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Abstract

We analyze the muon anomalous magnetic moment in the context of universal extra dimensions. Our computation shows
that the bound from electroweak data on the size of these dimensions allows only a small shift in the muon magnetic moment
given by Kaluza–Klein modes of standard model fields. In the well-motivated case of two universal extra dimensions, additional
contributions arising from physics at scales where the effective 6-dimensional standard model breaks down, given by dimension-
ten operators, have a natural size comparable to the sensitivity of the muon(g − 2) experiment at BNL. 2001 Published by
Elsevier Science B.V.

1. Introduction

There are good reasons to imagine thatall the stan-
dard model fields propagate in a larger number of spa-
tial dimensions compactified at a scale 1/R � 1 TeV.
This framework could provide a mechanism for elec-
troweak symmetry breaking [1] and supersymmetry
breaking [2], and it relates the number of fermion
generations to the requirement of anomaly cancella-
tion [3]. Recently, it was pointed out that the compact-
ification radiusR of these universal extra dimensions,
can be surprisingly large, as large as 1/(300 GeV).
The reason is that momentum conservation in extra
dimensions leads to Kaluza–Klein (KK) number con-
servation and therefore to the absence of vertices with
a single nonzero KK mode. There are thus no tree-
level contributions to the electroweak observables, and
no single KK mode production at colliders. Interest-
ingly, the tightest bounds onR, derived from the ex-
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perimental constraints on theρ parameter [4] and on
theb → sγ process [5], leave room for a discovery of
KK modes in Run II at the Tevatron.

The higher-dimensional standard model is an ef-
fective field theory, valid below some scaleMs in
the multi-TeV range. Its lowest dimension opera-
tors correspond directly to the familiar terms of the
4-dimensional standard model. Corrections to the
leading low energy theory are encoded in a tower of
operators of increasing dimension allowed by the field
content and the symmetries. This effective higher-
dimensional theory, after compactification to four
dimensions, leads to the standard model together
with two classes of corrections. The first arises from
physics above 1/R but below the cutoffMs , and cor-
responds to virtual KK modes of the standard model
particles. The second arises from the unknown physics
at scalesMs and above, and is parametrized by the co-
efficients of the tower of higher dimension operators.

In this Letter, we extend the considerations of
Ref. [4] by discussing the muon anomalous magnetic
moment in the context of universal extra dimensions.
We compute the one-loop contribution from standard
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model KK modes in universal extra dimensions, and
find that it is too small to be seen by the Muon
g−2 Collaboration [6]. This computation confirms the
estimate of Agashe, Deshpande and Wu [7].

We then consider the effects of the higher dimension
operators. Concentrating on the well motivated case
of the (chiral) 6-dimensional standard model, we find
that the contributions to the muon magnetic moment
from dimension-ten operators could naturally be large
enough to be experimentally measurable for typical
values ofMs , of a few TeV.

In Section 2, we discuss universal extra dimensions
in the framework of effective field theory, and display
the leptonic sector of this theory, appropriate for
the computation of the muon anomalous magnetic
moment. In Section 3, we compute at one-loop level
the muon magnetic moment induced by the KK
modes of standard model fields, and in Section 4
we analyze higher dimension operators within the
chiral 6-dimensional standard model. Conclusions and
a comparison with theρ parameter computation are
contained in Section 5.

2. Universal extra dimensions

The idea of universal extra dimensions is very sim-
ple: all standard model fields propagate in some ex-
tra spatial dimensions. These universal dimensions
are taken to be flat, and must be compactified on
an orbifold such that the zero-mode fermions are
endowed with 4-dimensional chirality. The simplest
δ-dimensional orbifold of this kind is obtained by
compactifying each pair of extra dimensions onT 2/Z2
and, for oddδ, the remaining extra dimension on
S1/Z2, as explicitly shown in [4]. The (4+ δ)-
dimensional quarks,Qi ,Ui ,Di , and leptons,Li ,Ei ,
(i = 1,2,3 is a generational index) are decomposed
in KK modes such that only one left- (right-)handed
component of each weak doublet (singlet) is even
under the orbifold projection. For example, the sec-
ond generation lepton fields have zero-modesL(0)

