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1. Introduction

In recent years there has been a resurgence of interest in theories with extra dimensions,

which are in one way or another more accesible than dimensions compactified at the Planck

scale. Working with dimensions larger than the Planck length allows us to study higher-

dimensional physics in a “bottom-up” approach, within a sensible effective field theory.

The new space in extra dimensions has opened up a number of novel approaches to old

questions in beyond the standard model physics. Theories where the SM fields are stuck to

a 3-brane while gravity is free to propagate in extra dimensions have been used to address

the hierarchy problem [1, 2], allowing us to lower the fundamental scale of gravity, and the

ultimate cut-off on effective field theory, to TeV energies. This also opens up the possibility

that the SM fields can propagate in extra dimensions of a size near the TeV scale [3, 4].

Since the higher-dimensional gauge theory becomes strongly coupled in the UV, it must

be embedded in a sensible UV completion not far above a TeV, and this is possible if the

fundamental scale is itself in this region.
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Many interesting model-building possiblities involve non-gravitational fields propagat-

ing in the extra dimensions. For instance, sources for massive bulk fields can “shine” an

exponentially falling profile for them in the bulk [5], which can be used to explain small

Fermion masses. Another possibility is that different SM Fermions can be localized to

different points in the extra dimensions [6]; their small overlapping wavefunctions could

also lead to a mass hierarchy, or proton stability. Electroweak symmetry breaking can

be triggered by the SM gauge interactions getting strong in extra dimensions [7], and a

number of interesting models for SUSY breaking put the SM fields in the bulk [8, 9, 10].

Many of these mechanisms are generic to the existence of extra dimensions and have

nothing to do with their size per-se: they could in principle work just as well with extra

dimensions near the GUT scale as near the TeV scale. However, if these extra dimensions

are to be far above the TeV scale, some physics other than a low fundamental cut-off must

be used to stabilize the electroweak scale. Supersymmetry is a natural candidate to do

this. Then, in order to be able to work with extra dimensions, we need to know the rules

for building supersymmetric theories in higher dimensions. Furthermore, since many of the

models use fields localized on 3-branes in the extra dimensions,(for instance on D-branes

or at orbifold fixed points), it is also of interest to be able to couple bulk fields to localized

fields in a way preserving at least N = 1 SUSY in 4D.

It is therefore desirable to have systematic rules for writing down supersymmetric

lagrangians in higher dimensions, allowing supersymmetric couplings to fields localized on

3-branes. The main work along these lines we are aware of is the pioneering paper of

Peskin and Mirabelli [10], which showed how to couple 5D vector and hyper-multiplets to

boundaries in a supersymmetric way, using an off-shell component formalism. However, the

formalism is not familiar to 4D SUSY model-builders, and the extension of the formalism

to higher dimensions is not obvious.

In this paper, we will present a formalism for explicilty constructing higher-dimensional

SUSY theories in a simple way, within the familiar N = 1,D = 4 superspace. The simple

observation is that, whatever the higher-dimensional theories are, they certainly contain the

ordinary 4D SUSY, and therefore they must have an ordinary 4D superspace description.

The superfield content of the 4D theory is easy to guess, simply by knowing the total number

of SUSY generators in the full theory. For instance in 5D, the smallest spinor is a Dirac

spinor with 8 real components, which means there are a minimum of 8 supercharges, or

N = 2 in 4D. From the 4D viewpoint, we have either hypermultiplets or vector multiplets.

Consider hypermultiplets for simplicity. In N = 1 language, they break into two chiral

multiplets H,Hc. Furthermore, we have one of these superfields for each point x5 in the

5’th dimension. So, our field content consist of superfields H(x5),H
c(x5). From the 4D

point of view x5 can simply be thought of as a label. Now, our task is to write down a

superspace action for these fields that, once all auxilliary fields have been integrated out,

reduces to the correct component action for the 5D theory. This is very easy to do, as the

possible terms are heavily constrained by various symmetries. For this particular example

this was done in [11], and will be reviewed in the next section. We will carry this procedure

out for all globally supersymmetric theories from D = 5 to 10 dimensions in this paper.

But in any case, once we have the action for the bulk theory written in 4D superspace, it is
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trivial to couple bulk fields to fields localized on 3-branes, in a way preservingN = 1 SUSY.

We simply add additional 4D superspace interactions localized at particular locations in

the transverse dimensions.

We will begin by describing SUSY gauge theories in 5, 6 dimensions, where the field

content is the same as N = 2 in 4D. We then move on to the cases D = 7 to 10, where

the field content is that of N = 4 in 4D. For the gauge multiplets, we first discuss the

abelian theory before giving the non-abelian generalizations. We then discuss a number of

applications in the remainder of the paper.

After this work was posted to hep-th, we were informed by A. Sagnotti and W. Siegel

that a superfield formulation of D = 10 SYM was given in [12]. The formulation there is

essentially identical to the one we present for this case. The action given in [12] has an extra

Wess-Zumino-Witten type term required to make it fully gauge invariant — this term was

missed in the first version of our paper. However, the new term vanishes in Wess-Zumino

gauge, and so our previous results are unmodified in WZ gauge. [12] did not discuss the

construction of minimally supersymmetric models in D = 5, 6, nor the applications of the

formalism to brane-bulk couplings and model-building.

2. D = 5, 6

In D = 5 the smallest spinor is a 4 component Dirac spinor with 8 real degrees of freedom.

