix is not yet diagonal, but not very far from it:

the complete diagonalisation can be obtained by applying another nearly diagonal rotation

matrix on the right, corresponding to the mismatch between V3 and V̂3, and a CKM-like

rotation U3 on the left as described in appendix A. Note that such a transformation from
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the left, as U4, in this case acts on the right-handed fields and leaves both H = m† m and

the light neutrino Majorana mass matrix,

mν
eff = −

(
mD

)⊤ (
mN

)−1
mD, (4.4)

unchanged. In fact U4 acts in very good approximation as the unity matrix on mN up to

terms O(v2/M̃2), while U3 just cancels out.

So apart for the small rotation on the right needed to diagonalise H, which affects the

CP violation in the neutrino oscillation only weakly (see section 4.3), the neutrino masses

and mixings can be obtained from eq. (4.4), in the form

mν
eff = −




C2̺3 + B2̺2 + A2̺1 CF̺3 + BE̺2 + AD̺1 C̺3 + B̺2 + A̺1

CF̺3 + BE̺2 + AD̺1 F 2̺3 + E2̺2 + D2̺1 F̺3 + E̺2 + D̺1

C̺3 + B̺2 + A̺1 F̺3 + E̺2 + D̺1 ̺3 + ̺2 + ̺1


 , (4.5)

where ̺i = e−2iφiρ2
i /Mi. Note that the determinant of the (23)-submatrix of mν

eff is not of

order ̺2
3; instead it reads ̺3̺2 (F − E)2 + ̺3̺1 (F − D)2 + ̺2̺1 (E − D)2, allowing a large

solar mixing angle [30].

The leading part of the light neutrino mass matrix (4.5) is obtained in the limit

µ1, ρ1 → 0. From the general expressions (A.24) one obtains

ρ1 = ρ̃1
1

µ3

1

M̃2

[
µ̃3M̃

2
123 − µ∗

3M̃3M̃4

]
,

ρ2 =
1

µ3

1

M̃2

{
ρ̃2

[
µ̃3M̃

2
123 − µ∗

3M̃3M̃4

]
− ρ2M̃2

[
µ̃3M̃4 + µ∗

3M̃3

]}
,

ρ3 =
1

µ3

1

M̃2

{
ρ̃3

[
µ̃3M̃

2
123 − µ∗

3M̃3M̃4

]
− ρ3

[
µ̃3M̃3M̃4 − µ∗

3M̃
2
124

]}
, (4.6)

where we have introduced M̃αβγ =
√

M̃2
α + M̃2

β + M̃2
γ .

In our model, the Dirac neutrino mass matrix has a hierarchical structure similar to

the one of down quarks and charged leptons. The three smallest elements, however, have

a considerable uncertainty. Since me 6= md, these elements cannot be equal for the three

matrices. Inspection of md suggests for ρ̃1 the range between md and msVus; the difference

is a factor O(1). In the following we shall consider the case of small ρ̃1. For large ρ̃1 so

that |̺1| > |̺3|, in the following discussion we should interchange ρ3, ̺3 with ρ1, ̺1 and

consider it as the dominant scale.

We here assume ρ3 : ρ2 : ρ1 ∼ ρ̃3 : ρ̃2 : ρ̃1 ∼ mb : ms : md, which yields [13]

|̺2|
|̺3|

∼ ρ2
2

ρ2
3

M3

M2
∼ m2

s

m2
b

mt

mc
∼ 0.2 ,

|̺1|
|̺3|

∼ ρ2
1

ρ2
3

M3

M1
∼ m2

d

m2
b

mt

mu
∼ 0.2 , (4.7)

such that ̺1 ∼ ̺2 < ̺3. Hence, in this model, the weak hierarchy in the neutrino sector can

be traced back to the nearly perfect compensation between down and up quark hierarchies.

The relation ̺1 ∼ ̺2 implies for the two small neutrino masses |m1| ∼ |m2| barring

cancellations or small parameters. As computed in appendix A, the masses at leading order
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assuming ̺3 to dominate are given by

m3 = −̺3

(
1 + |F |2 + |C|2

)
,

|m2m1| = |̺2̺1|
|(F − E)(A − B) + (D − E)(B − C)|2

1 + |F |2 + |C|2
. (4.8)

The light neutrino mass spectrum has normal hierarchy, and the ratio m2
2/m

2
3 can be

identified with ∆m2
sol/∆m2

atm, which is indeed consistent with observations within the

theoretical uncertainties. The coefficients A . . . F of the neutrino mass matrix mν
eff become

in the limit µ1, ρ1 → 0,

A = − ρ̃1

ρ1

µ2

µ2

µ3

µ3

M̃1

M̃
,

B =
ρ2µ̃2 − ρ̃2µ2

ρ2µ2

µ3

µ3

M̃1

M̃
,

C =
µ̃3ρ3 − µ3ρ̃3

ρ3µ3

µ2

µ2

M̃1

M̃
,

D =
ρ̃1

ρ1

1

µ2

1

µ2
3

1

M̃2

[
µ̃2 |µ3|2 M̃2

12 + µ∗
2µ3M̃2

(
µ̃3M̃3 − µ∗

3M̃4

)]
,

E = D +
ρ̃1

ρ1

ρ2

ρ2

1

µ2

1

µ3

1

M̃2

[
µ̃2µ

∗
3M̃2M̃3 + µ∗

2

(
µ̃3M̃

2
13 − µ∗

3M̃3M̃4

)]
,

F =
1

ρ3

1

µ2

1

µ2
3

1

M̃2
(ρ̃3µ3 − ρ3µ̃3)

[
µ̃2µ

∗
3M̃

2
12 + µ∗

2M̃2

(
µ̃3M̃3 − µ∗

3M̃4

)]
. (4.9)

Note that B, C, F vanish in the limiting case of equal hierarchy in the neutrino and charged

lepton Dirac mass matrix, i.e., for ρi/ρ̃i = µi/µ̃i, and A is in this case proportional to γµ1.

In fact, if the neutrino and charged lepton vectors are perfectly aligned in flavour space

the neutrino Dirac matrix becomes triangular at the same time as the charged lepton one

and we cannot reproduce large neutrino mixing. There is though no reason to expect such

alignment since the parameters ρ̃i, µ̃i are not related by any GUT relation, as can be seen

in eq. (2.3c). So the large neutrino mixing angles are not generated simply by the large LH

rotation contained in the charged lepton’s V̂3, but from its misalignment with the neutrinos.

Using the relations between ρ̃i, ρi and ρi, and µ̃i, µi and µi due to the hierarchical

structure of the mass matrices in our model, one obtains the simple expressions,

A ∼ C ∼ µ2

µ2
, B ∼ ρ2

ρ2
− µ2

µ2
, D ∼ E ∼ F ∼ 1 . (4.10)

The mixing angles are computed in appendix A.2; in the case the parameters A, C are

small, they are given by

tan θ23 ≃ |F | ,

tan θ12 ∼ |B|
|E − F |

√
1 + |F |2 ,

sin θ13 ∼ C√
1 + |F |2

+
B (EF + 1)

(
1 + |F |2

)3/2

|̺2|
|̺3|

. (4.11)
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The atmospheric mixing angle θ23 is naturally large; the current best fit [29, 31] restricts

the parameter F as 0.7 . |F | . 1.4 to have it maximal. Note that F ≥ 0.7 can naturally

be obtained even for |ρ3| /ρ̃3 ∼ |µ3| /µ̃3, as discussed in appendix A.2.

For (µ2/µ2)e ∼ (µ2/µ2)d ∼ 0.1 one then obtains |C| ∼ 0.1 and a value for θ13 close to

the current upper bound. In this case though, µ̃e
1 has to be suppressed with respect to the

down quark case in order to give a consistently small me. The large solar mixing θ12 can

then be achieved for B ∼ 0.1 − 1 with moderate tuning of E − F .

Another possibility is that a very small µ2 is called for to explain the smallness of the

electron mass. In this case, we have naturally |A| , |C| ∼ 0.01 and the reactor angle is

dominated by the second term in eq. (4.11). Then the angles θ12 and θ13 depend on the

same parameter B, but for the second one there is a suppression by ̺2/̺3. So in the case

of hierarchical ̺i, both a large and small angle can be explained even with relatively large

B. Such value for B is not unnatural, even for small µ2, if we accept ρ2 > (µ2)e. In this

case we have sin θ13 . 0.1 correlated with the mass eigenvalues m1 . m2 . m3. Note that

in general, if all parameters A, B, and C are smaller than one, we obtain the prediction

m1 < m2, while for B ∼ 1 the two lowest eigenvalues are nearly degenerate.

The largest of the heavy neutrino masses is given by M3 ∼ m2
t /

√
∆m2

atm ∼ 1015 GeV.

For the lightest heavy Majorana state the model provides the rough estimate M1 ∼
M3mu/mt ∼ 1010 GeV.