2 =
(νµL,µL) andE (0)

2 = µR .
The (4+ δ)-dimensional Lagrangian looks very

similar to that of the 4-dimensional standard model.
There are kinetic terms for the (4+ δ)-dimensional
SU(3)C × SU(2)W × U(1)Y gauge fields, a kinetic

term and potential for the (4+ δ)-dimensional Higgs
doublet,H, as well as the following terms involving
quarks and leptons:

(�Q, �U , �D, �L, �E )iΓ αDα(Q,U,D,L,E)

(2.1)

− [�Q(
λ̂UU iσ2H∗ + λ̂DDH

) + �L λ̂EEH+ h.c.
]
.

We use the notationxα or xβ , for all space–time
coordinates (α,β = 0,1, . . . ,4 + δ), and xρ or xτ

for the noncompact coordinates (ρ, τ = 0,1,2,3).
Dα are the covariant derivatives associated with the
SU(3)C × SU(2)W × U(1)Y group.Γ α are anticom-
muting 2k+2 × 2k+2 matrices, wherek is an integer
such thatδ = 2k or δ = 2k + 1. Whenδ is even, the
quark and lepton fields may have 4+ δ chirality, de-
fined by the eigenvalues±1 of Γ4+δ, the analogue
of γ5 in four dimensions. Anomaly considerations are
discussed in Refs. [3,4]. A summation over a gener-
ational index is implicit in Eq. (2.1). The(4 + δ)-
dimensional Yukawa couplings,λ̂U , λ̂D, λ̂E , are 3× 3
matrices and have mass dimension−δ/2.

The standard model operators listed above have
mass dimension ranging up to 4+ 2δ. They are the
lowest dimension operators allowed by gauge symme-
try. Corrections are described by a tower of higher di-
mension operators, each suppressed by inverse powers
of the multi-TeV scaleMs at which the effective the-
ory breaks down.

In Ref. [4], this effective theory was used to show
that, because the KK number is conserved and thus
the contributions to experimental observables arise
only from loops, the bound from the electroweak
data on the size of universal extra dimensions is
rather loose. The main constraint comes from weak-
isospin violating effects, encoded in the"ρ = αT

parameter. In the case of a single extra dimension the
electroweak parameters may be computed reliably at
one-loop level using the Lagrangian (2.1), revealing
that the compactification scale 1/R could be as low
as 300 GeV. Higher order corrections, suppressed by
inverse powers ofRMs , are small. In the case of
two universal extra dimensions, the contributions of
the KK modes to electroweak observables become
logarithmically sensitive toMs , meaning that they are
not reliably computable by relying only on physics
below Ms . A rough estimate can be made, however,
indicating that in this case 1/R could be as low as
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roughly 500 GeV. We return to this discussion in
Section 5, after describing our results for the muon
g − 2.

The 4-dimensional Lagrangian is obtained by di-
mensional reduction from the(4+δ)-dimensional the-
ory. The decomposition of the standard model fields in
KK modes leads to a variety of trilinear and quartic in-
teractions. Contributions to the one-loop muon anom-
alous magnetic moment arise from the leptonic part of
Eq. (2.1). The vector-like KK modes associated with
the weak-doublet,Lj

2 = (Lj
νµ,L

j
µ), and -singlet,Ej

2 ,
muon fields have electroweak symmetric massesMj ,
with j � 1. In the case of one universal extra dimen-
sion Mj = j/R, while for more dimensions the KK
spectrum is denser. The zero-mode Higgs doublet ac-
quires a VEV, breaking the electroweak symmetry, and
leading to mass mixing between theLj

µ andEj
2 KK

modes, level by level. The mixing angle is suppressed
by the ratio of the muon mass to KK mass,

(2.2)sinαj ≈ mµ

2Mj

+O
(
m3

µ/M
3
j

)
.