In D = 6 the smallest spinor is a 4 component Weyl spinor with 8 real degrees of freedom.

Therefore, for D = 5, 6 the most simple supersymmetric theories, those with one copy of

the supersymmetry generators (N = 1), will have the same field content as a D = 4 N = 2

theory when dimensionally reduced.

2.1 Free hypermultiplets

The superfield formulation of the D = 5 hypermultiplet has been described in [11]. In

N = 1,D = 4 superspace, the 5D hypermultiplet consists of a collection of 4D chiral

superfields H(x5),H
c(x5) labeled by the 5’th co-ordinate x5. Its free action is given by

SHyp.
5 =

∫

d5x

{∫

d4θ
(

H̄cHc + H̄H
)

+

(∫

d2θHc (∂5 +m)H + h.c.

)}

. (2.1)

Expanding in components and integrating out the auxilliary F components, the action (2.1)

describes an N = 1 D = 5 supersymmetric theory containing two complex scalar and one

Dirac fermion ΨT
5 = (ψ, ψ̄c) composed of the 2 component fermions ψ and ψ̄c:

SHyp.
5 = −∂MH†∂MH − ∂MHc†∂MHc − iψ̄σ̄m∂mψ − iψ̄cσ̄m∂mψc − ψc∂5ψ − ψ̄c∂5ψ̄ −

−m2(|Hc|2 + |H|2)−m(ψcψ + ψ̄cψ̄)

= −∂MH†∂MH − ∂MHc†∂MHc −m2(|Hc|2 + |H|2) + Ψ̄5(iγ
M∂M −m)Ψ5 . (2.2)

Here and throughout the paper, the capitalized indices run over 0, 1, 2, 3, 5 while the lower-

case ones run over 0, 1, 2, 3
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In D = 6 there are only Weyl and Dirac fermions, so the smallest multiplet contains a

left or right Weyl fermion. The action for massless hypermultiplets is.

SL. Hyp.
6 =

∫

d6x

{
∫

d4θ
(

H̄c
LH

c
L + H̄LHL

)

+

(
∫

d2θHc
L ∂HL + h.c.

)}

SR. Hyp.
6 =

∫

d6x

{∫

d4θ
(

H̄c
RH

c
R + H̄RHR

)

+

(∫

d2θHc
R ∂̄HR + h.c.

)}

(2.3)

with

z =
1

2
(x5 + ix6) z̄ =

1

2
(x5 − ix6)

∂ =
∂

∂z
= ∂5 − i∂6 ∂̄ =

∂

∂z̄
= ∂5 + i∂6 .

(2.4)

Note that the rotational invariance of the transverse 2 dimensional space is realized as

z → eiθz,H
(c)
L → eiθ/2H

(c)
L ,H

(c)
R → e−iθ/2H(c)

R . Therefore, unlike the 5D case, we can not

make a massive hypermultiplet out of just e.g. HL,H
c
L. Instead we must combine a copy

of each of the massless hypermultiplets.

SHyp. Massive
6 =

∫

d6x

{

∫

d4θ
(

H̄c
LH

c
L + H̄LHL + H̄c

RH
c
R + H̄RHR

)

+

+

(
∫

d2θ (Hc
R Hc

L )

(

m ∂̄

∂ m

)(

HL

HR

)

+ h.c.

)

}

. (2.5)

The Dirac spinor is now

ΨDirac
6 =

(

ΨLeftWeyl
6

ΨRightWeyl
6

)

. (2.6)

Note that the superpotential term is just the Dirac operator in the transverse 2D space.

2.2 Abelian gauge theory

The first step in formulating the higher dimensional theories in terms of ordinary D = 4,

N = 1 superspace is to identify the correct superfields for the theory. The D = 5 super

Yang-Mills theory will have a 5-vector gauge field, a 4 component Dirac gaugino, and a

scalar. When dimensionally reduced down to D = 4, the gauge field becomes a 4-vector

and a scalar, the gaugino splits into two Majorana gauginos, and the scalar is unaffected.

So we must have a vector multiplet and chiral multiplet. This is also obvious since there

are 8 real supercharges in 5D, which translates to N = 2 SUSY in 4D, with the N = 2

vector multiplet composed on an N = 1 vector and chiral multiplet.

The correct identification of the fields inside the vector field V (x5) and chiral field

φ(x5) is (with V in the Wess-Zumino gauge, and φ in the y-basis)

V = −θσmθ̄Am + iθ̄2θλ1 − iθ2θ̄λ̄1 +
1

2
θ̄2θ2D

φ =
1√
2
(Σ + iA5) +

√
2θλ2 + θ2F . (2.7)
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In the above and for the rest of the paper, the dependence of the 4D superfields on the

extra co-ordinates is implicit. We also demand full D = 5 gauge invariance of the theory.

The gauge transformations of these 2 superfields are:

V → V +Λ+ Λ̄

φ → φ+
√
2∂5Λ . (2.8)

The subset of these transformations that preserve the Wess-Zumino gauge, correspond

exactly to the ordinary D = 5 gauge transformations.

It is easy to find a gauge invariant action

SA
5 =

∫

d5x

[

1

4g2

∫

d2θ WαWα + h.c. +

∫

d4θ
1

g2

(

∂5V −
1√
2
(φ+ φ̄)

)2
]

(2.9)

The first term is familiar and obviously gauge invariant; the second term is also clearly

invariant under gauge tranformations with the variation of ∂5V being canceled by that of

φ+ φ̄.