4.2 Neutrinoless double beta decay (0νββ)

The simultaneous decay of two neutrons may result in neutrinoless double beta decay, e.g.,
78Ge → 76Se + 2e. This process is currently most promising to prove the Majorana nature

of neutrinos. The decay width can be expressed as

Γ = G
∣∣M2

∣∣ |mee|2 , (4.12)

where G is a phase space factor, M the nuclear 0νββ matrix element, and mee is the

(11)-element of the light neutrino mass matrix.

Since the electron mass is very small, the charged lepton mass matrix in triangular

form has nearly a vanishing first row. Then the left-handed electron is already singled out;

the remaining rotation mostly affects the (23)-block. Therefore we can already make an es-

timate of mee from the effective neutrino Majorana matrix, mν
eff. From eq. (4.5), we read off

|mee| =
∣∣C2̺3 + B2̺2 + A2̺1

∣∣ , (4.13)

where the last term can be negleted. This result has the same form as the standard formula

in the case of hierarchical neutrinos [32],

|mee| =

∣∣∣∣
√

∆m2
atm sin2 θ13e

i(ξ3−ξ2) +
√

∆m2
sol sin

2 θ12 cos2 θ13

∣∣∣∣ , (4.14)

where ξ3 and ξ2 are the two Majorana phases in the conventional parametrization of neu-

trino mass matrix (A.34).
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We can estimate the size of |mee| in our model using

|ρ3| ≃ ρ̃3, |µ3| ≃ µ̃3,
ρ2

ρ2
∼ 1, |̺3| ≃

√
∆m2

atm, |̺2| ≃
√

∆m2
sol , (4.15)

which gives

|mee| ∼
∣∣∣∣
µ2

2

µ2
2

√
∆m2

atm e2i(φ2−φ3) +
ρ2
2

ρ2
2

√
∆m2

sol

∣∣∣∣ . (4.16)

Clearly, the last term dominates, yielding the familiar result for hierarchical neutrinos

|mee| ∼<
√

∆m2
sol ∼ 0.01 eV if µ2/µ̃2 ≪ ρ2/ρ̃2.

4.3 CP violation in neutrino oscillations

Leptonic CP violation at low energies can be detected via neutrino oscillations, which are

sensitive to the Dirac phase of the light neutrino mass matrix. For a diagonal charged lepton

mass matrix, the strength of Dirac-type CP violation is obtained from the invariant [27]

tr [hν , he]3 = 6i∆M
2
e Im

[
(hν)12 (hν)23 (hν)31

]
, (4.17)

where hν = (mν)† mν and ∆M 2
e is the product of the mass squared differences of the

charged leptons, cf. eq. (3.2). This quantity is connected to the leptonic equivalent of the

Jarlskog invariant through

Jℓ = − 1

M 2
ν

Im
[
(hν)12 (hν)23 (hν)31

]
, (4.18)

where

∆M
2 =

(
m2

3 − m2
2

) (
m2

3 − m2
1

) (
m2

2 − m2
1

)
= δm2

solδm
4
atm ∼ |̺2|2 |̺3|4 (4.19)

is now the product of the light neutrino mass squared differences. In the standard

parametrisation given in eq. (A.34),

Jℓ = Im [(Vν)11(Vν)22(Vν)
∗
12(Vν)∗21] = 1

8 cos θ13 sin 2θ13 sin 2θ12 sin 2θ23 sin δ , (4.20)

where δ is the CP violating Dirac phase in the SM with massive neutrinos.

The expressions (4.18) and (4.20) assume that the charged lepton mass matrix is

diagonal. In our case, this matrix is nearly diagonal after the V̂3 rotation, as the electron

mass is very small; in fact, the remaining rotation V ′
3 deviates from a unit matrix only in

the 23 sector and at order O
(
m2

µ/m2
τ

)
≪ 1 (see eq. (A.13)). Therefore up to corrections

of this order, we can use eq. (4.18) with the effective neutrino mass matrix mν
eff given in

eq. (4.5), i.e.,

Jℓ = − 1

M 2
ν

Im
[
(hν

eff)12 (hν
eff)23 (hν

eff)31
]
, (4.21)
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with now hν
eff = (mν

eff)† mν
eff. We compute the first few terms and obtain

(hν
eff)12=

C∗F |m3|2

1+|F |2+|C|2
+ C∗E (1+F ∗E+C∗B) ̺2̺

∗
3+B∗F (1+F ∗E+C∗B)∗ ̺∗2̺3 ,

(hν
eff)23=

F ∗ |m3|2

1+|F |2+|C|2
+ F ∗ (1+F ∗E+C∗B) ̺2̺

∗
3 + E∗ (1+F ∗E+C∗B)∗ ̺∗2̺3 ,

(hν
eff)31=

C |m3|2

1+|F |2+|C|2
+ B (1+F ∗E+C∗B) ̺2̺

∗
3 + C (1+F ∗E+C∗B)∗ ̺∗2̺3 . (4.22)

The leading contribution in the cyclic product of hν
eff, which is ∝ |m3|6, is real and does

not contribute to Jℓ; that is to be expected since it corresponds to the limit of two massless

neutrinos where no physical Dirac phase can be defined. In general the first non-trivial

terms are of order |̺3|4 |̺2|2, as ∆M 2
ν , so that we expect |Jℓ| ∼< 1. We obtain in fact

Jℓ ∼

(
1 + |B|2 + |E|2

) (
|E|2 − |F |2 + |B|2 − |C|2

)

(
1 + |F |2 + |C|2

)3 Im [C∗F (F − E)∗(B − C)] . (4.23)

Note that the imaginary part vanishes for E = F or B = C, when the flavour eigenvectors

are partially aligned. Furthermore, the contribution disappears for C = 0, so it is sup-

pressed by the small reactor angle as expected. Due to the unknown parameters O(1), no

useful upper bound on Jℓ can be derived in the general case, but we see that the Dirac CP

phase is given by a combination of the phases of the neutrino Dirac mass coefficients B,

C, E and F , derived from the complex parameters µ3, µ2, ρ3, ρ2. No dependence arises

from the heavy neutrino Majorana phases φ3,2 since they cancel out in |̺3|4 |̺2|2.
In the limit µ2 → 0, where A = C = 0, but with B of order unity, the dominant

contribution to Jℓ comes from higher order terms. We can obtain it from

(hν
eff)12 = B∗F (1 + F ∗E)∗ ̺∗2̺3 + B∗E

(
1 + |B|2 + |E|2

)
|̺2|2 ,

(hν
eff)23 = F ∗ |̺3|2

(
1 + |F |2

)
+ F ∗ (1 + F ∗E) ̺2̺

∗
3 + E∗ (1 + F ∗E)∗ ̺∗2̺3 ,

(hν
eff)31 = B (1 + F ∗E) ̺2̺

∗
3 + B

(
1 + |B|2 + |E|2

)
|̺2|2 . (4.24)

Note that the leading term, proportional to |B|2 |̺3|4 |̺2|2, is real, and in fact we did not

have any |B|2 contributions at that order above. Hence, we consider the next terms,

(hν
eff)12 (hν

eff)23 (hν
eff)31 ∝ (1 + F ∗E) F ∗ (κ1E + κ2F ) ̺2̺

∗
3

+ (1 + F ∗E)∗ F (κ1F
∗ + κ2E

∗) ̺∗2̺3 , (4.25)

where we defined the real parameters

κ1 =
(
1 + |B|2 + |E|2

)(
1 + |F |2

)
,

κ2 = |1 + E∗F |2 . (4.26)
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Note again that the two terms in eq. (4.25) are exactly conjugate to each other for E = F

when the two heavy eigenstates are nearly aligned. In this limit tan θ12 becomes maximal.

Therefore, if B gives the dominant contribution, the Dirac type CP violation is suppressed

for maximal solar angle. The CP invariant vanishes as well if B = 0 as the system effectively

reduces to two generations and sin θ13 = 0 (recall that we are already in the limit A = C =

0). We then obtain

Im
[
(hν

eff)12 (hν
eff)23 (hν

eff)31
]

= |B|2 |̺2|2 |̺3|4 (κ1 − κ2) Im (Ω) (4.27)

with

Ω = (1 + EF ∗) F ∗ (E − F )
̺2

̺3
,

which yields

Jℓ ∼ − |B|2 (κ1 − κ2) Im (Ω) . (4.28)

Comparison with eq. (4.20) shows then that in this case the standard Dirac phase δ is a

complicated function of the phases of µ3, ρ3, ρ2 in the leptonic Dirac mass matrices, the

difference between two of the Majorana phases ∆φ32 and neutrino masses. It is suppressed

by the ratio |̺2| / |̺3|, as is sin θ13.

Whenever only few of the parameters in the Dirac neutrino mass matrix matter, we

expect correlations between the lightest eigenvalue, the mixing angles and the maximal

value for Jℓ. In appendix A.2, we consider the simple case where B dominates and the

lightest eigenvalue m1 vanishes; then all the observables are only function of B, E, F , ̺2/̺3

and we show relations among them. In this specific case, even allowing for the uncertainty

on the phases, upper bounds can be obtained for sin θ13,mee and Jℓ. In the more general

case, subleading terms and other parameters become important and relax any such bounds.