The trilinear interaction of the zero-mode muon
mass eigenstate,µ′, with the higher KK modes of the
Z boson,Zj

α , and the muon KK mass eigenstates,L′j
µ

and E ′j
2 , is described by the following terms in the

4-dimensional Lagrangian:

g

cosθW

{
Zj

ρ

[�L ′j
µ γ ρ(gµL cosαjPL + gµR sinαjPR)

− �E ′j
2 γ ρ(gµR cosαjPR + gµL sinαjPL)

]
µ′

− iZ
j

4

[�L ′j
µ (gµL cosαjPL − gµR sinαjPR)

− �E ′j
2 (gµR cosαjPR − gµL sinαjPL)

]
µ′}
(2.3)+ h.c.

As usual,g is the SU(2)W gauge coupling,PL,R =
(1∓ γ5)/2 and

(2.4)gµL = −1

2
+ sin2 θW , gµR = sin2 θW .

In Eq. (2.3) we have displayed the interactions involv-
ing the KK modes of only one scalar component of
theZ. For δ extra dimensions there areδ scalars as-
sociated with a gauge boson, at each KK level. For
the one-loop computations that we perform in the next
section each scalar KK mode contributes by the same

amount, so it is sufficient to consider the exact form of
the interactions involvingZj

4.
Another interaction entering the muong − 2 com-

putation is that of a photon KK mode,Aj
ρ and A

j

4,
with a muon zero-mode and a muonj -mode. It may
be obtained from Eq. (2.3) by substitutingZj

ρ,4 with

−A
j

ρ,4 sinθW cosθW and settinggµL = gµR = 1. It is
also straightforward to write the interactions of theW

scalar KK modes with a muon zero-mode and a muon–
neutrino KK mode in the weak eigenbasis:

(2.5)− ig√
2
W+

4
j
ν̄j
µR

µL + h.c.

TheW+
ρ

j
ν̄
j
µL

γ ρµL vertex, involving theW boson KK

modes, as well as theAρW
+
ρ

j
G−j andG+j

ν̄
j
µL

µR

vertices, involving the KK modes of the charged
Goldstone boson eaten by theW , are identical with
the standard model ones for the corresponding zero-
modes. Finally, the interactions of the photon zero-
mode with the muon orW boson KK modes are
diagonal and determined by the corresponding electric
charge.

3. gµ − 2 from KK modes of standard model fields

The anomalous magnetic moment of the muon is
the coefficientaµ ≡ gµ − 2 in the 4-dimensional
momentum space operator

−aµ
e

2mµ

Aρ

(
pout − pin)

µ̄′(pout)iσ ρτ
(
pout
τ −pin

τ

)

(3.1)× µ′(pin).
In this section, we compute the contributionaKK

µ

arising from KK modes associated with universal extra
dimensions.

The standard model in universal extra dimensions
leads to the one-loop corrections toaµ shown in
Figs. 1 and 2. Each diagram gives a contribution of
order(α/π)m2

µ/M
2
j , reflecting the decoupling of the

KK modes.1 An important feature of these diagrams
is that the contributions from individual KK levels are

1 The result is proportional to(mµR)2, unlike the linear depen-
dence onmµR in Ref. [8], due to the chiral couplings of the muon
to the gauge boson KK modes.
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Fig. 1. Contributions togµ − 2 from KK modes of theSU(2)W × U(1)Y gauge fields, labeled byc(Zρ), c(Aρ), c(Wρ), c(G±) in Eq. (3.2).

Fig. 2. Contributions togµ − 2 from the gauge fields polarized in extra dimensions, labeled byc(A4), c(Z4), c(W4) in Eq. (3.2).

independent, so that the result is simply a sum over
KK levels:

aKK
µ = α

8π

∑
j

Dj

m2
µ

M2
j

{
c
(
Zρ

) + c
(
Aρ

) + c
(
Wρ

)

(3.2)

+ c
(
G±) +

[
c
(
A4) + c

(
Z4) + c

(
W4)]δ},

whereDj is the degeneracy of thej th KK level. The
coefficientsc(Zρ), c(Aρ), c(Wρ) and c(G±) corre-
spond to the diagrams shown in Fig. 1. The coeffi-
cients c(A4), c(Z4) and c(W4), given by diagrams
which involve scalar KK modes of the photon,Z and
W (see Fig. 2), are multiplied by the number of ex-
tra dimensions because the higher-dimensional gauge
fields have 4+ δ components. Using the interactions
displayed in Section 2, we compute the diagrams of
Figs. 1 and 2 in the Feynman gauge, and obtain the
following values for each of the coefficients:

(3.3)c
(
Aρ

) = −2

3
c
(
A4) = 2

3
,

(3.4)c
(
Zρ

) = −3+ 4 sin2 θW cos2θW
3 sin2 2θW

,

(3.5)c
(
Z4) = 1+ 12 sin2 θW cos2θW

6 sin2 2θW
,

(3.6)c
(
Wρ

) = 2c
(
W4) = −c

(
G±) = − 1

3 sin2 θW
.

The sum of all the diagrams takes the form

aKK
µ = α

24π sin2 2θW

×
[
−3+ 4 sin2 θW − δ

2

(
3+ 8 sin2 θW

)]

(3.7)×
∑
j

Dj

m2
µ

M2
j

,

and using sin2 θW ≈ 0.231, we find

(3.8)aKK
µ ≈ −5.8× 10−11(1+ 1.2δ)SKK ,

where we defined

(3.9)SKK ≡
∑
j

6Dj

π2

[
300 GeV

Mj

]2

.

With a single universal extra dimension, the degen-
eracy factorDj is unity and the sum is convergent
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as in the case of precision electroweak observables.
The smallest value for 1/R allowed by the electroweak
data is approximately 300 GeV, givingSKK ≈ 1, and
thus leading to a negative value foraKK

µ of order

10−10. This is smaller than the final expected 1σ sen-
sitivity of the muong − 2 experiment at BNL [6].
The negative sign of this small contribution increases
slightly the discrepancy between the standard model
prediction [9] and experiment.

For the more interesting case of two universal extra
dimensions, the KK sum diverges logarithmically,
indicating that as in the case of the electroweak
observables, important contributions can arise from
physics at scales aboveMs as well as below. The
contribution from physics belowMs can be estimated
by cutting off the KK mode sum at anMj of orderMs .
As noted in Ref. [4], this procedure for the electroweak
observables leads to 1/R � 500 GeV andMsR � 5.
This leads toSKK � 1, and thereforeaKK

µ is of order

10−10 or smaller in the 6-dimensional standard model.

4. The 6-dimensional standard model and short
distance effects on gµ − 2

In the previous section we showed that, with one or
two universal extra dimensions, the value ofgµ − 2
≡ aµ induced by loops with standard model KK fields
below the effective theory cutoffMs is smaller than
the final expected 1σ sensitivity of the muong − 2
experiment at BNL [6]. However, physics aboveMs

also contributes toaµ, and these effects could be large
given that theSU(3)C × SU(2)W × U(1)Y interac-
tions are strongly coupled at these scales. From a low-
energy effective theory point of view, the effect of
physics aboveMs is parametrized by higher dimen-
sion operators suppressed by powers ofMs . In the
case of one universal extra dimension, the effective
5-dimensional theory breaks down atMs � 10 TeV,
so the operators suppressed by powers ofMs are not
likely to induce a largeaµ. With more dimensions the
cut-off Ms is lower. We concentrate in what follows
on the case of two universal extra dimensions.

In six dimensions, the standard model is chiral as in
four dimensions and is highly constrained by anom-
aly cancellation and Lorentz invariance. The quarks
and leptons are 4-component Weyl fermions of defi-

nite chirality which we label by ‘+’ and ‘−’. The can-
cellation of local anomalies imposes one of the follow-
ing two chirality assignments:Q+,U−,D−,L∓,E±.
Each of these 6-dimensional chiral fermions leads in
the effective 4-dimensional theory to either a left-
or right-handed zero-mode fermion depending on
the orbifold boundary conditions. The 6-dimensional
standard model is the only known theory that con-
strains the number of fermion generations to be
ng = 3 mod3, based on the global anomaly cancella-
tion condition [3].

