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Abstract

We study anomalies of six-dimensional gauge theories compactified on orbifolds. In

addition to the known bulk anomalies, brane anomalies appear on orbifold fixpoints

in the case of chiral boundary conditions. At a fixpoint, where the bulk gauge group

G is broken to a subgroup H, the non-abelian G-anomaly in the bulk reduces to a

H-anomaly which depends in a simple manner on the chiral boundary conditions.

We illustrate this mechanism by means of a SO(10) GUT model.
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1 Introduction

The structure of the standard model of strong and electroweak interactions, its gauge

group and field content, points towards an underlying unified theory (GUT) of all par-

ticles and interactions. The simplest GUT group which unifies the gauge interactions

of the standard model is SU(5) [1]. With the present evidence for neutrino masses and

mixings the larger gauge group SO(10) [2] appears particularly attractive. It contains

SU(5) as well as the Pati-Salam group SU(4)×SU(2)×SU(2) [3] and flipped SU(5) [4] as

subgroups.

The quest for unification with gravity points towards supersymmetry and higher

dimensions. Orbifold compactifications [5] then provide a promising bridge to the four-

dimensional world since they generically lead to chiral gauge theories as effective theo-

ries in lower dimensions. Hence, orbifold compactifications provide an attractive starting

point for attempts to embed the standard model of particle physics into higher dimen-

sional string and field theories.

Orbifold compactifications also allow to break the gauge symmetry of grand unified

theories to the standard model gauge group in an attractive and simple manner. In

particular, the breaking of the GUT symmetry automatically yields the required doublet-

triplet splitting of Higgs fields [6]. Several SU(5) models have been constructed in five

dimensions (5d) [6]-[9], whereas six dimensions are required for the breaking of SO(10)

[10, 11]. Global anomaly cancellation [12] or extended supersymmetry [13] in 6d can also

be used to explain the number of quark-lepton generations.

In general, orbifold compactifications lead to anomalies at orbifold fixpoints. So far,

this has been studied for U(1) symmetries in 5d theories [14]-[17] and for 10d heterotic

orbifolds [18] , where no bulk anomalies exist. The cancellation of the brane anomalies

at orbifold fixpoints is crucial for the consistency of the orbifold compactification and

the field content of the theory.

In the present paper we investigate anomalies in orbifold compactifications of 6d the-

ories. This is motivated by recently proposed supersymmetric 6d GUT models. Contrary

to five dimensions, bulk anomalies exist in six dimensions for N=1 supersymmetry, and

the question arises how brane and bulk anomalies are related.

It turns out that Fujikawa’s method of calculating anomalies is particularly well

suited to study this question. In section 2 we shall explicitly calculate the U(1) anomaly

of a 6d Weyl fermion on the orbifold M = R4 × T 2/Z2 and compare the result with the

anomaly in flat spaceM = R6 and on the torus,M = R4×T 2. In section 3 we extend this

result to non-abelian anomalies and determine the general connection between the brane

anomalies and the chiral boundary conditions at orbifold fixpoints. This pattern will be
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illustrated in more detail in section 4 by means of the SO(10) GUT model proposed in

[19]. Our results are summarized in section 5, and some useful formulae are collected in

the appendices.

2 The abelian anomaly in six dimensions

Consider a Weyl fermion ψ with U(1) gauge interaction in six dimensions, which is

described by the lagrangian

L = ψ̄(z)iΓMDMψ(z) . (1)

Here DM = ∂M +AM , M = 1 . . . 6, is the covariant derivative with field strength FMN =

[DM , DN ]
1. The 6d Weyl fermion is composed of two 4d Weyl fermions with opposite 4d

chirality, ψ = (ψL, ψR), with γ5ψL = −ψL and γ5ψR = ψR; ψ has negative 6d chirality,

i.e. Γ7ψ = −ψ, where Γ7 = diag(γ5,−γ5).
Naive dimensional reduction to five dimensions yields a U(1) gauge theory with a

Dirac fermion, χ = ψL + ψR, with U(1) gauge interaction,

L = χ̄(z)iγMDMχ(z) , (2)

where γM , M = 1 . . . 5, are the usual 4d γ-matrices. This model has been discussed in

the literature in connection with anomalies arising on the orbifold S1/Z2 [14]-[17].

We now consider the compactification of the 6d theory on the orbifold M = R4 ×
T 2/Z2. The two elements of the group Z2 are the identity and the reflection at one point

on the torus T 2, e.g. y → −y, where y = (z5, z6). The orbifold T 2/Z2 has four fixpoints,

y1 = (0, 0), y2 = (πR5, 0), y3 = (0, πR6) and y4 = (πR5, πR6), which correspond to the

four corners of a ‘pillow’. Here R5, R6 are the radii of the torus in the z5 and z6 direction

respectively. For the fermion ψ we impose chiral boundary conditions,

ψL(x, y) = ψL(x,−y) , ψR(x, y) = −ψR(x,−y) , (3)

where x denotes the coordinates of flat 4d Minkowski space. In terms of the complete

system of mode functions (cf. appendix C), the fermions ψL and ψR can be expanded as

ψL(x, y) =
∑

mn

ψmn
L+(x)ξ

mn
+ (y) , ψR(x, y) =

∑

mn

ψmn
R−(x)ξ

mn
− (y) . (4)

Invariance of the lagrangian under the Z2 symmetry requires for the background gauge

field,

Aµ(x, y) = Aµ(x,−y) , A5,6(x, y) = −A5,6(x,−y) . (5)
1Our conventions for the Γ-matrices are listed in appendix A.
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Note, that A5,6 vanishes at the fixpoints yi, i = 1 . . . 4.

The effective action Γ[A], which is defined by

eiΓ[A] =
∫

DψDψ̄ exp
(

i
∫

d6zL
)

, (6)

transforms under infinitesimal gauge transformations δvAM = ∂Mv as

δvΓ[A] =
∫

d6z
(

∂M [v(z) JM(z)]− v(z)∂MJM(z)
)

, (7)

where JM(z) = δΓ[A]/δAM (z) is the U(1) current. We have kept for generality the bound-

ary term due to the partial integration. In the case of singular currents and manifolds

with boundaries, like in the orbifold case, a contribution from the boundary can survive

[20]. Due to the non-invariance of the measure DψDψ̄ gauge invariance is spoiled [21],

δvΓ[A] = −
∫

d6z v(z)A(z) . (8)

For vanishing boundary term the divergence of the current is then given by the anomaly

[22],

∂MJM(z) = A(z) , (9)

which can be expressed as a trace over modes of ψ and ψ̄, respectively [21].