4.4 Leptogenesis

The out-of-equilibrium decays of heavy Majorana neutrinos is a natural source of the cos-

mological matter-antimatter asymmetry [33]. In recent years this leptogenesis mechanism

has been studied in great detail. The main ingredients are CP asymmetry and washout

processes, which depend on neutrino masses and mixings.

It is convenient to work with a diagonal and real matrix for the right-handed neutrinos,

which is obtained from mN by the phase transformation

PM = diag
(
e−iφ1 , e−iφ2 , e−iφ3

)
. (4.29)

For hierarchical heavy neutrinos the generated baryon asymmetry is dominated by decays

of the lightest state N1. In supersymmetric models the corresponding CP asymmetry is [34]

ε1 = − 3

8π

∑

i

Im
(
M

2
1i

)

M11v2
u

M1

Mi
, M = PM m̂Dm̂D†P ∗

M , (4.30)
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where the matrix elements are given, analogously to eq. (3.10),

Mij = ei∆φji ρ̃iρ̃j

(
1 − bib

∗
j

)
, bi ≡

ρ̃iM̃4 + ρiM̃i

ρ̃iM̃
. (4.31)

The terms involving one index 1 simplify for ρ1 = 0 as

M11 = ρ̃2
1

(
1 − M̃2

4

M̃2

)
,

M1j = ei∆φj1 ρ̃1ρ̃j

(
1 − M̃4

M̃

ρ̃jM̃4 + ρ∗jM̃j

ρ̃jM̃

)
. (4.32)

The result then reads

ε1 ≃ 3

8π

M1

v2
u

(
1 − M̃2

4

M̃2

)−1 ∑

j=2,3

ρ̃2
j

Mj
ηj , (4.33)

where

ηj = − Im


ei∆φj1

(
1 − M̃4

M̃

ρ̃jM̃4 + ρ∗jM̃j

ρ̃jM̃

)2

 . (4.34)

Since ρ̃2
2M3/(ρ̃

2
3M2) ∼ 0.2, the CP asymmetry is dominated by the intermediate state

N3, i.e., ε1 ≃ 3/(8π)M1

√
∆m2

atm/v2
u. In any case, the phases involved, ∆φ13,∆φ12 and

the phases of ρ3, ρ2, are completely independent of the low-energy CP violating phase

in the quark sector and also not so directly connected to that in neutrino oscillations

(even if they can contribute to it). For M1 ∼ 1010 GeV, one obtains ε1 ∼ 10−6, with a

baryogenesis temperature TB ∼ M1 ∼ 1010 GeV. These are typical parameters of thermal

leptogenesis [35, 36].

The strength of the washout processes crucially depends on the effective neutrino mass

m̃1 =
M11

M1
=

ρ̃2
1

M1

(
1 − M̃2

4

M̃2

)
∼ ̺1 ∼< 0.01 eV . (4.35)

With the efficiency factor [37]

κf ∼ 10−2

(
0.01 eV

m̃1

)1.1

∼ 10−2 , (4.36)

one obtains for the baryon asymmetry

ηB ∼ 10−2εκf ∼ 10−8κf ∼ 10−10 , (4.37)

consistent with observation. So for successful leptogenesis we need a non vanishing ρ̃1, ̺1

and in particular ̺1 ∼ ̺2. In such case a zero neutrino eigenvalue is only possible due to

alignment.
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In the above estimate of the baryon asymmetry we have summed over the lepton

flavours in the final state. In general, the CP asymmetries as well as the washout processes

depend on the lepton flavour, which can lead to a considerable enhancement of the gen-

erated baryon asymmetry [38, 39]. The neutrino masses M1 ∼ 1010 GeV, m̃1 ∼ 0.01 eV

lie in the ‘fully flavoured regime’ where these effects can indeed be important [40]. Hence,

depending on the CP violating phases the generated asymmetry may be significantly larger

than the estimate (4.37).

5. Conclusions

We have studied in detail a specific pattern of quark and lepton mass matrices obtained

from a six-dimensional GUT model compactified on an orbifold. Up quarks and right-

handed neutrinos have diagonal 3 × 3 matrices with the same hierarchy whereas down

quarks, charged leptons and Dirac neutrino mass terms are described by 4 × 4 matrices

which have one large eigenvalue O(MGUT). The origin of this pattern are diagonal mass

terms for three ordinary quark-lepton families together with large mixings O(MGUT) with

a pair of SU(5) (5 + 5̄) plets. This vectorial fourth generation though is made of different

split multiplets allowing for a relaxation of GUT relations. The six mass parameters of the

model in the quark sector can be fixed by the up and down quark masses. This pattern

of mass matrices has several remarkable features: The CKM matrix is correctly predicted

and the electron mass is naturally different from the down quark mass.

The mismatch between down and up quark mass hierarchies leads, via the seesaw

mechanism, to three light neutrino masses with a much milder hierarchy. Left-handed

leptons and right-handed quarks have large mixings. This leads to large neutrino mixings

and to small CKM mixings of the left-handed down quarks in agreement with observation.

Factors O(1) of the mass matrices are unknown, and the predictive power of the

model is therefore limited. The neutrino mixings sin θ23 ∼ 1 and sin θ13 . 0.1 are naturally

accommodated. The corresponding neutrino masses are m1 . m2 ∼
√

∆m2
sol < m3 ∼

√
∆m2

atm and |mee| ∼
√

∆m2
sol ∼< 0.01 eV.

The elements of the mass matrices arise from a large number of different operators.

Hence, most of the CP violating high-energy phases are unrelated. We find that the

measured CP violation in the quark sector can be obtained, even if the CP invariant is

suppressed by the alignment between the two lightest mass eigenstates. Due to the uncer-

tainties of O(1) factors no useful upper bound on the CP violation in neutrino oscillations

is obtained in general. Some constraints can be given in the limited case where the number

of dominant parameters is reduced, as it happens if the parameters A, C in the neutrino

Dirac mass matrix are suppressed by the smallness of the electron mass. It is indeed

intriguing that in our setting the smallness of the reactor angle can be connected to the

lightness of the electron. The model is consistent with thermal leptogenesis, with a possible

enhancement of the baryon asymmetry by flavour effects.

We conclude that mixings O(MGUT) of three sequential quark-lepton families with

vectorial split multiplets, a pair of lepton doublets and right-handed down quarks, can
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account simultaneously for small quark mixings and large neutrino mixings in the charged

weak current and, correspondingly, for hierarchical quark masses together with almost

degenerate neutrino masses. The CP phases in the quark sector, neutrino oscillations and

leptogenesis are unrelated. Quantitative predictions for the lightest neutrino mass m1 and

sin θ13 require currently unknown O(1) factors in more specific GUT models.
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A. Mass matrices

We will discuss here the mass eigenvalues and the mixing matrices for the low energy theory

in relation to the high energy parameters.

Given a general matrix of the form as in eq. (2.4),

m =




µ1 0 0 µ̃1

0 µ2 0 µ̃2

0 0 µ3 µ̃3

M̃1 M̃2 M̃3 M̃4


 ,

where µi, µ̃i = O(v1,2) and M̃i = O(MGUT), the matrices U4 and V4 that single out the

heavy state can be given as [14]

U4 ≃




1 0 0 µ1
fM1+eµ1

fM4

fM2

0 1 0 µ2
fM2+eµ2

fM4

fM2

0 0 1 µ3
fM3+eµ3

fM4

fM2

−µ1
fM1+eµ1

fM4

fM2
−µ2

fM2+eµ2
fM4

fM2
−µ3

fM3+eµ3
fM4

fM2
1




, (A.1)

V4 =




fM4q
fM2

1
+fM2

4

0 −
fM1

q
fM2

2
+fM2

3

fM
q

fM2

1
+fM2

4

fM1

fM

0
fM3q

fM2

2
+fM2

3

fM2

q
fM2

1
+fM2

4

fM
q

fM2

2
+fM2

3

fM2

fM

0 − fM2q
fM2

2
+fM2

3

fM3

q
fM2

1
+fM2

4

fM
q

fM2

2
+fM2

3

fM3

fM

− fM1q
fM2

1
+fM2

4

0 −
fM4

q
fM2

2
+fM2

3

fM
q

fM2

1
+fM2

4

fM4

fM




, (A.2)
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with M̃ =

√∑
i M̃

2
i . In general V4 contains large mixings, while U4 is approximately the

unity matrix, up to terms O (v/M̃ ). Next, U3 and V3 = V̂3V
′
3 diagonalise

m′ = U †
4mV4 =

(
m̂ 0

0 M̃

)
+ O

(
v2

M̃2

)
,

so both U3 and V3 have a non-trivial 3×3 part only. In the following we will use the symbols

U3, V3 both for the that non-trivial upper-left corners and the full 4× 4 matrices obtained

adding a row and column of zeros and a diagonal 1 to those. The effective mass matrix m̂

can be brought into the upper triangular form by a unitary matrix V̂3 ∼ V3 such that

m = m̂ V̂3 =




γµ1 µ1 βµ1

0 µ2 αµ2

0 0 µ3


 .