While the N = 1 SUSY is manifest in this lagrangian, the full SUSY and higher-

dimensional Lorentz invariance is not. To see this, we expand the lagrangian in components

in Wess-Zumino gauge. Keeping only the Bosonic fields the lagrangian becomes

− 1

4g2
FµνF

µν +
1

2g2
D2

− 1

2g2
∂5Aµ∂5A

µ +
1

g2
∂5Aµ∂

µA5 −
1

g2
Σ∂5D

− 1

2g2
(∂µΣ∂

µΣ+ ∂µA5∂
µA5) . (2.10)

We can integrate out the auxiliary field D by setting it to its equation of motion, which is

D = −∂5Σ . (2.11)

The lagrangian then naturally arranges itself into the form

− 1

4g2
FMNF

MN − 1

2g2
∂MΣ∂MΣ (2.12)

which is precisely the bosonic part of the 5D vector multiplet composed of the vector field

AM and the real scalar Σ. The full lagrangian including the fermions clearly also works

out correctly.

This superspace form of the 5D lagrangian is very simple but does not straightforwardly

generalize to higher dimensions, because φ, φ̄ will transform oppositely under rotations in

the transverse space. We can however re-write the action as

SA
5 =

∫

d5x

[

1

4g2

∫

d2θWαWα+h.c.+

∫

d4θ
1

g2

(

(
√
2∂5V −φ̄)(

√
2∂5V −φ)−∂5V ∂5V

)

]

.

(2.13)
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The gauge invariance of the second and third terms are not as manifest in this form, but

it is easy to check. Under a gauge transformation,
∫

d4θ(
√
2∂5V −φ̄)(

√
2∂5V −φ)→

∫

d4θ(
√
2∂5V −φ̄+

√
2∂5Λ)(

√
2∂5V −φ+

√
2∂5Λ̄)=

=

∫

d4θ(
√
2∂5V − φ̄)(

√
2∂5V − φ) +

∫

d4θ
[

2∂5V ∂5(Λ + Λ̄) + 2∂5Λ∂5Λ̄
]

, (2.14)

where we have used the fact that purely chiral or anti-chiral terms vanish under the full

superspace integration. Similarly,

−
∫

d4θ(∂5V )2 → −
∫

d4θ(∂5V + ∂5Λ+ ∂5Λ̄)
2 =

= −
∫

d4θ(∂5V )2 −
∫

d4θ
[

2∂5V ∂5(Λ + Λ̄)− 2∂5Λ∂5Λ̄
]

(2.15)

so that the sum of the last two terms in eqn. (2.13) is gauge invariant.

The extension to D = 6 is simple. The transverse rotational invariance is useful as a

guide to constructing the action. z transforms as z → eiθz, and we suspect that φ will

combine with ∂ to form a covariant derivative so we define φ to transform as φ → e−iθφ.

V is neutral. The gauge transformations are

V → V +Λ + Λ̄

φ → φ+
√
2∂Λ . (2.16)

The 6D action is then the obvious extension of the 5D one:

SA
6 =

∫

d6x

[

+
1

4g2

∫

d2θWαWα+h.c.+

∫

d4θ
1

g2

(

(
√
2∂̄V −φ̄)(

√
2∂V −φ)−∂V ∂̄V

)

]

.

(2.17)

In this case the lowest component of the superfield φ is

φ |θ=θ̄=0 =
1√
2
A =

1√
2
(A6 + iA5) . (2.18)

This expression reproduces the D = 5 super Yang-Mills action when all dependence on x6
is eliminated and identifying A6 as the scalar, Σ, of the D = 5 super Yang-Mills theory.

The auxiliary field D is now proportional to F56:

D = −1

2

(

∂Ā+ ∂̄A
)

= − (∂5A6 − ∂6A5) = −F56 . (2.19)

2.3 Non-abelian theory

We now generalize to the case of a non-abelian theory. Since φ contains the components of

the higher dimensional gauge field, it must transform in the adjoint. With the definitions:

h = e−Λ h̄ = e−Λ̄ (2.20)

the gauge transforms become

φ→ h−1(φ−
√
2∂)h eV → h−1eV h̄−1 , (2.21)

where φ ≡ φaT a and V ≡ V aT a.
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The natural guess for the non-abelian action would be to simply insert various factors

of eV :

SNA
6 =

∫

d6x

{

1

4kg2
Tr

[∫

d2θ WαWα + h.c.

]

+

+

∫

d4θ
1

kg2
Tr
[

(
√
2∂̄ + φ̄)e−V (−

√
2∂ + φ)eV + ∂̄e−V ∂eV

]

}

, (2.22)

where TrT aT b = kδab. This action reproduces the D = 6 non-abelian super Yang-Mills

theory in Wess-Zumino gauge. However, this action is not fully gauge invariant under the

gauge transformation. As pointed out in [12], we need to add one more term to make it

perfectly gauge invariant:
∫

d6x

∫

d4θ
1

kg2
Tr

[

∂̄V
sinhLV − LV

L2
V

∂V

]

. (2.23)

This has the structure of a WZW term. We refer to [12] for details on the variation of

this term. Here we note that the term is absent in D = 5 and in all cases, vanishes in

Wess-Zumino gauge. Therefore, one can use (2.22), together with any desired couplings

to brane fields, and obtain the correct lagrangian in Wess-Zumino gauge. To find the

D = 5 non-abelian theory, one removes the x6 dependence. This action also reproduces

the appropriate abelian theories when all fields commute.