Let φn be a complete set of eigenfunctions φn of the hermitian operator /D2 =

(ΓMDM)2 with eigenvalues λ2n, i.e. /D
2φn = λ2nφn. A left-handed 6d Weyl fermion ψ

can be expanded into eigenfunctions of /D2 and (1− Γ7)/2. Correspondingly, ψ̄ is right-

handed and can be expanded in eigenfunctions of /D2 and (1+Γ7)/2. The anomaly is then

given by the difference of sums over left-handed and right-handed modes, respectively

[21, 23, 24],

A(z) = lim
Λ→∞

∑

n

(

φ†
n(z)

1 − Γ7

2
φn(z)− φ†

n(z)
1 + Γ7

2
φn(z)

)

e−λ2
n/Λ

2

, (10)

where the sum has been regularized by the ultraviolet cutoff Λ. Choosing plane waves as

eigenfunctions in flat space, one obtains [23],

A(z) = − lim
Λ→∞

Tr
∫

d6k

(2π)6
Γ7e

ikze−/D
2

/Λ2

e−ikz

= − lim
Λ→∞

Tr
∫ d6k

(2π)6
Γ7 exp

(

(k + iD)2

Λ2
− 1

4Λ2
[ΓM ,ΓN ]FMN

)

= − lim
Λ→∞

1

3!
Tr Γ7

( −1

4Λ2
[ΓM ,ΓN ]FMN

)3

Λ6
∫ d6k

(2π)6
ek

2

= − i3

3!(4π)3
ǫMNPQRSFMNFPQFRS . (11)
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Here Tr denotes the trace over Dirac matrices in 6d, and after Wick rotation to Euclidean

space the metric is ηEMN = −δMN .

If two of the six dimensions are compactified on a torus one can choose as eigen-

functions the product of 4d plane waves with the orthonormal modes ξmn
± on T 2 (cf.

appendix C). The sum over all modes then reads

Tr
∫

d4k

(2π)4
ek

2/Λ2 ∑

mn

e−
M2

m+M2
n

Λ2

(

ξmn
+

2(y) + ξmn
−

2(y)
)

, (12)

which, in the limit ΛR5,6 → ∞, becomes the 6d sum of flat space, i.e.
∫

d6k/(2π)6 exp (k2/Λ2). Hence, the abelian anomaly on M = R4 × T 2 is identical to

the one in flat space.

Consider now compactification on the orbifold M = R4 × T 2/Z2. In this case the

physical space corresponds to the pillow with corners y1 = (0, 0), y2 = (πR5, 0), y3 =

(0, πR6) and y4 = (πR5, πR6), with half the volume of the torus. The variation of the

action then reads

δvΓ[A] = −
∫

d4x
∫

T 2/Z2

d2y v(x, y)∂MJM(x, y) (13)

= −
∫

d4x
∫

T 2/Z2

d2y v(x, y)A(x, y) (14)

= −
∫

d4x
∫

T 2
d2y v(x, y)Acov(x, y) , (15)

where in the last line we have extended the integral to the covering space T 2. In this way

we can resort to the trick of using mode functions on T 2 and compare more directly the

result with the torus case. For the relation between A and Acov see appendix D.

Another difference is that on the orbifold the chiral boundary conditions (3) have to

be taken into account in the sum over the modes of ψ and ψ̄. This can be done by means

of the projection operators

1± Γ7

2
P̂L(R) , (16)

where the 4d chirality operator acting on 6d spinors is defined as

P̂L(R) =





PL(R) 0

0 PL(R)



 , (17)

and PL(R) = (1∓ γ5)/2 is the usual 4d chiral projector. The operators in eq. (16) single

out the components ψL(R) of the 6d Weyl spinor ψ. For the anomaly one then obtains

(cf. (11)),
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Acov(x, y) = lim
Λ→∞

Tr
∫ d4k

(2π)4
eikx

∑

mn

e−/D
2

/Λ2

e−ikx (18)

×
[

1− Γ7

2

(

P̂Lξ
mn
+

2(y) + P̂Rξ
mn
−

2(y)
)

−1 + Γ7

2

(

P̂Rξ
mn
+

2(y) + P̂Lξ
mn
−

2(y)
)

]

,

which is conveniently expressed as

Acov(x, y) = −1

2
lim
Λ→∞

Tr
∫

d4k

(2π)4
ek

2/Λ2 ∑

mn

e−
M2

m+M2
n

Λ2 exp
( −1

4Λ2
[ΓM ,ΓN ]FMN

)

(19)

×
[

Γ7

(

ξmn
+

2(y) + ξmn
−

2(y)
)

+
(

P̂R − P̂L

) (

ξmn
+

2(y)− ξmn
−

2(y)
)]

.

The term proportional to (ξ2++ξ
2
−) is identical to the anomaly on the torus, up to a factor

1/2. Hence, we obtain on the covering space half the bulk anomaly of flat space. This is

plausible since we have projected out half of the modes. In fact we can write the torus

wavefunction as a sum of two orbifold wavefunctions with opposite parities and recover

the result of eq. (12). Remember anyway that the orbifold bulk anomaly on the physical

space is larger by a factor 2 (cf. appendix D), so that locally one cannot distinguish the

global properties of the space.

On the other hand, the sum over the difference of modes, (ξ2+ − ξ2−), is finite (cf.

appendix C), and independent of the cut-off,

∑

mn

(

ξmn
+

2(y)− ξmn
−

2(y)
)

= δO(y) . (20)

Correspondingly, taking the limit Λ → ∞, the term proportional to

Tr
(

P̂R − P̂L

) (

[ΓM ,ΓN ]FMN

)3
vanishes, whereas a term Tr

(

P̂R − P̂L

) (

[ΓM ,ΓN ]FMN

)2

survives, proportional to the 4d anomaly. Combining both terms we finally obtain for

the anomaly,

Acov(x, y) = − 1

2

i3

3!(4π)3
ǫMNPQRSFMNFPQFRS +

i2

2!(4π)2
δO(y)ǫ

µνρσFµνFρσ . (21)

As described in the appendix D, the anomaly on the physical space T 2/Z2 reads then

A(x, y) = − i3

3!(4π)3
ǫMNPQRSFMNFPQFRS +

i2

2!(4π)2
δO(y)ǫ

µνρσFµνFρσ . (22)

The interpretation of this result is obvious: the first term is the usual 6d bulk anomaly,

and the second term, generated by the chiral boundary conditions at the orbifold fix-

points, is a localized 4d anomaly. Note that the sum of the 4d anomalies at the fixpoints

equals the 4d anomaly of the zero mode ψ00
L . In fact the contributions of the massive

modes to the integrated anomaly compensate each other for every Kaluza-Klein level
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(m,n). In the effective 4d low energy theory therefore only the contribution of the zero

modes survives, if the bulk anomaly vanishes.