With vi = (m̂i1, m̂i2, m̂i3), the new basis is given by

~e3 =
~v3

|~v3|
, ~e2 =

~v2

|~v2|
− ~e∗3 · ~v2

~v2
~e3 , ~e1 = ~e2 × ~e3 . (A.3)

Note that V3 corresponds to a large angle rotation for the right-handed quark fields.

While µ3 and µ2 are real by construction, we have the freedom to choose any entry of

the first row to be real. For concrete calculations, it is convenient to have γµ1 real or even

use the parameters as given in the basis (A.3); however, γµ1 vanishes in the limit µ2 → 0,

so for a general discussion, it is more appropriate to have µ1 real. Here, we list the entries

of m with γµ1 real in a general form,

µ3 = |v3| =

√
|µ3|2 + |µ̃3|2 − 1

fM

∣∣∣µ3M̃3 + µ̃3M̃4

∣∣∣
2
,

αµ2 =
µ̃2µ̃

∗
3

µ3
− µ2M̃2 + µ̃2M̃4

M̃

µ∗
3M̃3 + µ̃3M̃4

µ3M̃
,

µ2 =

√
|µ2|2 + |µ̃2|2 − 1

fM2

∣∣∣µ2M̃2 + µ̃2M̃4

∣∣∣
2
− |αµ2|2 ;

βµ1 =
µ̃1µ̃3

µ3
− µ1M̃1 + µ̃1M̃4

M̃

µ∗
3M̃3 + µ̃3M̃4

µ3M̃
,

µ1 = µ̃1

(
µ̃2

µ2
− α∗ µ̃3

µ3

)
− µ1M̃1 + µ̃1M̃4

M̃

[
M̃4

M̃

(
µ̃2

µ2
− α∗ µ̃3

µ3

)
+

µ∗
2

µ2

M̃2

M̃
− α∗µ∗

3

µ3

M̃3

M̃

]

γµ1 = |γµ1| =

√
|µ1|2 + |µ̃1|2 − 1

fM2

∣∣∣µ1M̃1 + µ̃1M̃4

∣∣∣
2
− |µ1|2

(
1 + |β|2

)
. (A.4)

In particular, we find as well the simple expressions

αµ2

µ̃2
− βµ1

µ̃1
=

µ̃3M̃4 + µ∗
3M̃3

µ3M̃

[
µ1

µ̃1

M̃1

M̃
− µ2

µ̃2

M̃2

M̃

]
(A.5)

γµ1 = −µ̃1
µ2

µ2

µ3

µ3

M̃1

M̃
− µ1

[
µ̃2

µ2

µ3

µ3

M̃2

M̃
+

µ2

µ2

µ̃3M̃3 − µ3M̃4

µ3M̃

]
, (A.6)

– 21 –



J
H
E
P
1
2
(
2
0
0
7
)
0
3
0

These expressions vanish trivially in the limit µ1, µ2 → 0 and then we obtain the limiting

case discussed in section 2. As already discussed in section 3, βµ1 is independent of µ2.

A.1 Down quarks and charged leptons

Mass eigenvalues and eigenvectors. Now take the matrix m as a starting point and

compute the eigenvalues, eigenvectors and mixing matrices. For making things simpler,

consider for the moment all the parameters as complex, even if actually µ3, µ2, γµ1, or µ3,

µ2, µ1 can be chosen real absorbing the phases into V3. To compute the eigenvalues, it is

better to consider the hermitian matrices m†m or mm†. The first option simply gives

m†m =



|µ1|2|γ|2 |µ1|2γ∗ |µ1|2γ∗β

|µ1|2γ |µ2|2 + |µ1|2 |µ2|2α + |µ1|2β
|µ1|2γβ∗ |µ2|2α∗ + |µ1|2β∗ |µ3|2 + |µ2|2|α|2 + |µ1|2|β|2


 . (A.7)

Then the determinant is simply

det
(
m†m

)
= |det (m)|2 = |γ|2|µ1|2|µ2|2|µ3|2 (A.8)

and is only non-vanishing if γµ1 6= 0.

The eigenvalue equation is a cubic equation; to obtain the dominant terms, we expand

around γ = 0. In this case the equation reduces to a quadratic one with the solutions

λ2/3 =
1

2

[
|µ3|2 + |µ2|2(1 + |α|2) + |µ1|2(1 + |β|2)

]
(A.9)

± 1

2

√
[|µ3|2 − |µ2|2(1 − |α|2) − |µ1|2(1 − |β|2)]2 + 4

∣∣∣|µ2|2 α + |µ1|2 β
∣∣∣
2

.

So in this limit, we have eigenvalues at lowest order

λ3 = |µ3|2 + |µ2|2|α|2 + |µ1|2|β|2 + O
(

λ2
2

λ3

)
,

λ2 = |µ2|2 + |µ1|2 −O
(

λ2
2

λ3

)
, λ1 = 0 . (A.10)

We can also compute the first correction to the zero eigenvalue simply as

λ1 =
det(m†m)

λ2λ3
=

|γ|2|µ1|2|µ2|2|µ3|2
|µ3|2(|µ2|2 + |µ1|2)

≃ |γ|2|µ1|2|µ2|2
|µ2|2 + |µ1|2

|µ1|≪|µ2|−−−−−−−→ |γ|2|µ1|2 . (A.11)

This means that for vanishing µ1 we have

md ≃ |γ||µ1| ≃
|µ2|
|µ2|

|µ̃1| . (A.12)

Using the eigenvalues, we can also solve for the mixing matrices at lowest order,

V ′
3 =




1 0 0

0 1
|µ2|2α+|µ1|2β

|µ3|

0 − |µ2|2α∗+|µ1|2β∗

|µ3|
1


 , (A.13)
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where we must recall that we had already acted on the mass matrix with a large angle

rotation V̂3, so the V ′
3 above is just a small correction to it.

For the left-handed quark fields, we have instead at leading order

U3 =




1 µ1

µ2

µ1β
µ3

−µ∗

1

µ∗

2

1
µ2α
µ3

µ∗

1

µ∗

3

(α∗ − β∗) −µ∗

2
α∗

µ∗

3

1


 . (A.14)

Since the up quark mass matrix is already diagonal, this last mixing matrix corresponds

to the CKM matrix. From U †
3 m V ′

3 = mdiag, we get VCKM = U3, so for α = β we have the

prediction Vtd = (α∗ − β∗)µ∗
1/µ

∗
3 = 0 at leading order, and the CP violation vanishes! On

the other hand, Vub has the right order of magnitude as we thought.

Quark masses and mixing angles. We can reproduce the observed quark mass eigen-

values and mixing, that satisfy the relations

mu : mc : mt ≃ λ7 : λ3 : 1 ,

md : ms : mb ≃ λ4 : λ2 : 1 , (A.15)

where λ ≃ Vus ∼ 0.22 is the Cabibbo angle. In fact, if we assume

µ1 : µ2 : µ3 ≃ λ7 : λ3 : 1 ,

µ̃1 : µ̃2 : µ̃3 ≃ λ3 : λ2 : 1 , (A.16)

it gives correctly

|Vus| ∼
|µ1|
|µ2|

∼ |µ̃1|
|µ̃2|

∼ λ , (A.17)

|Vub| ∼
|µ1|
|µ3|

∼ |µ̃1|
|µ̃3|

∼ λ3 , |Vcb| ∼
|µ2|
|µ3|

∼ |µ̃2|
|µ̃3|

∼ λ2 ;

moreover,

md ≃ |γ|√
1 + |α|2

|µ1| ≃
|µ2|
|µ2|

|µ̃1|
µ3

mb ≃ λλ3mb ≃ λ4mb . (A.18)

Again Vtd is suppressed by the difference of α∗ − β∗ ≃ µ2/µ2, µ1/µ1, as is the Jarlskog

invariant, Jq.

Low-energy CP violation As discussed in the following appendix, we can express

the low-energy CP violation in the quark section via an effective Jarlskog invariant. We

calculate this invariant, using eqs. (A.4). The dominant terms are displayed in eq. (3.9);
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the complete expression reads

Jq =
µ̃2

1µ̃
2
2µ̃

2
3

∆M 2
d

{
M̃2M̃3

M̃2

[(
1 − M̃2

4

M̃2

)
Im

µ3µ
∗
2

µ̃3µ̃2
2

+
M̃3M̃4

M̃2

|µ3|2
µ̃2

3

Im
µ2

µ̃2

]
(A.19)

− M̃2
2 M̃3M̃4

M̃4

|µ2|2
µ̃2

2

Im
µ3

µ̃3

− M̃1M̃3

M̃2

[(
1 − M̃2

4

M̃2

)
Im

µ3µ
∗
1

µ̃3µ̃1
+

M̃3M̃4

M̃2

|µ̃3|2
µ̃2

3

Im
µ1

µ̃1

]

+
M̃1M̃2

M̃2

[(
1 − M̃2

4

M̃2

)
+

M̃2
3

M̃2

|µ3|2
µ̃2

3

]
Im

µ2µ
∗
1

µ̃2µ̃1

+
M̃1M̃

2
2

M̃3

|µ2|2
µ̃2

2

[
M̃4

M̃
Im

µ1

µ̃1
− M̃3

M̃
Im

µ3µ
∗
1

µ̃3µ̃1

]

+
M̃2

1

M̃2

|µ1|2
µ̃2

1

[
M̃3M̃4

M̃2
Im

µ3

µ̃3
− M̃2M̃4

M̃2
Im

µ2

µ̃2
+

M̃2M̃3

M̃2
Im

µ3µ
∗
2

µ̃3µ̃2

]}
.