The auxiliary field, D, in D = 6 again becomes the higher dimensional field strength,

only this time it is the non-abelian field strength F56:

D = −1

2

(

∂̄A+ ∂Ā+ [A, Ā]
)

= −F56 . (2.24)

We can dimensionally reduce this to D = 5 to get

D = − (∂5Σ+ i[Σ, A5]) = −D5Σ , (2.25)

with D5 being x5 component of the covariant derivative.

2.4 Coupling to hypermultiplets

It is easy to extend our action for free hypermultiplets to the case where they are charged

under a gauge symmetry. With the hypermultiplets belonging to a representation R of the

gauge group G, we have the gauge transformations:

H → hH

Hc → hc−1Hc , (2.26)

with h = e−Λ
aTa

R and hc = (h−1)T = (eΛ
aTa

R)T . The generalization of our previous hyper-

multiplet action is trivial; we simply replace the ordinary ∂5 derivatives with the covariant

derivative ∂5 − 1√
2
φ:

SHyp. Gauge
5 =

∫

d5x

{

∫

d4θ[HceV H̄c + H̄e−VH] +

+

[
∫

d2θ

(

Hc

(

m+

(

∂5 −
1√
2
φ

))

H

)

+ h.c.

]

}

(2.27)

(of course here V = V aT aR, φ = φaT aR).
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In D = 6 we must choose our gaugino to be either a left or right handed Weyl field.

To make a covariant derivative we must combine the left-handed φ with ∂ and the right-

handed field with ∂̄. Therefore, hypermultiplets of a given handedness can not couple to

gauge fields of opposite handedness. The action for a D = 6 hypermultiplet coupled to a

gauge field of the same handedness is

SHyp. Gauge
6 =

∫

d6x

{

∫

d4θ[HceV H̄c + H̄e−VH] +

+

[
∫

d2θ
√
2Hc(∂ − 1√

2
φ)H + h.c.

]

}

. (2.28)

3. D = 7 to 10

Spinors in D = 7 to 10 dimensions have a minimum of 16 real components. This means that

there are a minimum of 16 real supercharges and thus all theories in these dimensions must

be constructed out of N = 4 multiplet in the 4D language. The N = 4 vector multiplet

decomposes under N = 1 as 3 chiral multiplets φi and a vector multiplet V , so we need to

build our superspace lagrangian out of these fields.

We will only consider the D = 10 theory because it is easy to dimensionally reduce to

D = 7 to 9. It will be convenient to use complex coordinates,z i, for the transverse space

with

z1 =
1

2
(x5 + ix6) z2 =

1

2
(x7 + ix8) z3 =

1

2
(x9 + ix10) . (3.1)

The transverse rotational invariance is the SO(6) rotating the x5, . . . , x10 into each other.

The SU(3) subgroup rotating the zi will be useful in constructing invariant actions. We

will use the convention that z̄i = (zi)†, and that φ̄i = (φi)
†.

Again we will find that the higher dimensional components of the gauge field will be

the lowest components of φi:

φj |θ=θ̄=0 =
1√
2
Aj =

1√
2
(A4+2j + iA3+2j)

j ∈ {1, 2, 3} . (3.2)

This choice of the embedding was to make the dimensional reduction from D = 10 most

transparent.

3.1 Abelian theory

The appropriate gauge transformation for this theory are

V → V + (Λ + Λ̄)

φi → φi +
√
2∂iΛ .

The Kähler potential of the theory is the natural generalization of the D = 5, 6 theory.

However, this will not reproduce the correct theory. We need to introduce a superpotential

– 8 –
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that will complete the gauge potential kinetic term. This is also obvious since, if we reduce

the theory to 6D eliminating the dependence on x7, . . . , x10, φ2, φ3 form a hypermultiplet in

6D, and as we have seen the hyper-multiplet kinetic term is completed by a superpotential

term. In any case, the SU(3) symmetry and the known result when reduced to D = 6

specifies everything, and we have for the action

SA
10 =

∫

d10x

{

∫

d2θ

(

1

4g2
WαWα +

1

2g2
εijkφi∂jφk

)

+ h.c. +

+

∫

d4θ
1

g2

[(√
2∂iV − φi

)(√
2∂̄iV − φ̄i

)

− ∂iV ∂̄iV
]

}

. (3.3)

Note that the gauge variation of the superpotential vanishes via integration by parts and

the antisymmetry of εijk. The auxiliary fields Fi, D are given by

D = −1

2
(∂iĀi + ∂̄iAi)

F i† = − 1√
2
εijk∂jAk . (3.4)

3.2 Non-abelian theory

The non-abelian action is the natural generalization of the abelian one. The superpotential

must be modified to make it gauge invariant, which is accomplished by replacing the ∂jφk
with ∂jφk − [φj , φk]/3

√
2. The gauge transformations are

φi → h−1(φi −
√
2∂i)he

V → h−1eV h̄−1

SNA
10 =

∫

d10x

{

∫

d2θ Tr

(

1

4kg2
WαWα +

1

2kg2
εijkφi(∂jφk −

1

3
√
2
[φj , φk])

)