For comparison, it is instructive to compute also the abelian anomaly in five dimen-

sions, on the orbifold M = R4 × S1/Z2. The two fixpoints are y1 = 0 and y2 = πR5,

with y = z5. The chiral boundary conditions are again given by eq. (3). Fermions are

now four-component spinors, χ = ψL + ψR, and left- and right-handed spinors can be

expanded in terms of ξm+ and ξm− , respectively (cf. appendix C). The trace formula (18)

for the 6d anomaly then becomes

Acov(x, y) = lim
Λ→∞

Tr
∫

d4k

(2π)4
eikx

∑

m

e−/D
2

/Λ2

e−ikx

×
[(

PLξ
m
+

2(y) + PRξ
m
−

2(y)
)

−
(

PRξ
m
+

2(y) + PLξ
m
−

2(y)
)]

, (23)

which yields

Acov(x, y) = − lim
Λ→∞

Tr
∫

d4k

(2π)4
ek

2/Λ2 ∑

m

e−
M2

m

Λ2 exp
( −1

4Λ2
[ΓM ,ΓN ]FMN

)

×
[

γ5
(

ξm+
2(y)− ξm−

2(y)
)]

. (24)

As on the torus, the sum over the differences of modes, (ξ2+−ξ2−), is finite, and one finally

obtains

Acov(x, y) = A(x, y) =
1

2

(

δ(y) + δ(y − πR5)
) i2

2!(4π)2
ǫµνρσFµνFρσ . (25)

This result has previously been obtained [14] by direct evaluation of the divergence of the

5d U(1) current, using the known 4d anomaly, and also by means of Fujikawa’s method

[16].

3 The non-abelian anomaly

The abelian anomaly (22) is most conveniently written as differential form. With

A = AMdz
M , F = dA =

1

2
FMNdz

MdzN , (26)

one obtains for the 6-form Â = A(z)dz1 . . . dz6,

Â = − i3

(2π)3
F 3 + δO(y)dz

5dz6
i2

(2π)2
F 2 , (27)

where wedge products are understood.
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Consider now a 6d Weyl fermion ψ in a non-abelian background field which is an

element of the Lie algebra, i.e. DM = ∂M + AM and AM = iAa
MT

a, where T a are the

generators of the group G. Field strength and gauge variation are now

F = dA+ A2 , δvA = dv + [A, v] , (28)

where v = ivaT a. The variation of the effective action, neglecting the boundary term, is

given by

δvΓ[A] = −
∫

d6z va(z) (Aa(z) + ∆a
WZ(z)) . (29)

The non-abelian anomaly Aa + ∆a
WZ satisfies the Wess-Zumino consistency conditions

[25]. It differs from the covariant anomaly Aa by ∆a
WZ , a local polynomial in the gauge

field [24]. Since we are only interested in the question of anomaly cancellation, we can

ignore this difference and consider just the covariant anomaly which is again given by a

trace formula [24],

Aa(z) = lim
Λ→∞

∑

n

(

φ†
n(z)T

a1− Γ7

2
φn(z)− φ†

n(z)T
a1 + Γ7

2
φn(z)

)

e−λ2
n/Λ

2

. (30)

A calculation completely analogous to the one in section 2 then yields for the non-abelian

anomaly on the orbifold R4 × T 2/Z2,

Âa(x, y) = − i3

(2π)3
tr
(

T aF 3
)

+ δO(y)dz
5dz6

i2

(2π)2
tr
(

T aF 2
)

, (31)

where tr denotes the trace over the fermion representation of the group G.

Boundary conditions at orbifold fixpoints can be used to break the group G to

a symmetric subgroup H. This is achieved by means of an automorphism of the Lie

algebra, characterized by a parity operator P , with P 2 = I. For the gauge field A, the

corresponding boundary conditions read

PAµ(x,−y)P−1 = +Aµ(x, y) , PA5,6(x,−y)P−1 = −A5,6(x, y) . (32)

Note, that P acts differently on the generators T ã of H and T â of G/H ,

PT ãP−1 = +T ã , PT âP−1 = −T â , (33)

allowing zero modes only for Aã
µ and Aâ

5,6. Also the 6d gauge transformations are re-

stricted to those with ∂µv
â(x, 0) = 0 , ∂5,6v

ã(x, 0) = 0. Hence, only the local symmetry

corresponding to H is present at the orbifold fixed point.

The 6d Weyl fermion, ψ = (ψL, ψR), splits into two, in general reducible, represen-

tations of H, ψ = (ψ1, ψ2), which have positive and negative parity, respectively,

Pψ1(x, y) = +ψ1(x, y) , Pψ2(x, y) = −ψ2(x, y) . (34)
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The chiral boundary condition (3) then becomes

PψL1(x,−y) = +ψL1(x, y) , PψL2(x,−y) = −ψL2(x, y) , (35)

PψR1(x,−y) = −ψR1(x, y) , PψR2(x,−y) = +ψR2(x, y) . (36)

These boundary conditions allow only two 4d zero modes, one left- and one right-handed

fermion in two different representations of H, which can be characterized by the projection

operators P1 = (1 + P )/2 and P2 = (1− P )/2.

We can now again calculate the non-abelian anomaly on the orbifold with the new

boundary conditions which break G to H. The anomaly is given by the same expression

as (18) except for the mode sum which has to be replaced by

∑

mn

e−
M2

m+M2
n

Λ2

{

1− Γ7

2

[(

P̂LP1 + P̂RP2

)

ξmn
+

2(y) +
(

P̂LP2 + P̂RP1

)

ξmn
−

2(y)
]

−1 + Γ7

2

[(

P̂RP1 + P̂LP2

)

ξmn
+

2(y) +
(

P̂RP2 + P̂LP1

)

ξmn
−

2(y)
]

}

. (37)

This expression can again conveniently be written in the form of eq. (19), with the mode

sum,

∑

mn

e−
M2

m+M2
n

Λ2

{

Γ7

(

ξmn
+

2(y) + ξmn
−

2(y)
)

+
(

P̂R − P̂L

)

(P1 − P2)
(

ξmn
+

2(y)− ξmn
−

2(y)
)}

. (38)

Note that, as before, P̂R − P̂L = diag(γ5, γ5), while P1 − P2 = P .

The final expression for the anomaly then reads

Âa(x, y) = − i3

(2π)3
tr
(

T aF 3
)

+ δO(y)dz
5dz6

i2

(2π)2
tr
(

(P1 − P2)T
aF 2

)

(39)

= − i3

(2π)3
tr
(

T aF 3
)

+ δO(y)dz
5dz6

i2

(2π)2
tr
(

PT aF 2
)

. (40)

The only difference with respect to eq. (31), the anomaly in the case without symmetry

breaking, is the appearance of projection operators, and therefore of the parity operator

P , in the second term. At the fixpoint, the group G is broken to the subgroup H. It is

therefore consistent to have in the fixpoint term of the anomaly projection operators P1

and P2 for the two different representations of H. The relative sign is different, since the

chiral boundary conditions (35), (36) associate a 4d left-handed fermion with P1 and a

4d right-handed fermion with P2.

At the fixpoint only the gauge group H can act, and the gauge variation ∂µv
â for

the coset G/H vanishes there. Correspondingly, for the localized anomaly the trace

tr
(

PT âF 2
)

vanishes for any generator T â belonging to the coset G/H , since we have

tr
(

PT âF 2
)

= −tr
(

PT âF 2
)

= 0 , (41)

9



from PT â = −T âP and PF 2 = F 2P .