Charged leptons. The charged leptons show a different hierarchy than the down quarks,

we have in fact

me : mµ : mτ ≃ λ5−6 : λ2 : 1

md : ms : mb ≃ λ4 : λ2 : 1 . (A.20)

The discrepancy can be solved with a smaller value for (µ2µ̃1)e, compared to (µ2µ̃1)d. As

an example, we choose µe
2 ≃ λ4 and µ̃e

1 ≃ λ3−4 such that

me ≃
|γe|√

1 + |α|2
|µ1| ≃

|µe
2|

|µ2|
|µ̃e

1|
µ3

mτ ≃ λ2λ3−4 mτ ≃ λ5−6 mτ . (A.21)

Regarding the rotations, the large V4 rotation acts now on the left-handed fields, but

it has to act on both the charged leptons and the neutrinos, so it has not a large effect in

the charged current. There is, however, an effect coming from the mismatch between the

two V3’s in the charged leptons and neutrino cases.

A.2 Neutrinos

The charged lepton mass matrix is eventually diagonalised via V3 = V̂3V
′
3 and U3 as the

down quark matrix. For the light neutrino Majorana mass matrix, given by

mν
eff = −

(
mD

)⊤ (
mN

)−1
mD, (A.22)

we can neglect the rotation U3 of the right-handed fields as this transformation cancels out.

U4 does in principle rotate the RH states, but its effect is suppressed as long as Mi < M̃ .

Regarding V3, we do not expect it to be the same for both charged and neutral leptons, so

the mismatch between the two provides flavour mixing in the neutrino sector.
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The neutrino Dirac mass matrix can be written after the large rotation V̂3 that bring

the charged lepton mass matrix into triangular form as

mD = m̂D V̂3 =




Aρ1 Dρ1 ρ1

Bρ2 Eρ2 ρ2

Cρ3 Fρ3 ρ3


 , (A.23)

where

ρ1 =
1

µ3

1

M̃2

{
ρ̃1

[
µ̃3M̃

2
123 − µ∗

3M̃3M̃4

]
− ρ1M̃1

[
µ̃3M̃4 + µ∗

3M̃3

]}
,

ρ2 =
1

µ3

1

M̃2

{
ρ̃2

[
µ̃3M̃

2
123 − µ∗

3M̃3M̃4

]
− ρ2M̃2

[
µ̃3M̃4 + µ∗

3M̃3

]}
,

ρ3 =
1

µ3

1

M̃2

{
ρ̃3

[
µ̃3M̃

2
123 − µ∗

3M̃3M̃4

]
− ρ3

[
µ̃3M̃3M̃4 − µ∗

3M̃
2
124

]}
,

and, using the notation M̃αβ =
√

M̃2
α + M̃2

β ,

A = − 1

ρ1

1

µ2

1

µ3

1

M̃

{
ρ̃1µ2µ3M̃1 − ρ1

[
µ̃2µ3M̃2 + µ2

(
µ̃3M̃3 − µ3M̃4

)]}
,

B =
ρ2µ̃2 − ρ̃2µ2

ρ2µ2

µ3

µ3

M̃1

M̃
,

C =
µ̃3ρ3 − µ3ρ̃3

ρ3µ3

µ2

µ2

M̃1

M̃
,

D =
1

ρ1

1

µ2

1

µ2
3

1

M̃2

{
ρ̃1

[
µ̃2 |µ3|2 M̃2

12 + µ∗
2µ3M̃2

(
µ̃3M̃3 − µ∗

3M̃4

)]

+ ρ1M̃1

[
µ̃2µ

∗
3

(
µ3M̃4 − µ̃3M̃3

)
+ µ∗

2M̃2

(
µ̃2

3 + |µ3|2
)]}

,

E =
1

ρ2

1

µ2

1

µ2
3

1

M̃2

{
ρ̃2

[
µ̃2 |µ3|2 M̃2

12 + µ∗
2µ3M̃2

(
µ̃3M̃3 − µ∗

3M̃4

)]

+ ρ2

[
µ̃2µ

∗
3M̃2

(
µ̃3M̃3 − µ3M̃4

)

+ µ∗
2

(
µ̃2

3M̃
2
13 − 2 |µ3| µ̃3M̃3M̃4 cos θ3 + |µ3|2 M̃2

14

)]}
,

F =
1

ρ3

1

µ2

1

µ2
3

1

M̃2
(ρ̃3µ3 − ρ3µ̃3)

[
µ̃2µ

∗
3M̃

2
12 + µ∗

2M̃2

(
µ̃3M̃3 − µ∗

3M̃4

)]
. (A.24)

Note that we are here projecting the neutrino flavour states into the basis defined by

the charged leptons as in eq. (A.3). So we can immediately see that if the neutrino flavour

vectors are aligned with the charged leptons B,C,F should vanish and the neutrino mass

matrix would become triangular as well. This corresponds to having exactly the same

hierarchy in the rows of the charged and neutral lepton Dirac mass matrices, i.e. µi

eµi
= ρi

eρi
.

We do not expect such alignment since the parameters ρ̃i, µ̃i are generated by different

operators and not related by any GUT relation, as can be seen from eq. (2.3c). We will

consider in the following the case where the neutrino hierarchies are similar to those of

the down quark matrix, while the charged leptons differ due to the lighter electron mass.
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Of course even more involved scenarios are possible. In the following we neglect as well

corrections coming from the final diagonalisation, since the entries of V ′
3 are suppressed by

(µ2/µ2)
2 . 0.01.

Mass eigenvalues and eigenvectors. We need to compute the eigenvalues of the neu-

trino mass matrix and the first step is again to compute the determinant of the matrix

mν
eff. Note that this is a symmetric matrix, but not real. Therefore the eigenvalues are in

general complex and the matrix is diagonalised using a unitary matrix Vν as

V ⊤
ν mν

effVν = diag (m1,m2,m3) . (A.25)

Consider for the moment just the absolute value of the eigenvalues and then see that we

have the relation3

det (mν
eff) = −

(
det

(
mD

))2

det (mN )
. (A.26)

The last determinant is simply the product of the heavy neutrino masses, while the first

one is given by

det(mD) = ρ1ρ2ρ3 [(F − E)(A − B) + (D − E)(B − C)] . (A.27)

In order to have three non-vanishing eigenvalues, we need all ρi 6= 0 and at least one of

A, B, and C different from zero. Also the three vectors corresponding to the rows of the

Dirac matrix must not be aligned with each other. So we obtain

m1m2m3 = −̺1̺2̺3 [(F − E)(A − B) + (D − E)(B − C)]2

= −̺1̺2̺3
ρ̃1

ρ1

ρ2

ρ2

ρ3

ρ3

1

µ2
2

1

µ2
3

1

M̃2

M̃1

M̃
(A.28)

×
{

µ̃2
2 |µ3|2 M̃2

12 + 2 |µ2| µ̃2 |µ3| M̃2

[
µ̃3M̃3 cos (θ2 − θ3) − µ3M̃4 cos θ2

]

+ |µ2|2
[
µ̃2

3M̃
2
13 − 2 |µ3| µ̃3M̃3M̃4 cos θ3 + |µ3|2 M̃2

14

]}
,

for ρ1 = 0, where ̺i = e−2iφiρ2
i /Mi.

Singling out the heaviest mass eigenstate. In the case when ̺3 ≫ ̺2,1, it is easy to

single out the heaviest eigenstate:

(v0
ν,3)

⊤ =
1√

1 + |F |2 + |C|2
(C∗, F ∗, 1) , (A.29)

and the mass eigenvalue to lowest order is given by

m0
3 = −̺3

(
1 + |F |2 + |C|2

)
. (A.30)

3Note that for a n × n mass matrix, the minus sign on the r.h.s. gives a (−1)n contribution.
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Then up to a rotation in the 12 submatrix, at lowest order the mixing matrix can be

written as

V 0
ν =




√
1+|F |2√

1+|F |2+|C|2
0 C∗√

1+|F |2+|C|2

−CF ∗√
1+|F |2+|C|2

√
1+|F |2

1√
1+|F |2

F ∗√
1+|F |2+|C|2

−C√
1+|F |2+|C|2

√
1+|F |2

−F√
1+|F |2

1√
1+|F |2+|C|2


 ; (A.31)

this is the basis which gives decoupling of the first eigenstate in the limit of vanishing C.