The gravitational anomaly cancels only if within
each generation there is a gauge singlet fermion with
6-dimensional chirality opposite to that of the lepton
doublet [1,3]. These gauge singlet fermions can have
Yukawa couplings to the Higgs and lepton doublet
fields, which at one loop give rise to a negative shift
in aµ. However, the Yukawa couplings of the zero-
modes have to be smaller than∼ 10−10 in order
to avoid too large Dirac neutrino masses. There are
mechanisms to explain this small parameter, involving
additional dimensions accessible only to gravity and
the singlet fermions [10]. The large number of singlet
fermion KK modes associated with these additional
dimensions enhance the contribution to the muon
anomalous magnetic moment, but even then there is no
reason to expect a sizableaµ from the neutrino sector.

Here we point out that the chiral 6-dimensional
standard model includes higher dimension operators
suppressed by powers ofMs that can naturally have
a substantial contribution toaµ. In the 6-dimensional
Lagrangian these appear as dimension-ten operators:

�L+
i

2

[
Γ α,Γ β

] λ̂E
M2

s

(
CB

ĝ′

2
Bαβ − CW

�σ
2
ĝ �Wαβ

)
E−H

(4.1)+ h.c.,

whereWαβ , Bαβ are the 6-dimensionalSU(2)W ×
U(1)Y field strengths, andCW,CB are dimension-
less parameters determined by the unknown physics
aboveMs . We have defined them by extracting the
6-dimensionalSU(2)W ×U(1)Y gauge couplingŝg, ĝ′,
and charged lepton Yukawa coupling matrix,λ̂E .
These have inverse mass dimension, and are related
to the corresponding 4-dimensional couplings by

(4.2)
{
ĝ, ĝ′, λ̂E

} = √
2πR

{
g,g′, λE

}
.

After the two extra dimensions are integrated out,
the operator (4.1) gives rise to a number of terms in
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the 4-dimensional Lagrangian. Only the Higgs dou-
blet zero-mode acquires a VEV, leading to interac-
tions of the leptons with gauge bosons described by
dimension-five operators. Among those that involve
only zero-modes, the following operator contributes
to aµ:

(4.3)
emµ

2M2
s

µ̄′[U†(CB + CW)U
]
22

i

2

[
γ ρ, γ τ

]
µ′Fρτ ,

whereFρτ is the electromagnetic field strength,µ′
is the muon mass eigenstate, andU is the unitary
matrix that relates the mass eigenstate charged leptons
to the weak eigenstates. In general,CW andCB are
3 × 3 matrices in flavor space. However, the gauge
fields have generational-independent couplings, so we
expect that the flavor-dependence of the operator (4.1)
is due only to the presence of the Higgs field and
shows up predominantly through the Yukawa coupling
matrix λ̂E . In other words, we expectCW andCB to
be approximately flavor independent:

(4.4)Cii′
W,B = cW,B

(
δii′ + εii

′
W,B

)
,

with εii
′

W,B � 1 (i, i ′ = 1,2,3), on the order of the
squared lepton Yukawa couplings. Therefore, the
muon anomalous magnetic moment induced by the
operator (4.3) is given by

(4.5)a
op
µ ≈ 2m2

µ

M2
s

(cB + cW ).

If Ms is taken to be the scale where the standard
model gauge interactions become nonperturbative,
thenRMs ≈ 5. The bound on the size of two universal
extra dimensions imposed by the electroweak data
is 1/R � 500 GeV [4]. Since anomaly cancellation
in six dimensions does not allow a straightforward
supersymmetric extension of the standard model [3],
the scale where the 6-dimensional standard model
breaks down should be not much higher than a
few TeV in order to avoid fine-tuning in the Higgs
sector. The result foraop

µ can be written as

(4.6)a
op
µ ≈ 3.6× 10−9(cB + cW )

(
2.5 TeV

Ms

)2

.