+

+

∫

d4θ
1

kg2
Tr
(

(
√
2∂̄i + φ̄i)e−V (−

√
2∂i + φi)e

V + ∂̄ie−V ∂ie
V
)

}

+

+WZW term . (3.5)

Once again, the last term vanishes in W-Z gauge. Note that the superpotential has the

structure of a Chern-Simons term. Under a gauge transformation, the superpotential

transforms as

Trεijkφi

(

∂jφk +
1√
2
[φj , φk]

)

→ Trεijkφi

(

∂jφk +
1√
2
[φj, φk]

)

−

−2
√
2Tr

[

εijk(∂ih)h
−1(∂jh)h

−1(∂kh)h
−1
]

. (3.6)

The last term is a total derivative and is the Pontryagin density. For the transforma-

tions that preserve WZ gauge, Λ = exp(iθσmθ̄∂m)a(x) with no higher components, the

Pontryagin term vanishes identically under the superspace integration.

Finally some brief comments on the R symmetry of these theories. In D = 10, the

transverse rotational symmetry is SO(6) which is homomorphic to SU(4). This SU(4)
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symmetry is the R symmetry of the D = 4 N = 4 theory. The superpotential and Kähler

terms we have written have only an explicit SU(3) symmetry. This SU(3) is a subgroup

of the SU(4)R, keeping N = 1 SUSY manifest. By writing our theory in terms of N = 1

superfields, we choose a special supersymmetry generator and break the manifest SU(4)

R symmetry. We maintain an SU(3) subgroup which transforms the three supersymmetry

generators that are orthogonal to our N = 1 SUSY generator.

4. Some applications

4.1 Coupling to sources

In [5], the “shining” of bulk massive fields by sources localized on branes was considered

as a mechanism for producing small parameters on the brane. This is a consequence of the

exponentially small profile for the massive field in the bulk, which is given by the massive

Yukawa propagator. It is natural to try and extend this mechanism to supersymmetric

theories. This was done in [11] for the case of 5D theories, as we review below. A source

was added to a massive bulk hypermultiplet of the form
∫

d2θdx5δ(x5)JH
c . (4.1)

The F-flatness conditions become:

−F † = (m− ∂5)Hc = 0

−F c† = Jδ(x5) + (m+ ∂5)H = 0 . (4.2)

These equations have solution H c = 0 and:

H = −θ(x5)Je−my (4.3)

in infinite space and

H =
−Je−my

1− e−2πmR (4.4)

on a circle of radius R.

We can do a similar thing for the free hypermultiplets in 6D . We add:
∫

d6xd2θδ(x5)δ(x6)JH
c
L . (4.5)

The F flatness conditions are:

F †L = ∂Hc
L +mHc

R = 0 (4.6)

F c
L
† = −∂HL +mHR − Jδ(zz̄) = 0 (4.7)

F c
R
† = −∂̄HR +mHL = 0 (4.8)

FR
† = ∂̄Hc

R +mHc
L = 0 . (4.9)

Consider first the massless case m = 0 and H c
R = Hc

L = HR = 0; then we have

∂HL = −Jδ(zz̄) (4.10)
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which has solution:

HL = −J θ(zz̄)
z̄

= −J θ(x
2
5 + x26)

x5 − ix6
= −J e

iφ

r
θ(r2) (4.11)

in infinite space. In order to find the solution on a compact space, say a torus, we could

use the method of images.

In the massive case, we take Hc
L,R = 0 and combine equations (4.7) and (4.8) to get:

∂̄∂HR −m2HR = −mJδ2(zz̄)
HL =

1

m
∂̄HR . (4.12)

The first equation, is just the Klein-Gordon equation in 2D, so the solution is the Yukawa

potential in 2D. For large mr, we have

HR ∼ −Jme−mr,HL = −Jme−mreiφ . (4.13)

It is interesting that HL acquires a “vortex” profile in the transverse two dimensions.

Even if all the parameters in the lagrangian are real, this vortex profile breaks CP. If the

Standard Model Yukawa couplings arise through shining via branes that do not all fall on

a straight line, the phase in HL can be used to introduce CP violation into the SM in an

amusing way.

4.2 Charged matter on branes

Using our formalism, it is very easy to couple bulk gauge fields to charged matter on bound-

aries. We simply add the following term to the appropriate higher-dimensional action:

∫

d4xd4θX̄e−V |z=0X , (4.14)

where X is a 4 dimensional chiral superfield living on a brane and z represents the extra

dimensions. For example, in 5D abelian case, the action would be:

5D free action + 4D free action +

+
1

g2

∫

d4x

[

An

[

−1

2
λ̄X σ̄

nλX −
i

2
ĀX∂nAX

]

+ i
1√
2

(

AX λ̄X λ̄1 + h.c
)

−

− 1

4
AnA

nĀXAX
1

2
DĀXAX

]

, (4.15)

where AX is the scalar component of the X multiplet. These are just the usual couplings of

a 4D chiral superfield with a 4D vector superfield. But, in our case, the D term is different.