Similarly, also the bulk anomaly at the fixpoint is non-zero only for generators T ã

belonging to H . In fact, there the non-vanishing fields are F ã
µν , F

ã
56 and F â

µ5, F
â
µ6. Hence,

the only completely antisymmetric terms are of the type

tr
(

T aT ãT ã′T ã′′
)

ǫµνρσF ã
µνF

ã′

ρσF
ã′′

56 , (42)

corresponding to the bulk H anomaly term, and the mixed piece

tr
(

T aT ãT âT â′
)

ǫµνρσF ã
µνF

â
ρ5F

â′

σ6 . (43)

Both group traces vanish identically for generators T a belonging to G/H , since they

contain an odd number of generators of G/H , with negative parity.

So at the fixed point the non-abelian anomaly is restricted to the subgroup H of the

original group G. But while the brane anomaly contains only F ã
µν and reduces automati-

cally to the anomaly of the unbroken subgroup H , in the bulk piece an additional mixed

term (43) survives.

If we integrate over the compact space, we obtain two contributions that affect the

low energy effective 4d theory: on one side part of the bulk anomaly survives and gives

rise to derivative interactions between the zero modes and the Kaluza-Klein tower of the

gauge field, on the other hand the localized piece reduces to the 4d anomaly of the zero

modes, as in the case of the abelian anomaly.

Therefore, in order to have a viable 4d low energy theory, we need to impose the

vanishing of the irreducible bulk anomaly and also require an anomaly-free configuration

for the zero modes.

4 An SO(10) GUT model

We are now ready to consider a more interesting example, the SO(10) GUT model pro-

posed in ref. [19]. We consider SO(10) Yang-Mills theory in 6d with N=1 supersymmetry.

The gauge fields AM and the gauginos λ1, λ2 are conveniently grouped into vector and

chiral multiplets of the unbroken N=1 supersymmetry in 4d,

A = (Aµ, λ1) , Σ = (A5,6, λ2) . (44)

Here A and Σ are matrices in the adjoint representation of SO(10).

Symmetry breaking is achieved by compactification on the orbifold T 2/(ZI
2 ×ZPS

2 ×
ZGG

2 ). The discrete symmetries Z2 break the extended supersymmetry. They also break

the SO(10) gauge group down to the subgroups SO(10), GPS=SU(4)×SU(2)×SU(2),

10



z

z

πR5

OGG Ofl

OPSO−πR5

πR6

-πR6

6

5

Figure 1: Orbifold T 2/(ZI
2 × ZPS

2 × ZGG
2 ) with the fixpoints O, OPS, OGG, and Ofl.

GGG=SU(5)×U(1)X and Gfl=SU(5)′×U(1)′, at the four fixpoints y1 = yO = (0, 0),

y2 = yPS = (πR5/2, 0), y3 = yGG = (0, πR6/2) and y4 = yfl = (πR5/2, πR6/2),

PIA(x, yO − y)P−1
I = ηIA(x, yO + y) , (45)

PPSA(x, yPS − y)P−1
PS = ηPSA(x, yPS + y) , (46)

PGGA(x, yGG − y)P−1
GG = ηGGA(x, yGG + y) , (47)

PflA(x, yfl − y)P−1
fl = ηflA(x, yfl + y) . (48)

Here PI = I, the matrices PPS and PGG are given in the appendix, and Pfl = PGGPPS,

with ηfl = ηGGηPS. The parities are chosen as ηI = ηPS = ηGG = +1. The extended

supersymmetry is broken by choosing in the corresponding equations for Σ all parities

ηi = −1.

Figure 1 shows the four fixpoints, together with their three images each, on the

covering space T 2, with z5 ∈ (−πR5, πR5] and z
6 ∈ (−πR6, πR6]. The physical region is

obtained by folding the shaded region along the dotted line and gluing the edges. The

result is a ‘pillow’ with the four fixpoints as corners. The unbroken gauge group of the

effective 4d theory is given by the intersection of the SO(10) subgroups at the fixpoints.

In this way one obtains the standard model group with an additional U(1) factor, GSM ′=

SU(3)×SU(2)×U(1)Y×U(1)X . The zero modes of the vector multiplet A form the gauge

fields of GSM ′.

Matter and Higgs fields have been introduced motivated by the coset spaces

E8/(SO(10)×HF ) where HF is a subgroup of SU(3)×U(1) [26]-[29], which have pre-
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viously been discussed in connection with 4d supersymmetric σ-models. In the case

HF =SU(3)×U(1) the complex structure, and the corresponding representation of chiral

multiplets is unique,

Ω = (16, 3)1 + (16∗, 1)3 + (10, 3∗)2 + (1, 3)4 . (49)

The SO(10) representations can in principle account for three quark-lepton generations,

contained in the three 16’s of SO(10), one mirror generation 16∗ and Higgs fields in the

10’s. For bulk fields, however, only split multiplets appear as zero modes in the effective

4d theory.

It is remarkable that the requirement of SO(10) bulk anomaly cancellation determines

the distribution of the SO(10) multiplets between bulk and branes. The vector multiplet

is a 45-plet of SO(10) which has a 6d anomaly. The irreducible anomalies of fermions in

the adjoint, vector and spinor representations are related by (cf. [30]),

a(4)(45) = 2a(4)(10) , a(4)(16) = a(4)(16
∗) = −a(4)(10) . (50)

Since fermions in vector and hypermultiplets have opposite chirality, the irreducible

anomaly of the vector multiplet can be canceled by adding two 10-plet hypermultiplets,

H1 and H2. The complex structure (49) then requires all three 10-plets, and, conse-

quently, also the 16∗-plet to be bulk fields whereas the three 16’s have to reside on

branes.

As discussed in [19], one can obtain the supersymmetric standard model with right-

handed neutrinos as effective 4d theory from this distribution of fields. A vacuum expec-

tation value of 16∗ can then break B − L and generate Majorana neutrino masses. To

achieve this, the parities of the hypermultiplets have to be properly chosen,

PIH(x, yO − y) = ηIH(x, yO + y) , (51)

PPSH(x, yPS − y) = ηPSH(x, yPS + y) , (52)

PGGH(x, yGG − y) = ηGGH(x, yGG + y) , (53)

with ηi = ±1 (i = I, PS,GG). The parities of the three 10-plets H1, H2, H3 and

the 16∗-plet Φc are listed in table 1. All hypermultiplets split under the extended 6d

supersymmetry into two N=1 4d chiral multiplets, H = (H,H ′). The two 4d left-handed

fermions in the two chiral multiplets, hL and h′L, transform with respect to G as complex

conjugates of each other. The 6d Weyl fermion is h = (hL, h
′c
L). Invariance of the action

requires that the parities of the 4d multiplets H and H ′ are opposite. We have denoted

by ηi the parities of the first 4d chiral multiplet, and we have chosen ηI = +1.