From this matrix, we can directly read off the dominant part of the mixing angles with the

heavy eigenstate, θ23 and θ13. The charged lepton mass matrix is nearly diagonal, so we can

actually relate with good accuracy the first row to the electron neutrino flavour. The left-

handed charged lepton flavour eigenstates are given as a function of the mass eigenstates by

ℓf =
(
V̂3V

′
3

)†
ℓi (A.32)

and therefore the neutrino flavour eigenstates correspond to

νf =
(
V̂3V

′
3

)†
V̂3Vννi =

(
V ′

3

)†
Vννi , (A.33)

where V̂3 cancels out as it acts equally on the whole lepton doublet; moreover, as we have

seen, V ′
3 is limited to the 23 corner and does not modify the electron entry. We use here

the convention of [32], and define the PMNS matrix as

Vν =




c13c12 c13s12 s13

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ c13s23e
iδ

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c13c23e
iδ







1 0 0

0 eiξ2/2 0

0 0 eiξ3/2




=




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1







1 0 0

0 eiξ2/2 0

0 0 ei(δ+ξ3/2)


 , (A.34)

where cij = cos θij , sij = sin θij, δ is the Dirac phase and ξ1,2 are the Majorana phases.

So we have at lowest order for θ13 that

(V 0
ν )13 = sin θ13 ≃ |C|√

1 + |F |2 + |C|2
. (A.35)

This gives us directly a constraint on the parameter C from the upper bound on

|sin θ13| ≤ 0.1:

|C| ≃
√

1 + |F |2 + |C|2 |sin θ13| . 0.1

√
1 + |F |2. (A.36)

Then since the mixing with the first flavour is small, the atmospheric mixing matrix is

given simply by requiring the 23 corner of the matrix in eq. (A.31) to give

Vatm, 23 =

(
cos θ23 sin θ23e

−iξ23

− sin θ23e
iξ23 cos θ23

)
. (A.37)
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So considering the 23 sector, we get, again at lowest order,

ξ23 = arg (F ) ,

tan θ23 = |F | . (A.38)

To have large mixing angle tan 2θ23 ≥ 3 [29, 31], we must restrict |F | between

0.7 ≤ |F | ≤ 1.4 . (A.39)

Such a value is natural in the case where ρ3, ρ̃3 and µ3, µ̃3 are of the same order but

not exactly equal, while µ2 is small. Note that even a phase difference can be important.

Assuming simply ρ3

eρ3
= eiω3

µ3

eµ3
and degenerate M̃i gives

|F | =
2
√

2(1 − cos ω3)

3 − cos ω3
, (A.40)

so we obtain |F | = 1 for the maximal phase difference ω3 = π, while |F | ≥ 0.7 arises in the

wide interval 0.26 π ≤ ω3 ≤ 1.73 π. Hence, a nearly maximal atmospheric angle is natural

even for the most simple choice of parameters. Of course, more solutions are possible for

the general case.

Thus in order to reproduce the observed pattern of mixing parameters, C has to be

small, while |F | is nearly unity. We can use the maximal value for |F | and the experimental

bound on θ13 to derive an upper limit on |C|,

|C| ≤ 0.17 , (A.41)

in agreement e.g. with the ratio µ2

eµ2
necessary to have a small electron mass. Note, however,

that we can obtain significant corrections from ̺2,1 6= 0.

Light eigenstates and solar mixing angle. The other two eigenvalues and the cor-

rection to the heavy mass can be obtained from the trace and determinant of the matrix

(mν
eff)† mν

eff, which can be computed in any basis. Expanding both the mass matrix and

the eigenvalues to first order,

mν
eff = m̺3

+ m̺1,2
,

m3 = m0
3 + δm3 while m1,2 = δm1,2 , (A.42)

we have then

δm3 =
tr

[
m†

̺3
m̺1,2

]

(m0
3)

∗
, |m1|2 + |m2|2 + |δm3|2 = tr

[
m†

̺1,2
m̺1,2

]
,

|m2|2 |m1|2 =
|det(mν

eff)|2

|m3|2
. (A.43)
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Choosing the basis appropriately, the relations can be simplified to give

δm3 =
(
(V 0

ν )⊤m̺1,2
V 0

ν

)
33

,

|m1|2 + |m2|2 = tr
[
m†

̺1,2
m̺1,2

]
−

∣∣∣
(
(V 0

ν )⊤m̺1,2
V 0

ν

)
33

∣∣∣
2

,

|m2|2 |m1|2 ∼ |̺1̺2|2
|(F − E)(A − B) + (D − E)(B − C)|2

(
1 + |F |2 + |C|2

)2 . (A.44)

We will give the result of these expressions for vanishing C and ̺1 = q̺2:

δm3 =̺2
(1 − FE)2 + q(1 − FD)2

1 + |F |2
,

tr
[
m†

̺1,2
m̺1,2

]
= |̺2|2

[
|1+q|2+

∣∣E2+qD2
∣∣2+

∣∣B2+qA2
∣∣2+2 |BE+qAD|2+2 |B+qA|2+2 |E+qD|2

]
,

|m2|2 |m1|2 ∼ |̺2|4 |q|2
|A(F − E) + B(D − F )|4

(
1 + |F |2

)2 . (A.45)

Then the mass splitting which should generate the solar oscillations is given by

δm2
sol =

√(
|m1|2 + |m2|2

)2
− 4 |m2|2 |m1|2

=
|̺2|2

(1 + |F |2)2
{[(

1 + |F |2
)2 (

|1 + q|2 +
∣∣E2 + qD2

∣∣2 +
∣∣B2 + qA2

∣∣2

+ 2 |BE + qAD|2 + 2 |B + qA|2 + 2 |E + qD|2
)

−
∣∣(1 − FE)2 + q(1 − FD)2

∣∣2
]2

− 4 |q|2
(
1 + |F |2

)2
|A(F − E) + B(D − F )|4

}1/2

. (A.46)

So the solar neutrino mass splitting can be matched even in the case q = 0 or

A (F − E) + B (D − F ) = 0, i.e., when the lightest neutrino is massless. However, we

do not expect the first limit to be realised, if we assume the same hierarchies between

ρ̄i as in the µ̄i in the down quark sector, while for Mi as the up quark sector. In that

case we have in fact |̺2| ∼ |̺1| and the two lighter eigenvalues are similar in scale,

m1 ≃ m2 ≃
√

δm2
sol. On the other hand, the determinant could be suppressed by align-

ment, i.e., for |A (F − E) + B (D − F )| ≪ 1, and could give us a hierarchy also between

the two light eigenvalues.

We can then compute the solar mixing angle and the first order corrections to the Ve3

mixing parameter. After rotating with the V 0
ν matrix, we can estimate the solar angle by

using only the 12 part of the mass matrix; for C ≃ 0 the matrix is given by

m̺1,2
(12) =




B2̺2 + A2̺1 B̺2
E−F√
1+|F |2

+ A̺1
D−F√
1+|F |2

B̺2
E−F√
1+|F |2

+ A̺1
D−F√
1+|F |2

̺2
(E−F )2

1+|F |2
+ ̺1

(D−F )2

1+|F |2


 . (A.47)
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Taking the solar mixing matrix as in eq. (A.37) with θ23, ξ23 → θ12, ξ12 we obtain

e−iξ12 =
(m̺1,2

)12(m̺1,2
)∗11 + (m̺1,2

)22(m̺1,2
)∗12∣∣(m̺1,2

)12(m̺1,2
)∗11 + (m̺1,2

)22(m̺1,2
)∗12

∣∣ ,

tan 2θ12 =
2
∣∣(m̺1,2

)12(m̺1,2
)∗11 + (m̺1,2

)22(m̺1,2
)∗12

∣∣
∣∣(m̺1,2

)22
∣∣2 −

∣∣(m̺1,2
)11

∣∣2 =
2
√

1 + |F |2 |N |
D ,

where, for q = ̺1/̺2,

N = [B(E − F ) + qA(D − F )]
(
B2 + qA2

)∗ (
1 + |F |2

)

+
[
(E − F )2 + q (D − F )2

]
[B (E − F ) + qA (D − F )]∗ ,

D =
∣∣∣(E − F )2 + q (D − F )2

∣∣∣
2
−

∣∣B2 + qA2
∣∣2

(
1 + |F |2

)2
.

In order to have a large solar mixing angle, either Aq or B must not be small compared

to E − F and D − F . But since A, C ∝ µ2

eµ2
, we are led to the case

A = C ∼ 0 , B =
ρ2

ρ2

M̃1

M̃
= O (1) . (A.48)

Then we can neglect the terms proportional to A and we have simply

tan 2θ12 = 2 |B| |E − F |
√

1 + |F |2
|B|2 (1 + |F |2) + |E − F |2 + q(D − F )2 (E−F )∗

E−F∣∣∣(E − F )2 + q (D − F )2
∣∣∣
2
− |B|4

(
1 + |F |2

)2 .