Let’s examine the D part of the lagrangian in detail:

LD =
1

g2

(

1

2
D2 +D∂5Σ−

1

2
ĀXAXDδ(x5)

)

. (4.16)
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The first two terms come from the free 5D action part. Upon eliminating D we get

LD = − 1

2g2

(

∂5Σ−
1

2
ĀXAXδ(x5)

)2

= − 1

2g2

(

(∂5Σ)
2 − ∂5ΣĀXAXδ(x5) +

1

4
(ĀXAX)2δ(0)δ(x5)

)

. (4.17)

This result was obtained earlier in [10], but our derivation makes the ease of the superspace

formalism transparent. It is also trivial to extend the result to higher dimensions, for

instance in 6D we have

LD = − 1

2g2

(

F56 −
1

2
ĀXAXδ(z)

)2

= − 1

2g2

(

F 2
56 − F56ĀXAXδ

2(z) +
1

4
(ĀXAX)2δ2(0)δ2(z)

)

, (4.18)

where F56 = (∂5A6 − ∂6A5). We note that if F56(z = 0) 6= 0 then we get SUSY breaking

soft scalar masses proportional to the strength of the magnetic field on the brane.

4.3 Orbifolds

Our formalism is also useful for constructing field-theoretic orbifolds [13] preserving N = 1

SUSY in 4D. Such constructions are useful both for obtaining chiral fermions as well as

reduced supersymmetry in the low-energy 4D theory.

The simplest canonical example is the S1/Z2 orbifold in the 5D case [14]. Consider as

an example a U(1) gauge theory in 5D. It is trivial to see that our 5D action is invariant

under

V (xµ, x5) → V (xµ,−x5)
φ(xµ, x5) → −φ(xµ,−x5) . (4.19)

To construct the orbifolded model, we only keep states that are invariant under the sym-

metry, as well as periodic under x5 → x5 + 2L. That is we impose

V (xµ, x5) = V (xµ,−x5)
φ(xµ, x5) = −φ(xµ,−x5) (4.20)

as well as

V (xµ, x5 + 2L) = V (xµ, x5)

φ(xµ, x5 + 2L) = φ(xµ, x5) . (4.21)

The physical space is then the interval [0, L]. In order to obtain the low-energy theory, we

only need to look at x5 independent modes that satisfy the above boundary conditions.

Evidently, we get a zero mode from V but not from φ, and so the low-energy theory is pure

4D, N = 1 U(1) theory.
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In 6D, we can e.g. compactify on T 2/Z3, by imposing (ω3 = 1)

V (xµ, z, z̄) = V (xµ, ωz, ω̄z̄)

φ(xµ, z, z̄) = ωφ(xµ, ωz, ω̄z̄) (4.22)

together with the periodicity conditions on the torus. Again, φ = 0 at the fixed points of

the torus, and this projects out the theory to N = 1 SYM in 4D.

The non-abelian case offers more interesting possibilities, since we can combine a gauge

transformation with the orbifold symmetry. Of course, for chiral theories in even dimen-

sions, we need to worry about anomaly cancellation in the bulk. A simple anomaly-free

example in say D = 6 is obtained, however, by imagining that we dimensionally reduce

from e.g. seven dimensions where there are no anomalies. The 6D particle content is then

a vector multiplet and a hypermultiplet in the adjoint representation. The 6D pure gauge

anomaly is proportional to

trF 4
Adj. − trF 4

Hyper (4.23)

which clearly vanishes for a simple hyper in the adjoint rep. (The gravitational anomalies

can be canceled with the Green-Schwarz mechanism.)

For an amusing example, suppose we start with an SU(9) theory in 6D. We will again

compactify on T 2/Z3, but this time using the orbifold symmetry

V (xµ, z, z̄) = U †V (xµ, ωz, ω̄z̄)U

φi(xµ, z, z̄) = ωU †φi(xµ, ωz, ω̄z̄)U . (4.24)

Where U is a 9× 9 matrix written in term of 3× 3 blocks:

U =





1 0 0

0 ω 0

0 0 ω2



 (4.25)

V, φ can also be written as a general 9× 9 matrix:

V =





A B C

D E F

G H I



 , φ =





A′ B′ C ′

D′ E′ F ′

G′ H ′ I ′



 . (4.26)

Now,

U †V U =





A ωB ω2C

ω2D E ωF

ωG ω2H I



 , ωU †φU =





ωA′ ω2B′ C ′

D′ ωE′ ω2F ′

ω2G′ H ′ ωI ′



 . (4.27)

We see that for the zero modes of V , only (A,E, I) survive. This means that the

low-energy theory is N = 1 with gauge group SU(3)3. On the other hand, from the

φi, (C
′, D′,H ′) survive, which transform under SU(3)3 as ψi ∼ (3̄, 3, 1, ), (3, 1, 3̄), (1, 3̄, 3).

There is also a superpotential coupling ψ1ψ2ψ3 which is inherited from the HcφH superpo-

tential term. This model is just the particle content of “trinification”, with 3 generations,

and a single large Yukawa coupling.
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5. Localizing chiral fermions

It is well-known that it is possible to localize chiral Fermions on defects in extra dimen-

sions [15]. The simplest example are Fermions localized to domain walls. Consider a

Fermion in 5 dimensions with a spatially varying mass term m(x5) (which could for in-

stance arise from a Yukawa coupling to a scalar field with a “kink” profile in the 5’th

dimension). It is easy to see that if m(+∞) > 0 and m(−∞) < 0, then upon solving for

the spectrum of the Dirac operator we find a chiral zero mode with wavefunction peaked

around the location where the mass term goes through zero. Of course, if we attempt to

compactify the fifth dimension on a circle, then we necessarily have a kink and an anti-

kink, and we don’t get a chiral spectrum in the 4D theory. However, we can combine

Fermion localization with an orbifold to keep the e.g. the left-handed localized zero mode

but project out the right handed one, as in [16].