The discrete symmetry ZPS implies automatically a splitting between the SU(2)

doublets and the SU(3) triplets contained in the 10-plets. The choice ηPS = +1 leads

12



SO(10) 10

GPS (1, 2, 2) (1, 2, 2) (6, 1, 1) (6, 1, 1)

GGG 5∗
−2 5+2 5∗

−2 5+2

Hc H Gc G

ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2

H1 + + + − − + − −
H2 + − + + − − − +

H3 − + − − + + + −

SO(10) 16∗

GPS (4∗, 2, 1) (4∗, 2, 1) (4, 1, 2) (4, 1, 2)

GGG 10∗
+1 5−3 10∗

+1 5−3, 1+5

Qc Lc U,E D,N

ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2

Φc − − − + + − + +

Table 1: Parity assignment for the bulk 10 and 16∗ hypermultiplets. Hc = Hd and

H = Hu.

to massless SU(2) doublets and massive colour triplets (cf. table 1). Choosing further

ηGG = +1 for H1 and ηGG = −1 for H2, selects the doublet Hc from the SU(5) 5∗-plet

contained inH1, and the doubletH from the SU(5) 5-plet ofH2 (cf. table 1). The doublets

Hc and H have the quantum numbers of the Higgs fields Hd and Hu, respectively, in the

supersymmetric standard model.

For the set of SO(10) fields given by eq. (49) the irreducible bulk anomalies cancel,

but reducible bulk anomalies remain. In particular, the reducible anomaly of the 45 is

not canceled by the anomalies of the three 10’s and the 16∗, and the variation of the

effective action reads

δvΓ[A] = c
∫

tr (vdA) tr
(

F 2
)

, (54)

where c is a constant. This reducible anomaly can be canceled by the Green-Schwarz

mechanism [31], where an antisymmetric tensor field B with axion-like coupling is intro-

duced,

SB = c
∫

Btr
(

F 2
)

. (55)
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Requiring B to transform as

δvB = −tr (vdA) , (56)

one obviously has δvΓ[A] + δvSB = 0.

In addition to the bulk anomalies one has to worry about the brane anomalies induced

at the four fixpoints by the chiral boundary conditions. Note that these anomalies contain

also F 2 as do the reducible anomalies, but cannot be canceled by the Green-Schwarz

mechanism since they contain also information about the group index, absent in the case

of the singlet field B.

In terms of the two 4d left-handed fermions contained in the chiral multiplets H

and H ′ the left-handed 6d Weyl fermion is given by h = (hL, h
′c
L). It transforms with

respect to SO(10) and its subgroups like hL. The chiral boundary conditions (51)-(53)

together with the corresponding equations for H ′ are then the analogue of the chiral

boundary condition (35), (36) discussed in section 3. The SO(10) bulk symmetry is now

broken to different subgroups at the four fixpoints. Correspondingly, bulk fields split into

representations of the common subgroup GSM ′.

Consider as an example the 10-plet H1, with the parities listed in the table. The split

multiplets can be described by projection operators which act on the SO(10) 10-plet,

i.e. PHc , PH , PGc and PG. Different sums project on representations of the fixpoint GUT

groups, in obvious notation,

PHc + PH = P(1,2,2) , PGc + PG = P(6,1,1) , (57)

PHc + PGc = P(5∗,−2) , PH + PG = P(5,2) , (58)

PHc + PG = P̃(5∗,−2) , PH + PGc = P̃(5,2) , (59)

where P̃ denote projection operators of flipped SU(5).

It is straightforward to calculate the nonabelian anomaly following the procedure

discussed in the previous section and generalizing to the presence of three parities. The

sum over modes now involves the projection operators on all the states listed in the table

as well as mode functions with the corresponding parities. Instead of (37) one obtains

∑

mn

e−
M2

m+M2
n

Λ2

{

1− Γ7

2

[

P̂L

(

PHcξmn
+++

2 + PHξ
mn
++−

2 + PGcξmn
+−+

2 + PGξ
mn
+−−

2
)

+P̂R

(

PHcξmn
−−−

2 + PHξ
mn
−−+

2 + PGcξmn
−+−

2 + PGξ
mn
−++

2
)]

−1 + Γ7

2

[

P̂R

(

PHcξmn
+++

2 + PHξ
mn
++−

2 + PGcξmn
+−+

2 + PGξ
mn
+−−

2
)

+P̂L

(

PHcξmn
−−−

2 + PHξ
mn
−−+

2 + PGcξmn
−+−

2 + PGξ
mn
−++

2
)]}

. (60)
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As in section 3 the various terms can be combined into two expressions which yield the

bulk and brane anomalies, respectively,

∑

mn

e−
M2

m+M2
n

Λ2

{

Γ7
1

4

∑

bc

(

ξmn
+bc

2 + ξmn
−(−b)(−c)

2
)

+
(

P̂R − P̂L

) (

PHc

(

ξmn
+++

2 − ξmn
−−−

2
)

+ PH

(

ξmn
++−

2 − ξmn
−−+

2
)

+PGc

(

ξmn
+−+

2 − ξmn
−+−

2
)

+ PG

(

ξmn
+−−

2 − ξmn
−++

2
))}

; (61)

here we have neglected a contribution to the bulk anomaly which vanishes in the limit

Λ → ∞. Given the relations for sums over mode differences given in appendix C, one

finally obtains for the anomaly,

Âa
cov 10(x, y) = − 1

8

i3

(2π)3
tr10

(

T aF 3
)

+
1

4

i2

(2π)2
dz5dz6

[

δO(y)tr10
(

T aF 2
)

+δPS(y)tr10
(

(P(1,2,2) − P(6,1,1))T
aF 2

)

+δGG(y)tr10
(

(P(5∗,−2) − P(5,2))T
aF 2

)

+δfl(y)tr10
(

(P̃(5∗,−2) − P̃(5,2))T
aF 2

)]

. (62)

Going to the physical space T 2/(ZI
2 ×ZPS

2 ×ZGG
2 ), the bulk anomaly changes by a factor

8, whereas the fixpoint contributions only by a factor 4 (cf. appendix D). The final result

reads

Âa
10(x, y) = − i3

(2π)3
tr10

(

T aF 3
)

+
i2

(2π)2
dz5dz6

[

δO(y)tr10
(

T aF 2
)

+δPS(y)tr10
(

(P(1,2,2) − P(6,1,1))T
aF 2

)

+δGG(y)tr10
(

(P(5∗,−2) − P(5,2))T
aF 2

)

+δfl(y)tr10
(

(P̃(5∗,−2) − P̃(5,2))T
aF 2

)]

. (63)

At the fixpoints the SO(10) anomaly is reduced to an anomaly of the unbroken subgroup,

with a coefficient which is determined by the difference of the anomalies into which the

10-plet is split. Since SO(10) is anomaly free in 4d, and also (1, 2, 2) and (6, 1, 1) have

no GPS anomaly, one is left with SU(5)2×U(1)X and U(1)3X anomalies at yGG and yfl.

Using eqs. (58)–(59) one easily verifies that the anomaly integrated over T 2/Z3
2 equals

the anomaly of the zero mode Hc
1.