The operators (4.1) arise at scales of orderMs , and
because they involve gauge fields, their coefficients
are expected to be proportional to the 6-dimensional
gauge couplings. At the same time, these operators

break the chiral symmetry of the leptons, and from
the Yukawa terms in the 6-dimensional Lagrangian we
know that such breaking is accompanied by Yukawa
couplings. Hence, it is natural to expect the coeffi-
cientsCB and CW , defined in Eq. (4.1) by extract-
ing the 6-dimensional gauge and Yukawa couplings, to
be of order unity at the scaleMs . Furthermore, upon
dimensional reduction the volume suppression is en-
tirely absorbed in the gauge and Yukawa couplings.2

As a result, the values ofcB andcW at scales compa-
rable to the muon mass differ from those at the scale
Ms by factors of order one, mostly due to the one-loop
running. Notice that the theory is perturbative at scales
belowMs .

We conclude that physics from above the cutoffMs

of the effective, 6-dimensional standard model natu-
rally gives a contribution toaµ comparable to the cur-
rent sensitivity of the muong − 2 experiment at BNL.
The sign of this contribution cannot be determined
within the effective 6-dimensional standard model. Fu-
ture reductions in the experimental uncertainty and im-
provements in the estimate of hadronic contributions
to aµ would allow a measurement of(cB + cW )/M2

s

in the context of universal extra dimensions.
Although the operators (4.1) are expected to be ap-

proximately flavor diagonal, the constraints on flavor-
changing neutral currents are severe enough to warrant
attention. The processµ− → e−γ is the most con-
straining in this context. The tree level decay width
for this process is

(4.7)

Γ (µ− → e−γ ) ≈ αm5
µ

2M4
s

{[
U†(CB + CW)U

]
12

}2
.

The experimental limit ofΓ (µ− → e−γ ) < 3.6 ×
10−27 MeV [12] imposes a bound on the off-diagonal
(i �= i ′) elements ofCW,B ,

(4.8)εii
′

W,B � 10−4

cW,B

(
2.5 TeV

Ms

)2

.

2 Consequently, the estimate (4.5) is similar to that arising from
higher dimension operators associated with muon substructure in a
4-dimensional context [11].
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5. Conclusions

In Ref. [4], it was pointed out that all the stan-
dard model fields could propagate in a larger number
of spatial dimensions, compactified at a scale 1/R as
small as 300 GeV. In this Letter, we addressed the im-
plications of this idea of “universal extra dimensions”
for the muon anomalous magnetic moment. For one
or two extra dimensions, we computed the one-loop
contribution of the KK modes of the standard model
fields and found that it is too small to be detected by
the muon (g − 2) experiment at BNL [6]. We then an-
alyzed higher dimension operators in the context of
the 6-dimensional standard model. For the cut-offMs

in a range such that fine-tuning in the Higgs sector is
eschewed (a few TeV), the contribution to the muon
anomalous magnetic moment is naturally as large as
the currently quoted discrepancy [6]. The sign of this
contribution, however, is determined by the unknown
physics aboveMs .

It is interesting that the natural expectation of the
contribution togµ − 2 from physics aboveMs is an
order of magnitude larger than the contribution from
physics belowMs , arising from the KK modes of
standard model fields. This is in contrast to the case
of the weak-isospin violatingρ parameter discussed
in [4]. The dimension-ten weak-isospin violating op-
erator (cT λ̂H/2M2

s )(H†DαH)2 has a coefficientcT
(defined by extracting the 6-dimensional quartic Higgs
coupling λ̂H) of order unity if the weak-isospin is
maximally violated by physics aboveMs . The vol-
ume suppression resulting from integration over the
two extra dimensions is absorbed in the Higgs and
gauge couplings, so this operator gives"ρ ∼ M2

h/M
2
s

(Mh is the Higgs boson mass), comparable to the one-
loop KK contribution. The reason for this difference
is partly that the one-loop contributions togµ − 2 in-
volve only lepton KK modes, while"ρ is enhanced
by a color factor and the largeness of the top Yukawa
coupling.

We emphasize that the low scale of new physics, of
a few TeV, where the 6-dimensional standard model
is expected to break down, is an opportunity, allowing
phenomenologically interesting higher dimension op-
erators, but also a challenge requiring further study of
mechanisms that suppress dangerous operators [13].
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