In this section we will supersymmetrize these models and address some physical ques-

tions that arise. Consider 5D theories. Note that charged hyper-multiplets in the bulk

have a superpotential coupling H cφH, which is an effective mass term when φ is non-zero.

If we can arrange for φ to vary and change sign from one side of a brane to another, then

we can localize one of H,Hc to the brane. It is easy to arrange for this to happen. The

simplest example to consider is a 5D theory with a U(1) gauge field in the bulk, and a

brane located at x5 = 0. We will add a Fayet-Iliopoulos term for the gauge bulk gauge

field on the brane. The action is

Free 5D action +

∫

d4x

∫

d4θ2ζV (x, x5 = 0) . (5.1)

The D term is now given by

D = −∂5Σ+ 2ζδ(x5) . (5.2)

The most general solution to the D−flatness conditions is then

Σ(x5) = Σ0 + ζsgn(x5) . (5.3)

This is a “kink” for Σ. There is moduli space of vacua labeled by Σ0. Note that in the

range |Σ0| < |ζ|, Σ(x5) changes sign as it goes through the origin, while for |Σ0| > |ζ|,
Σ(x5) is non-vanishing and of the same sign everywhere.

Now, let us add a bulk Hypermuliplet with charge +1 under the U(1). Treating the

gauge field as a background,the hypermultiplet action becomes

∫

dx5

∫

d4θH̄H + H̄cHc +

∫

d2θHc

(

∂5 −
1

2
Σ(x5)

)

H + h.c. (5.4)

If we are to have zero modes for H or H c, their wavefunctions ψ(x5), ψ
c(x5) must satisfy

(

∂5 −
1

2
Σ(x5)

)

ψ = 0

(

∂5 +
1

2
Σ(x5)

)

ψc = 0 . (5.5)
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The solutions are trivially

ψ(x5) = ψ(0)e
∫ x5
0

dy 1

2
Σ(y) = ψ(0)e

1

2
(Σ0+ζsgn(x5))x5

ψc(x5) = ψc(0)e−
∫ x5
0

dy 1

2
Σ(y) = ψc(0)e−

1

2
(Σ0+ζsgn(x5))x5 . (5.6)

Clearly for |Σ0| > |ζ|, neither of these solutions is normalizable and there are no localized

chiral zero modes. However, for |Σ0| < |ζ|, one (but not the other) of the above two

wavefunctions will be normalizable and we localize a chiral fermion to the brane at x5 = 0.

So, in one region of moduli space |Σ0| < |ζ|, we have a chiral zero mode but for

|Σ0| > |ζ| it disappears. How can the net chirality change as we smoothly move around

in moduli space? Mathematically, as |Σ0| → |ζ|, the wavefunction of the chiral zero mode

spreads out more and more till at |Σ0| = |ζ| it it is unnormalizable. Physically, what is

going on is also transparent. For |Σ0| < |ζ|, there is a normalizable zero mode, and then (

since the Fermions are massive both for x5 > 0 and x5 < 0) there is mass gap above which

we have the full 5D continuum. Therefore the low-energy theory is indeed 4-dimensional,

and remains that way as we smoothly vary Σ0. However, as |Σ0| approaches |ζ|, the bulk

Fermion mass on one side of the brane approaches zero till exactly at |Σ0| = ζ, the bulk

mass term is zero on one side and the low-energy theory is not 4D. As we continue to

|Σ0| > |ζ|, the bulk Fermion become massive in the bulk again. But to an observer on

the brane, net chirality has been changed. There is of course no contradiction with the

usual statement that net chirality cannot change in 4D, because as we move around in

moduli space we go through a region where there is no effective 4D description. This is an

elementary analog of the chirality-changing transitions in string theory discussed in [17].

There, chirality changing transitions occured while moving around in moduli space, when

the effective 4D field theory description of the physics broke down due to the appearance

of tensionless strings.

There are simple variations on the above model. For instance, instead of introducing

a FI term on the brane, we could introduce a pair of chiral fields X, X̄ of charge +1,−1,
which can take arbitrary vevs. Normally, this would violate D− flatness, but in this case

we simply have

D = −∂5Σ+ (|X|2 − |X̄ |2)δ(x5) (5.7)

and so we have have the same D−flat solution for Σ as before with ζ → (|X|2 − |X̄ |2).
We can also easily discuss compactification and the supersymmetric generalization of

the models in [16]. We will consider an S1/Z2 of the model with a U(1) gauge field and a

hypermultiplet in the bulk. The orbifold symmetry is

V (x, x5) → V (x,−x5)
φ(x, x5) → −φ(x,−x5)
H(x, x5) → H(x,−x5)

Hc(x,−x5) → −Hc(x,−x5) . (5.8)

Furthermore, on the orbifold fixed point at x5 = 0 we will write down a FI term, while on

the fixed point at x5 = L we will put a pair of chiral fields Y, Ȳ of charge +1,−1. The D−
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flatness condition is now

∂5Σ+ 2ζδ(x5) + (|Y |2 − |Ȳ |2)δ(x5 − L) = 0 . (5.9)

The general solution to this equation is

Σ(x5) = Σ0 + ζsgn(x5) +
1

2
(|χ|2 − |χ̄|2)sgn(x5 − L) . (5.10)

However, in order to be able to find a solution invariant under the orbifold symmetry we

must have

Σ0 = 0 , |χ|2 − |χ̄|2 + 2ζ = 0 . (5.11)

So the Σ modulus has been projected out, and the second condition is just the usual

D-flatness condition in 4D, (as it had to be from the low-energy point of view).