(A.49)

This formula simplifies further if we neglect the q (D − F ) terms as well.4 Then using

general trigonometric formulae leads to the expression in eq. (4.11),

tan θ12 ≃ |B|
|E − F |

√
1 + |F |2 . (A.50)

Taking the experimental value for the solar angle, tan2 θ12 = 0.45±0.05, gives us for |F | ∼ 1

the range |B| ∼ (0.45 − 0.50) |E − F |.
We can also compute the corrections of order ̺1,2 to the other two mixing angles, that

we have discussed in the lowest order. In fact, since µ2 ≪ µ̃2, the contribution (A.35) is

small and the leading contribution to θ13 comes from the B̺2 term,

(V (1)
ν )13 = sin θ13 ≃ |B (EF + 1)|

(
1 + |F |2

)3/2

|̺2|
|̺3|

∼ |B| m2

m3
∼ 0.2 |B| . (A.51)

So even for vanishing leading order, we expect the first order term to bring θ13 near to the

experimental bound. Note that it is the large solar angle that naturally gives θ13 ∼ ̺2/̺3;

4Note that taking A = C = D − F = 0 gives a zero determinant for the neutrino mass matrix, so this

case applies when the lightest eigenvalue is suppressed compared to the solar mass scale.
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in our model it seems pretty difficult to suppress this angle to much smaller values, apart

if there is a tuned cancellation between zero and first order.

The corrections to the atmospheric angle are of the same order ̺2/̺3 and do not have

a large effect since we need in any case large parameters in the 23 sector. This small shift

can in fact be easily compensated by a small change in the value of F , especially since we

do not have any particular symmetry in the model imposing F = 1.

Sum rules for B dominance and vanishing m1. We have seen in the previous para-

graph that in case of vanishing C, A and ̺1, simple expressions can be obtained for all

observables as functions of only few parameters B, E, F and ̺3,2. Then it is possible to

obtain relations between the different observables,

tan θ23 = |F | ,

tan θ12 =
|B|

|E − F |

√
1 + |F |2 ,

sin θ13 =
|B (EF + 1)|
(
1 + |F |2

)3/2

|̺2|
|̺3|

,

δmsol

δmatm
=

|̺2|
|̺3|

√
(1 + |F |2)2

(
1 + |E|2 + |B|2

)2
− |1 − FE|4

(
1 + |F |2

)2 . (A.52)

Now we can write the following relation,

sin θ13

tan θ12

δmatm

δmsol
=

|E − F | |EF + 1|√[(
1 + |F |2

) (
1 + |E|2

)
+ |E − F |2 tan2 θ12

]2
− |1 − EF |4

. (A.53)

To estimate its value, we can use the fact that |F | ∼ 1 and vary only |E| and the phases

of E, F . We obtain then a maximal value of the r.h.s. for EF = 1 so that

sin θ13 ≤ δmsol

δmatm

tan θ12

1 + tan2 θ12
≃ 0.09 . (A.54)

Of course, the angle θ13 can always be reduced by an appropriate choice of the phases and

in particular for E = F , so that there is no lower bound in this type of models.

The effective neutrino Majorana matrix, which is relevant for neutrinoless double beta

decay, simplifies such that

|mee| = |B|2 |̺2|

= δmsol
tan2 θ12 |E − F |2√[(

1 + |F |2
) (

1 + |E|2
)

+ tan2 θ12 |E − F |2
]2

− |1 − FE|4
. (A.55)

Again varying the phases and the modulus of E, we find the maximal value for EF = −1,

|mee| ≤ δmsol
tan θ12√

2 + tan2 θ12

∼ 0.43 δmsol . (A.56)
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Moreover, we can give a simple relation between mee and the reactor angle,

|mee|
δmatm

=
|E − F |
|EF + 1| sin θ13 tan θ12 . (A.57)

Note that the singular value for EF + 1 = 0 corresponds to a vanishing reactor angle.

We can even derive a maximal value for the Dirac CP violation for this case. From

eqs. (4.21) and (4.27) we get

Jℓ = − |B|2 (κ1 − κ2) Im (Ω)

(1 + |F |2)2
[
(1 + |F |2)2

(
1 + |E|2 + |B|2

)2
− |1 − EF |4

] (A.58)

= −|E − F |4

1 + |F |2
tan2 θ12

(
1 + tan2 θ12

)
Im (Ω)

[(
1 + |F |2

)(
1 + |E|2

)
+ |E − F |2 tan2 θ12

]2
− |1 − EF |4

= − δmsol

δmatm

|E − F |4

1 + |F |2
tan2 θ12

(
1 + tan2 θ12

)
Im

[
(1 + EF ∗) F ∗ (E − F ) ei∆23

]
[((

1+|F |2
)(

1+|E|2
)
+|E−F |2tan2 θ12

)2
−|1−EF |4

]3/2
,

where ∆23 is the phase of ̺2/̺3. Again, the prefactor is maximal for EF = −1 and

E = −F , giving

|Jℓ| ≤
δmsol

δmatm

1 + tan2 θ12

2 tan θ12 (2 + tan2 θ12)
3/2

|sin ∆23| ≤ 0.06 . (A.59)

Here the imaginary part is only given by the phase ∆23, but in more general cases the phases

of E and F will play a role as well. So even for the CP violation in the leptonic sector, the

model displays a suppression given by the ratio of the mass eigenvalues. Contrary to the

quark case, however, the CP violation is not proportional to the smallest mass eigenvalue,

but it can be non-vanishing even for m1 = 0.

B. CP violation and weak basis invariants

For completeness we discuss here the CP invariants in the case of an additional vectorial

state. We prove that if the additional state is much heavier than the electroweak scale,

the low energy CP violation can be expressed by the Jarlskog invariant defined from an

effective 3 × 3 down quark mass matrix.

The transformation of a Dirac spinor ψ(t, ~x) under parity and charge conjugation is

given by

P ψ(t, ~x) P−1 = ηP γ0ψ(t,−~x),

C ψ(t, ~x) C−1 = ηC Cψ̄(t, ~x)⊤,
(B.1)

where ηP,C are non-observable phases. The matrix C obeys the relation γµC = −CγT
µ .

Since the Lagrangian is a Lorentz scalar, it only depends on fermionic field bilinears. Thus,
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we deduce the CP transformation for such terms,

CP ψ̄iψj (CP)−1 = ψ̄jψi ,

CP ψ̄iγ
5ψj (CP)−1 = −ψ̄jγ

5ψi ,

CP ψ̄iγ
µψj (CP)−1 = −ψ̄jγµψi ,

CP ψ̄iγ
µγ5ψj (CP)−1 = −ψ̄jγµγ5ψi .

(B.2)

Note that the operator ∂µ transforms under CP as ∂µ → ∂µ.

Quark sector. In the Standard Model, it is easy to verify the existence of the CP

symmetry in the Lagrangian, up to mass terms. In general, the quark mass terms are CP

invariant if and only if it is possible to find a weak basis transformation which realises

Hu∗ = WLHuW †
L , Hd∗ = WLHdW †

L , (B.3)

where Hu,d = Mu,d
(
Mu,d

)†
. It follows that

WL [Hu,Hd]W
†
L = − [Hu,Hd]

⊤ , (B.4)

such that, for r odd,

tr [Hu,Hd]
r = 0 (B.5)

is a necessary and sufficient condition for CP invariance [41].

The case of r = 1 is trivial: the trace of a commutator [Hu,Hd] is zero. For r = 3 and

three generations, we have

ISM ≡ tr [Hu,Hd]
3 = 6i

(
m2

t − m2
c

) (
m2

t − m2
u

) (
m2

c − m2
u

)
(
m2

b − m2
s

) (
m2

b − m2
d

) (
m2

s − m2
d

)
Jq ,

(B.6)

where the quantity Jq does not depend of the mass spectrum, and can be related, up

to a sign, with the CKM matrix, V , as |Jq| = |Im(V12V
∗
13V

∗
22V23)|. We conclude that in

order to have CP violation, we need to have Jq 6= 0. This quantity is the lowest weak basis

invariant which measure CP violating effects and it has mass-dimension twelve. Apart from

CP violation in the strong interactions, there is no other mechanism in the SM which can

generate CP violating effects if Jq = 0. Note that in the chiral limit, mu = md = ms = 0,

we do not generate CP violation even if Jq 6= 0.

In the literature, the lowest weak basis invariant is called Jarlskog determinant [28],

det [Hu,Hd] = 2i
(
m2

t − m2
c

) (
m2

t − m2
u

) (
m2

c − m2
u

)
(
m2

b − m2
s

) (
m2

b − m2
d

) (
m2

s − m2
d

)
Jq .

(B.7)

which is equivalent to the eq. (B.6).5 The Jarlskog determinant is only applicable to the

case of three generations, in contrast to the more general invariant in eq. (B.5).

5For any 3 × 3 traceless Hermitian matrix M one has: tr M3 = 3 |M |.
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Now let us add a down quark isosinglet. The gauge couplings to quarks and their mass

terms are (i, j = 1, 2, 3 and α = 1, 2, 3, 4):

L
q
W = − g√

2

(
ūLiγ

µdLi W+
µ + h.c.