It is now straightforward to write down the anomaly of the 16∗-plet, given the parities

and split multiplets listed in the table,

Âa
16∗(x, y) = − i3

(2π)3
tr16∗

(

T aF 3
)

(64)
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+
i2

(2π)2
dz5dz6

[

δ0(y)tr16
(

T aF 2
)

+ δPS(y)tr16∗

(

(P(4,1,2) − P(4∗,2,1))T
aF 2

)

+δGG(y)tr16∗

(

(P(5,−3) + P(1,+5) − P(10∗,1))T
aF 2

)

+δfl(y)tr16∗

(

(P̃(5,−3) + P̃(1,+5) − P̃(10∗,1))T
aF 2

)]

.

Contrary to the 10-plet anomaly, also on the PS fixpoint an anomaly is generated. The

integrated anomaly equals again the sum of the contributions from the zero modes D

and N .

The 45-plet of gauginos contributes to the bulk anomaly. At the fixpoint yPS, it

splits into (15, 1, 1), (1, 3, 1), (1, 1, 3) and (6, 2, 2), which are all anomaly free. At yGG

and yfl the split multiplets are 240, 10, 10+4 and 10∗
−4; since 10+4 and 10∗

−4 have the

same parities at these fixpoints [10], no anomaly is induced.

Summing all anomalies, of the 45, the three 10’s and the 16∗ , the irreducible bulk

anomalies cancel, and the reducible bulk anomaly can be canceled by the Green-Schwarz

mechanism. There remain, however, brane anomalies with contributions from the 10-plet

H3 and the 16∗-plet Φc,

Âa
brane(x, y) =

i2

(2π)2
dz5dz6

{

δPS(y)tr16∗

(

(P(4,1,2) − P(4∗,2,1))T
aF 2

)

(65)

+δGG(y)
[

tr10
(

(P(5∗,−2) − P(5,2))T
aF 2

)

+tr16∗

(

(P(5,−3) + P(1,+5) − P(10∗,1))T
aF 2

)]

+δfl(y)
[

tr10
(

(P̃(5∗,−2) − P̃(5,2))T
aF 2

)

+tr16∗

(

(P̃(5,−3) + P̃(1,+5) − P̃ (10∗, 1))T aF 2
)]}

.

The result can be written in a simpler manner by noticing that

PPS = P(4,1,2) − P(4∗,2,1) , (66)

PGG = P(5∗,−2) − P(5,2) = P(5,−3) + P(1,+5) − P(10∗,1) , (67)

Pfl = P̃(5∗,−2) − P̃(5,2) = P̃(5,−3) + P̃(1,+5) − P̃(10∗,1) , (68)

so we have for arbitrary matter content

Âa
brane(x, y) =

i2

(2π)2
dz5dz6

∑

allfields

[

ηPSδPS(y)tr
(

PPST
aF 2

)

+ηGGδGG(y)tr
(

PGGT
aF 2

)

+ ηPSηGGδfl(y)tr
(

PflT
aF 2

)]

.(69)

Hence the sign of the anomaly at the orbifold fixpoints depends on the signs of the ηi.

The full brane anomaly is given by a simple trace containing the parity operators. Note,
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that the brane anomalies of the 10-plets H1 and H2 cancel each other due to the different

values of ηGG.

It is important to realize that the conditions for vanishing brane anomalies are

stronger than those requiring only the vanishing of the zero mode anomalies. This can

be seen clearly from the formula above. Integrating over the compact dimensions, we

obtain

Âa
brane(x) =

1

4

i2

(2π)2
∑

allfields

tr
(

[ηPSPPS + ηGGPGG + ηPSηGGPfl]T
aF 2

)

. (70)

Clearly, the vanishing of the trace containing all parities does not imply the vanishing of

the single contributions in eq. (69).

The cancellation of the brane anomalies (65) requires additional degrees of freedom.

One possibility is to add multiplets at the fixpoints, whose contribution gives rise to a

boundary term in eq. (7). In this case the matter content at each brane has to be matched

to cancel the corresponding anomaly. A simpler solution has been discussed in [19], the

addition of two more bulk fields: one 10-plet, H4, and one 16-plet, Φ. Such a ‘partial

doubling’ is familiar from supersymmetric σ-models [32]. In this case the irreducible and

reducible bulk anomalies as well as all brane anomalies cancel. Note, that this choice

of fields is still consistent with an eventual embedding of all bulk and brane fields in

to the 248 of E8 in 10d. Dimensional reduction of N=1 supersymmetry in 10d yields

N=4 supersymmetry in 4d. Hence, the multiplicity of 4d chiral multiplets with quantum

numbers of the coset E8/(SO(10) × HF ) has to be less than or equal to four. In the

model under consideration it would be four for the bulk fields H3,4 and Φ,Φc, two for

the bulk fields H1 and H2, and one for the three 16’s on the brane. The phenomenology

of this model will be discussed elsewhere.

5 Conclusions

We have analyzed bulk and brane anomalies of 6d gauge theories compactified on orbi-

folds. As in 5d theories, chiral boundary conditions at orbifold fixpoints lead to brane

anomalies in addition to the 6d bulk anomalies.

For orbifold compactifications Fujikawa’s method of calculating anomalies via the

Jacobian of the path-integral measure is particularly well suited. It yields the covariant

anomaly as sum over mode functions of the chiral fermions. Hence, boundary conditions

at orbifold fixpoints, which project out some of the modes, can be directly incorporated.

For the discussion of anomaly cancellations the covariant anomaly is sufficient although

it does not satisfy the Wess-Zumino consistency conditions.
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The main result of our analysis is very simple. The bulk anomaly on the orbifold

equals the anomalies in flat space and on the torus. Further, at a fixpoint with unbroken

symmetry H, the non-abelian anomaly of the bulk symmetry G reduces to an anomaly

of H. If a bulk multiplet of G is split into several multiplets of H at a fixpoint, the H-

anomaly is a sum of contributions of the split multiplets, with signs which are determined

by their parities. The integrated anomaly equals the anomaly of the zero modes.

For a given orbifold gauge model one can now easily determine all bulk and brane

anomalies whose cancellation strongly restricts allowed compactifications as well as

possible bulk and brane fields. In principle, it is straightforward to extend these results

from six dimensions to eight and ten dimensions, and to include also gravitational

anomalies.

Acknowledgement

We would like to thank S. Groot Nibbelink, A. Hebecker, H. P. Nilles, H. B. Nielsen,

E. Poppitz and R. Rattazzi for helpful discussions.

Appendices

A Conventions

In Minkowski space we shall work in the metric

ηMN = diag(1,−1,−1,−1,−1,−1) , (A.1)

where M,N = 0, 1, 2, 3, 5, 6.