Now, we can look at what happens to the hypermultiplets in this background. The

solutions for the zero mode wavefunctions of H,H c are

ψ = Ae
ζ
2
x5 , ψc = Be−

ζ
2
x5 (5.12)

however, by the orbifold symmetry, the zero mode of H c must vanish at the orbifold fixed

points, so B must vanish and there is therefore no zero mode for H c. The zero mode for

H, on the other hand, can be localized at either x5 = 0 or x5 = L depending on the sign

of ζ.

Finally, we can replace the FI term on the fixed point at x5 = 0 by another pair

of chiral multiplets X, X̄ of charge ±1. Then everything goes through the same with

ζ → (|X|2− |X̄|2). There is a moduli space of solutions corresponding to the usual D−flat
space in 4D. As we move along this moduli space, the chiral fermion wavefunction can

shift from being localized around x5 = 0, to having a flat wavefunction, to being localized

around x5 = L.

6. Anomalies and super-Chern-Simons theory

We have shown how to localize chiral fermions in a fifth direction. It is then natural to ask

what happens with anomalies in such a theory. In the case of domain-wall fermions, it is

well-known that the apparent anomaly due to the localized chiral zero mode is canceled by

the variation of a Chern-Simons term in the bulk [18]. We will not repeat the whole story

here. The important point is that the variation of the Chern-Simons action on a manifold

M , under a gauge transformation δA = dΛ, is

δ

∫

M
A ∧ F ∧ F =

∫

M
dΛ ∧ F ∧ F =

∫

M
d(ΛF ∧ F ) =

∫

∂M
ΛF ∧ F (6.1)

and the integral over the boundary has precisely the form of a 4D anomaly. As such, it

can cacel the 4D anomaly induced by fields living at the boundaries.

What we would like to do here is show how to supersymmetrize the 5D Chern-Simons

term in our 4D superspace formalism. Note that the usual Chern-Simons term contains
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A5F F̃ . It is easy to see that this term must come from the term
∫

d2θφWW . However,

note that the gauge coupling of the 5D YM theory can be absorbed by shifting φ. This

leads us to guess that 5D SYM + 5D super-Chern-Simons theory is actually on the moduli

space of pure 5D super-Chern-Simons. As we will see, this is indeed correct. We will

therefore only construct the action for pure super-Chern-Simons theory.

The piece of the action we have so far,
∫

d2θφWW , is clearly not fully gauge invariant,

nor fully 5D Lorentz-invariant. It is not difficult to find the correct combination of terms

required. The correct action for super-Chern-Simons theory, on an interval between x5 =

[y1, y2], is

S5DCS =

∫

d4x

∫ y2

y1

dx5

∫

d2θφWW + h.c−

−
√
2

3

∫

d4θ(∂5V DαVW
α − V Dα∂5VW

α) + h.c−

−1

3

∫

d4θ(
√
2∂5V − (φ+ φ̄))3 . (6.2)

The bosonic part of the component action is:

S5DCS
bosonic =

∫

d4x

∫ y2

y1

dx5−
1

2
√
2
εMNOPQAMFNOFPQ+

1√
2
ΣFMNFMN +

√
2Σ∂MΣ∂MΣ .

(6.3)

It is easy to verify with this action that under the gauge transformation δφ = ∂5Λ, δV =

Λ + Λ̄, the above action has a variation

δS5DCS =

∫

d4x

∫

d2θ(ΛWW )(y2)− (ΛWW )(y1) + h.c (6.4)

which is the full supermultiplet of chiral anomalies on the boundaries at y1, y2.

7. Conclusions

In this paper we have given the rules for constructing globally supersymmetric lagrangians

from D = 5 to D = 10 dimensions in the familiar N = 1,D = 4 superspace. This makes

it easy to do explicit supersymmetric model-building in extra dimensions, in particular

allowing us to couple bulk fields to fields localized on 3-branes with ease. We illustrated

the utility of the formalism with a number of simple examples. It would be interesting to

explore some generalizations of these examples in detail. For instance, it would be nice to

generalize the supersymmetric localization of chiral fermions to higher dimensions.

There are also a number of possible extensions of the ideas in this paper that we

have not touched on. For instance, when we have dynamical branes which fluctuate, with

finite tension, there are massless scalar fields living on the branes which are the goldstone

bosons of spontaneously broken translational invariance. They non-linearly realize the full

translational symmetry of the theory [19]. In the case where the brane preserves some

SUSY, these goldstone modes must fall into supermultiplets, and it would be interesting to

know how to systematically construct lagrangians non-linearly realizing the full SUSY. A
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related possible application of our formalism is the construction of BPS (N = 1 preserving)

solitons in the higher-dimensional theory. These would be F− and D− flat solutions with

non-trivial variation of fields in the extra dimensions. Finally, it would of be desirable to

extend our formalism to the case of supergravity. While a full treatment may be difficult,

the case of linearized supergravity could be tractable, and would already contain much of

the interesting physics.
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