)
− eJµ

EMAµ

− g

2 cos θW

(
ūLiγ

µuLi − d̄Liγ
µdLi − 2 sin2 θW Jµ

EM

)
Zµ (B.8a)

L
q
M = −

(
ūLi M ij

u uRj + d̄Li M
iα
d dRα + d̄L4 mα

d dRα

)
+ h.c. (B.8b)

where the matrices Mu, Md and md are of dimension 3 × 3, 3 × 4 and 1 × 4, respectively.

The electromagnetic current is given by Jµ
EM = 2

3 ūγµu − 1
3 d̄γµd.

The most general weak basis transformation consistent with the Lagrangian of

eq. (B.8) is:

(
uLi

dLi

)
−→ U ij

L

(
uLj

dLj

)
, uRi −→ (Uu

R)ij uRj , dRα −→
(
Ud

R

)αβ
dRα . (B.9)

where UL and Uu
R are 3 × 3 unitary matrices, while Ud

R is 4 × 4. Once we diagonalise the

mass terms, the Lagrangian reads

LW = − g√
2

[
ūLiγ

µ (VCKM)iα dLα W+
µ + h.c.

]
− eJµ

EMAµ

− g

2 cos θW

[
ūLiγ

µuLi − d̄Lαγµ
(
V †

CKMVCKM

)
αβ

dLβ − 2 sin2 θW Jµ
EM

]
Zµ ,

LM = −
(
ūLi Dui uRi + d̄Lα Ddα dRα

)
+ h.c. , (B.10)

where VCKM = Uu †
L Ud

L is a 3 × 4 matrix. The number of independent phases which are

related to CP violation is, for N = 3,

nCP = N (N + 1) − 1

2
N (N − 1) − 2N =

1

2
N(N − 1) = 3 . (B.11)

With the matrices as defined in eq. (B.8b) and Hu = MuM †
u, Hd = MdM

†
d , and

hd = Mdm
†
d, we can write down a set of weak basis invariants,

I1 = Imtr HuHdhdh
†
d , I2 = Im tr H2

uHdhdh
†
d ,

I3 = Imtr H2
u [Hu,Hd] hdh

†
d , I4 = Im tr HuH2

dhdh
†
d ,

I5 = Imtr H2
uH2

dhdh
†
d , I6 = Im tr H2

u

[
Hu,H2

d

]
hdh

†
d ,

I7 = Imtr H2
uHdHuH2

d , (B.12)

representing a set of necessary and sufficient conditions for having CP invariance in the

quark sector [42].

In our model, Hd and hd read

Hd =



|µ1|2 + µ̃2

1 µ̃1µ̃2 µ̃1µ̃3

µ̃1µ̃2 |µ2|2 + µ̃2
2 µ̃2µ̃3

µ̃1µ̃3 µ̃2µ̃3 |µ3|2 + µ̃2
3


 , hd =




µ1M̃1 + µ̃1M̃4

µ2M̃2 + µ̃2M̃4

µ3M̃3 + µ̃3M̃4


 . (B.13)
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Since Hu and Hd are real, I7 vanishes. The remaining invariants are in general different

from zero; the dominant terms are

I1 = −m2
t

(
µ̃2

1 + µ̃2
2

)
µ̃3M̃4 Im µ3 , I2 = m2

t I1 ,

I3 = −m6
t

(
µ̃2

1 + µ̃2
2

)
µ̃3M̃3M̃4 Imµ3 ,

I4 = −m2
t

(
µ̃2

1 + µ̃2
2

) (
µ̃2

1 + µ̃2
2 + µ̃2

3 + µ2
3

)
µ̃3M̃3M̃4 Im µ3 , I5 = m2

t I4 ,

I6 = −m6
t

(
µ̃2

1 + µ̃2
2

) (
µ̃2

1 + µ̃2
2 + µ̃2

3 + µ2
3

)
µ̃3M̃3M̃4 Im µ3 . (B.14)

Hence, CP is generally violated even by the presence of a single complex parameter µ3.

Note that this case is not equivalent to the chiral limit because both the charm and strange

masses are different from zero, mc ∝ µ2 and ms ∼ µ̃2 (albeit µ2 ≪ µ̃2). As we might expect,

the invariants vanish if all quarks of the first and second generation are massless.

Now we single out the heavy eigenstate with the rotations V4, U4. While the action of

V4 leaves the invariants unaffected, U4 strongly modifies them and reshuffles terms from one

to the other. In fact after this transformation, hd vanishes to lowest order and survives only

at order O(v2
EW/M̃2); then in the new basis all the invariants involving hd, i.e., I1 − I6 are

suppressed by v2
EW/M̃2 and vanish for M̃ → ∞. On the other hand I7 is now non-vanishing

and given by

I ′7 = Im tr H2
uHeff

d Hu

(
Heff

d

)2
, (B.15)

where Heff
d = m̂m̂† (see eq. (2.7)). Note that U4 also changes the weak interactions,

δLW = − g√
2

ūiγ
µ (U4 − 1)i4 d4 W+

µ + d̄iγ
µ

(
U †

4U4 − 1)
i4

d4 Zµ + h.c., (B.16)

so we expect both CP violation and CKM unitarity violation from these terms as well.

However, the mass of the heavy state is O (MGUT) so that the contributions to low-energy

processes are suppressed by a factor MEW/MGUT and are negligible.

Hence, at the electroweak scale, we are left to consider the single invariant

I ′7 = Im tr H2
uHeff

d HuHeff 2
d , (B.17)

which corresponds to the usual Jarlskog invariant Jq for three generations, but computed

for the effective quark mass m̂.

Lepton Sector. As discussed above, we can ignore the heavy states for low-energy CP

violation and use the effective 3 × 3 Yukawa matrices instead.

In the SM, extended by right-handed neutrinos, we have three mass terms for the

leptons,

L
ℓ
M = −

(
ēLi m

ij
e eRj + ν̄Li m

ij
D νRj +

1

2
ν⊤
RiC mij

N νRj

)
+ h.c. (B.18)

In analogy to the quark sector, invariance of the mass terms under CP transformation

requires

U †meV = m∗
e , U †mDW = m∗

D , W⊤mNW = −M∗
R , (B.19)
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where U , V , and W are unitary matrices acting in flavour space. Defining h = m†
DmD

and H = m†
NmN , we obtain

W †hW = h∗ , W †H W = H∗ . (B.20)

Now we can write down the weak basis invariants

Iℓ
1 = Im tr hH m∗

Nh∗mN , Iℓ
2 = Im tr hH2m∗

Nh∗mN ,

Iℓ
3 = Im tr hH2m∗

Nh∗mNH; (B.21)

for the three further invariants, substitute h = m†
Dme m†

e mD for h [26]. In the basis where

the right-handed neutrino mass is diagonal, one obtains

Iℓ
1 =M1M2

(
M2

2 −M2
1

)
Im h2

12+M1M3

(
M2

3 −M2
1

)
Im h2

13+M2M3

(
M2

3 −M2
2

)
Imh2

23 ,

Iℓ
2 =M1M2

(
M4

2 −M4
1

)
Im h2

12+M1M3

(
M4

3 −M4
1

)
Im h2

13+M2M3

(
M4

3 −M4
2

)
Imh2

23 ,

Iℓ
3 =M3

1 M3
2

(
M2

2 −M2
1

)
Imh2

12+M3
1 M3

3

(
M2

3 −M2
1

)
Im h2

13+M3
2 M3

3

(
M2

3 −M2
2

)
Im h2

23 .

If none of the Mi vanish and there is no degeneracy, the vanishing of I1, I2, and I3 implies

the vanishing of Imh2
12, Im h2

13, and Im h2
23 for CP invariance.

Note that in our model, mD stands for the effective 3 × 3 part of the Dirac neutrino

mass matrix, mD, as given in eq. (A.23). Then we obtain from eq. (4.3),

h12 = A∗Dρ2
1 + B∗Eρ2

2 + C∗Fρ2
3 ,

h13 = Aρ2
1 + Bρ2

2 + Cρ2
3 ,

h23 = D∗ρ2
1 + E∗ρ2

2 + F ∗ρ2
3 . (B.22)

The coefficients A, . . . , F are displayed in eqs. (A.24). They are generically complex, so we

do not expect CP to be conserved.

As in the quark sector, these invariants are rather general and give the necessary

conditions for the presence of CP violation. On the other hand, only few of the phases

remain important also in the low-energy limit. In our case, to study the low-energy Dirac

invariant, we can use the analogue of the Jarlskog invariant,

Jℓ = − 1

M 2
ν M 2

e

tr [hν
eff, he]3 , (B.23)

as discussed in section 4.3. Here, hν
eff = (mν

eff)† mν
eff and ∆M 2

ν and ∆M 2
e are the products

of the mass squared differences of the light neutrinos and charged leptons, respectively.
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[35] W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B

389 (1996) 73 [hep-ph/9608308].

[36] W. Buchmüller and T. Yanagida, Quark lepton mass hierarchies and the baryon asymmetry,

Phys. Lett. B 445 (1999) 399 [hep-ph/9810308].
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