The Γ-matrices in 6 dimensions, satisfying as usual {ΓM ,ΓN} = 2ηMN , can be taken

to be

Γµ =







γµ 0

0 γµ





 , Γ5 =







0 iγ5

iγ5 0





 , Γ6 =







0 −γ5
γ5 0





 , (A.2)

with µ = 0, 1, 2, 3. Here γµ, γ5 are the 4d γ-matrices in the notation of Itzykson-Zuber

[33]. In particular we have

γ5 = iγ0γ1γ2γ3 , (A.3)

and

Tr [γ5γ
µγνγργσ] = −4iǫµνρσ , (A.4)
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where we have chosen the convention ǫ0123 = +1.

In 6d we define the analogous of γ5, Γ7(= Γ7), by

Γ7 = Γ0Γ1Γ2Γ3Γ5Γ6 =







γ5 0

0 −γ5





 . (A.5)

Then,

Tr
[

Γ7Γ
MΓNΓOΓPΓQΓR

]

= 8ǫMNOPQR , (A.6)

where the antisymmetric tensor is chosen as ǫ012356 = +1. Note that in our conventions

Γ7 differs by a sign from that of [23].

To compute the change of the measure in the path integral, we perform a Wick

rotation and work in Euclidean space:

x4 = ix0 , Γ4 = iΓ0 , (A.7)

with the metric

ηEMN = diag(−1,−1,−1,−1,−1,−1) = −δMN . (A.8)

Γ7 and γ5 are unchanged, i.e. we redefine them by

Γ7 = −iΓ4Γ1Γ2Γ3Γ5Γ6 = iΓ1Γ2Γ3Γ4Γ5Γ6 , (A.9)

γ5 = γ4γ1γ2γ3 = −γ1γ2γ3γ4 . (A.10)

Also the euclidean antisymmetric tensors are left unaffected, i.e.

ǫ123456 = ǫ123056 = −ǫ012356 = −1 , (A.11)

ǫ1234 = ǫ1230 = −ǫ0123 = −1 . (A.12)

Then the traces over the euclidean γ-matrices are given by

Tr [γ5γ
µγνγργσ] = +4ǫµνρσ , (A.13)

and

Tr
[

Γ7Γ
MΓNΓOΓPΓQΓR

]

= +8iǫMNOPQR , (A.14)

where the ǫ-tensors carry euclidean indices.

The gauge fields of the euclidean Yang-Mills theory are introduced as

AM = iAa
MT

a , (A.15)
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where T a denote the hermitian generators of a Lie algebra. The field strength tensor is

given by

FMN = [DM , DN ] , (A.16)

with DM = ∂M + AM . Then, the kinetic term is

L =
1

4kg2
Tr
[

FMNF
MN

]

, (A.17)

where g is a gauge coupling and Tr
[

T aT b
]

= kδab.

In the text we present the anomaly in the euclidean space. To obtain the usual

expressions for the anomaly, note that the gauge field in the traditional notation and in

Minkowski space is given by

FMN = −iFMN and F0M = F4M , (A.18)

where M,N are spatial indices. So we have

ǫMNPQRSFMNFPQFRS = i2ǫMNPQRSFMNFPQFRS (A.19)

ǫµνρσFµνFρσ = iǫµνρσFµνFρσ . (A.20)

B SO(10) matrices

As well-known, the vector representation of SO(10) is given by the 10×10 real orthogonal

matrices. Its Lie algebra in the same representation corresponds to the antisymmetric

10 × 10 real matrices. From these properties is then straightforward to realize that the

vector and the adjoint representations of SO(10) are always anomaly free in any dimen-

sion 2n with even n, since the trace of an odd number of generators vanishes exactly2.

So, e.g. in 4d, SO(10) is usually regarded as a safe group with respect to anomalies.

The traces of an even number of generators are non-vanishing. For the case of four

generators, giving the 6d bulk non-abelian anomaly, the normalization of the traces in

the adjoint and spinor representation with respect to the vector representation for SO(N)

reads (cf. [30])

tradjF
4 = (N − 8) trvecF

4 + 3
(

trvecF
2
)2

, (B.1)

trspinF
4 = −2(N−10)/2 trvecF

4 + 3 2(N−14)/2
(

trvecF
2
)2

. (B.2)

2The spinor representation is also anomaly free apart in d = 8 dimension.
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For the case of two generators, instead

tradjF
2 = (N − 2) trvecF

2 , (B.3)

trspinF
2 = 2(N−8)/2 trvecF

2 . (B.4)

Without loss of generality, we can take the group breaking parities in the vector

representation to be

PPS =



























−σ0 0 0 0 0

0 −σ0 0 0 0

0 0 −σ0 0 0

0 0 0 σ0 0

0 0 0 0 σ0



























, (B.5)

PGG =



























σ2 0 0 0 0

0 σ2 0 0 0

0 0 σ2 0 0

0 0 0 σ2 0

0 0 0 0 σ2



























, (B.6)

where σ0 is the 2× 2 unity matrix, while σ2 is the Pauli matrix. These operators belong

to the involutive automorphisms of the Lie algebra of SO(10) and single out as invariant

subalgebra the maximal compact subalgebras of the SO(10), i.e. SO(6)× SO(4) and

SU(5)×U(1) respectively. Note that PPS is a group element of SO(10) and therefore we

have also in this case, using P T
PS = PPS and PPST

a = T aPPS,

tr
(

PPST
a{T b, T c}

)

= −tr
(

PPST
a{T b, T c}

)

= 0 . (B.7)

Therefore the anomaly on the Pati-Salam fixpoint is given only by the contribution of

the spinor representation.

PGG and correspondingly Pfl = PPSPGG are not SO(10) group elements and so a

non-vanishing anomaly arises also from the vector representation at yGG and yfl.

C Mode functions on T 2

On the torus T 2 functions φ(x, y), with y = (z5, z6), can be expanded with respect

to the following orthonormal basis,

φ(x, y) =
∑

m,n;a,b,c

φmn
abc (x)ξ

mn
abc (y) . (C.1)
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Here m,n are integers and a, b, c = +,−, with

ξmn
+bc(y) =

1√
2π2R5R62δm,0δn,0

cos

(

mz5

R5
+
nz6

R6

)

, (C.2)

ξmn
−(−b)(−c)(y) =

1√
2π2R5R6

sin

(

mz5

R5
+
nz6

R6

)

; (C.3)

b(c) are + or − for m(n) even or odd, respectively. The integers m and n run in the

region n ≥ 0 for m = 0, and ∞ > n > −∞ for m > 0, for example.

Mode functions for all m and n, even or odd, will be collectively denoted by ξmn
± .

The two sets of mode functions, ξ+ and ξ−, are related by differentiation,

∂5ξ
mn
+bc = −Mmξ

mn
−bc , Mm =

m

R5
, (C.4)

∂5ξ
mn
−bc = +Mmξ

mn
+bc , (C.5)

∂6ξ
mn
+bc = −Mnξ

mn
−bc , Mn =

n

R6
, (C.6)

∂5ξ
mn
−bc = +Mnξ

mn
+bc , (C.7)

and satisfy the orthonormality conditions

∫ πR5

−πR5

dz5
∫ πR6

−πR6

dz6 ξmn
abc (y) ξ

m′n′

a′b′c′(y) = δmm′δnn′δaa′δbb′δcc′ . (C.8)

The mode functions are even/odd under reflections at the four fixpoints of the orb-

ifold T 2/(ZI
2 × ZPS

2 × ZGG
2 ), y1 ≡ yO = (0, 0), y2 ≡ yPS = (πR5/2, 0), y3 ≡ yGG =

(0, πR6/2), y4 ≡ yfl = (πR5/2, πR6/2),

ξmn
±bc(−y) = ±ξmn

±bc(y) , (C.9)

ξmn
a±c(y2 − y) = ±ξmn

a±c(y2 + y) , (C.10)

ξmn
ab±(y3 − y) = ±ξmn

ab±(y3 + y) , (C.11)

ξmn
a±±(y4 − y) = ±ξmn

a±±(y4 + y) . (C.12)

Furthermore, the following completeness relations hold,

∑

mn

(

ξmn2
+++(y)− ξmn2

−−−(y)
)

= δ++(y) , (C.13)

∑

mn

(

ξmn2
++−(y)− ξmn2

−−+(y)
)

= δ+−(y) , (C.14)

∑

mn

(

ξmn2
+−+(y)− ξmn2

−+−(y)
)

= δ−+(y) , (C.15)

∑

mn

(

ξmn2
+−−(y)− ξmn2

−++(y)
)

= δ−−(y) , (C.16)
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where

δ++(y) =
1

4
(δO(y) + δPS(y) + δGG(y) + δfl(y)) , (C.17)

δ+−(y) =
1

4
(δO(y) + δPS(y)− δGG(y)− δfl(y)) , (C.18)

δ−+(y) =
1

4
(δO(y)− δPS(y) + δGG(y)− δfl(y)) , (C.19)

δ−−(y) =
1

4
(δO(y)− δPS(y)− δGG(y) + δfl(y)) , (C.20)

with

δO(y) =
1

4
(δ(y + y1) + δ(y + y1 − 2y2)

+δ(y + y1 − 2y3) + δ(y + y1 − 2y4)) , (C.21)

δPS(y) =
1

4
(δ(y + y2) + δ(y + y2 − 2y2)

+δ(y + y2 − 2y3) + δ(y + y2 − 2y4)) , (C.22)

δGG(y) =
1

4
(δ(y + y3) + δ(y + y3 − 2y2)

+δ(y + y3 − 2y3) + δ(y + y3 − 2y4)) , (C.23)

δfl(y) =
1

4
(δ(y + y4) + δ(y + y4 − 2y2)

+δ(y + y4 − 2y3) + δ(y + y4 − 2y4)) . (C.24)

Summing over all even and odd modes yields

∑

mn

(

ξmn2
+ (y)− ξmn2

− (y)
)

=
∑

bc

∑

mn

(

ξmn2
+bc (y)− ξmn2

−(−b)(−c)(y)
)

= δ++(y) + δ+−(y) + δ−+(y) + δ−−(y)

= δO(y) . (C.25)

A complete set of orthonormal modes ξm±b on the circle S1 is obtained by dimensional

reduction,

ξm±b(z
5) ≡

√

2πR6 ξ
m0
±bc(y) . (C.26)

The corresponding orthonormality and completeness relations are (y = z5),

∫ πR5

−πR5

dy ξmab(y) ξ
m′

a′b′(y) = δmm′δaa′δbb′ , (C.27)

∑

m

(

ξm2
+ (y)− ξm2

− (y)
)

=
∑

b

∑

m

(

ξm2
+b (y)− ξm2

−b (y)
)

=
1

2
(δ(y) + δ(y − πR5)) . (C.28)
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D Physical versus covering space anomalies

D.1 T 2/Z2

The physical space of the orbifold T 2/Z2 can be parameterize by the rectan-

gle ((−πR5, πR5], [0, πR6]), while the covering space is given by the torus, i.e.

((−πR5, πR5], (−πR6, πR6]). Let us extend a smooth function f on the orbifold to the

whole covering space using the orbifold symmetry, keeping
∫

T 2/Z2

d2y f(y) =
∫

T 2
d2y fcov(y) . (D.1)

It is then easy to see that we have

fcov(z
5, z6) =











1
2
f(z5, z6) , z6 ≥ 0

1
2
f(z5,−z6) , z6 < 0

(D.2)

Note on the other hand that both spaces contain fully the same fixed points, i.e.

y1 = (0, 0), y2 = (πR5, 0), y3 = (0, πR6) and y4 = (πR5, πR6). For a localized delta-

function at any fixpoint yi we have therefore automatically
∫

T 2/Z2

d2y δ(y − yi) =
∫

T 2
d2y δ(y − yi) . (D.3)

So for a generic covering function

Acov(y) = fcov(y) + δ(y − yi) , (D.4)

the physical function on the orbifold y ∈ T 2/Z2 reads simply

A(y) = 2fcov(y) + δ(y − yi) . (D.5)

D.2 T 2/(Z2 × Z2 × Z2)

The physical space of the orbifold T 2/(Z2 × Z2 × Z2) can be parameterized by the

rectangle ([0, πR5), [0, πR6/2]), while the covering space is given again by the torus, i.e.

((−πR5, πR5], (−πR6, πR6]). The volume of the torus is eight times the volume of the

orbifold T 2/(Z2×Z2×Z2). So for any smooth function respecting the orbifold symmetry,

we can again define
∫

T 2/Z3
2

d2y f(y) =
∫

T 2
d2y fcov(y) . (D.6)

Then the function on the covering space, satisfying the above relation, is given by

fcov(y) =











1
8
f(y) , y ∈ T 2/Z3

2

1
8
f(P (y)) , y /∈ T 2/Z3

2 , P (y) ∈ T 2/Z3
2

(D.7)
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where P is the action of the orbifold parities that brings y from the torus inside the

physical space.

Note on the other hand that the torus contains four times more fixpoints than the

orbifold physical space, as shown in fig. 1. Then for a localized function on a fixpoint,

we have for i = O,PS,GG, fl (cf. appendix C)

∫

T 2/Z3
2

d2y δi(y) =
1

4

∫

T 2
d2y δi(y) . (D.8)

So, generically, for a covering function on the torus given by

Acov(y) = fcov(y) + δi(y) , (D.9)

we obtain on the orbifold T 2/(Z2 × Z2 × Z2) the physical function

A(y) = 8fcov(y) + 4δi(y) . (D.10)
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[27] S. Irié and Y. Yasui, Z. Phys. C29 (1985) 123

[28] W. Buchmüller, O. Napoly, Phys. Lett. B 163 (1985) 161

[29] K. Itoh, T. Kugo, H. Kunitomo, Progr. Theor. Phys. 75 (1986) 386

[30] A. Hebecker, J. March-Russell, Nucl. Phys. B 625 (2002) 128

[31] M. B. Green, J. H. Schwarz, Phys. Lett. B 149 (1984) 117

[32] W. Buchmüller, W. Lerche, Ann. Phys. NY 175 (1987) 159

[33] C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York 1980.

27


