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Abstract

Considering gravitational waves propagating on the most general 4+N -dimensional
space-time, we investigate the effects due to the N extra dimensions on the four-
dimensional waves. All wave equations are derived in general and discussed. On
Minkowski4 times an arbitrary Ricci-flat compact manifold, we find: a massless
wave with an additional polarization, the breathing mode, and extra waves with
high frequencies fixed by Kaluza–Klein masses. We discuss whether these two
effects could be observed.
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1 Introduction

The direct observations of gravitational waves emitted by black hole mergers, realised by the
LIGO and Virgo Scientific Collaboration [1,2], are impressive experimental results and ground-
breaking scientific achievements. They provide physicists with a new observational tool, al-
lowing them to probe nature and test theories in completely innovative manners. Constraints
on various models beyond four-dimensional General Relativity have already been obtained
from these observations, for instance constraints on alternative theories of gravity [3,4], modi-
fied dispersion relations [5], quantum gravity effects [6], non-commutative geometry [7], exotic
compact objects [8], microscopic description of black holes [9], etc. A recent review on such
constraints can be found in [10]. In the present paper, we study the consequences of putative
extra dimensions on four-dimensional gravitational waves, and whether related effects could
be detected.

Background and state of the art

Considering spatial dimensions in addition to our four-dimensional space-time is a common
idea when going beyond standard particle physics, gravity or cosmology. Such extra dimen-
sions appear in models ranging from phenomenological or bottom-up approaches, to quantum
gravity theories such as string theories, and their low energy realisations as supergravities.
The former include models with large extra dimensions [11], in particular so-called ADD
models [12, 13], Randall–Sundrum models RS1 [14] and RS2 [15], and models with Universal
Extra Dimensions (UED) [16]. A first distinction between these models is about matter and
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interactions: while gravity is present in all dimensions, matter and other gauge interactions
can be restricted to a subset of dimensions, referred to as the brane, such as for example the
four-dimensional space-time. This holds for ADD and RS models, but not for UED. Such
a restriction provides an explanation to the hierarchy between the Planck mass and other
energy scales such as the electro-weak scale, either thanks to large extra dimensions (ADD)
or to a warp factor (RS). Another distinction is on the number and compactness of extra
dimensions: there can be one (RS1) or several (UED, ADD) compact extra dimensions, or
one extended extra dimension (RS2). Several of these features are present in ten-dimensional
type II supergravities and their compactifications, the low-energy effective theories of type
II string theories (reviews can be found e.g. in [17, 18]). These theories feature six extra di-
mensions, gathered as compact manifolds: those can be Ricci flat as Calabi–Yau manifolds,
or curved as e.g. Lie group manifolds [19, 20]. They also admit branes localizing non-abelian
gauge interactions, warp factors, etc. A short review on all these models and their connec-
tions can be found in [21], see also [22]. Constraints exist for each of them, but possibilities
on the number, shape, and size, of extra dimensions remain very open. As a consequence, our
paper aims at finding general, if possible model-independent signatures of extra dimensions
in four-dimensional gravitational waves.

Considering gravitational waves in a space-time of dimension D = 4 + N , with N extra
dimensions, is not a new idea. An important load of work has been devoted to studying the
emission of such waves from black holes in D dimensions; see e.g. the review of black holes
in higher dimensions [23]. A seminal paper on this topic is [24], considering colliding particles
(possibly black holes) as sources and obtaining the quadrupole formula. Subsequent work,
e.g. [25,26], was motivated in part by the possibility of black hole creation at the LHC, and their
stability under gravitational perturbations and radiation. Related work, e.g. [27–30], focused
on computing quasinormal modes of a D-dimensional black hole. The methods developed
include numerical approaches, see e.g. [31] and references therein. A review on this topic can
be found in [32]. From our perspective, there are two drawbacks to those studies. First, the
sources considered for the gravitational waves are very specific, while many others could exist
(see e.g. [33, 34] for reviews). Second, the background metric away from the black hole is
the Minkowski flat one, thus describing a D-dimensional Minkowski space-time, or at most
N extra circles (equivalently a flat N -torus TN ). This is a strong restriction on the extra
dimensions.

Other works have focused more directly on potentially detectable effects of extra dimen-
sions on gravitational waves, often in a specific model or background. By studying the signal’s
Green function, a tail effect was pointed out in [35,36] for a one-circle extra dimension, or on a
D-dimensional de Sitter or FLRW background in [37,38]. A small correction to the waveform
was also obtained in [39] with fairly general compact extra dimensions and a four-dimensional
source. An interesting polarization effect was obtained in [40] for a single circle extra dimen-
sion, with some Ansatz for the fields. Another interesting idea is that gravitational waves at
high frequencies can provide a hint at extra dimensions and high energy physics. It is present
in various papers considering RS models, first in [41, 42] with waves emitted in the early uni-
verse, and then in [43] where discrete frequencies of some gravitational radiation are related to
Kaluza–Klein modes of a specific RS model. A similar idea and model, but with a continuous
spectrum, can be found in [44]. Further work includes effects due to cosmic strings [45, 46],
braneworlds [47], or inflation considerations [48]. We will come back to some of these effects.
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Description of the work

In this paper, we take a more general approach: in short, sources are left unspecified, and
extra dimensions are not restricted, except through their background equations. As a result,
we identify and discuss general effects of extra dimensions on four-dimensional gravitational
waves, which could in principle be observed. As mentioned above, extra dimensions appear in
a wide variety of models, and their number, size or geometry is so far not sharply constrained.
Given this set of possibilities, we initially refrain from specifying this geometry and consider
a generic background. Similarly, the four-dimensional space-time is at first not restricted
to be Minkowski: we allow for general geometries, in particular de Sitter, which could be
useful for primordial gravitational waves, or anti-de Sitter, of possible interest for holographic
applications. When analysing in detail the effects of the extra dimensions, we will nevertheless
approximate to a four-dimensional Minkowski space-time, better suited for the comparison to
currently observed gravitational waves, times a Ricci flat N -dimensional compact manifold.
Those extra dimensions, satisfying the background equations, are otherwise left unconstrained:
there is for instance a huge, if not infinite, number of Calabi–Yau manifolds which would suit.
In any case, the formulation developed would allow to consider more general geometries.

We also do not specify the source of gravitational waves: as mentioned, many different
sources are possible, and their physics, especially in the hypothetical extra dimensions, is not
known in general. Thus we do not consider the source and emission process: in the wave
equations, there will not be any source term. Rather, information on the emission is taken as
initial data of the waves, and we study the propagation (and detection) of gravitational waves
in an empty D-dimensional space-time. This is a sensible approximation insofar as observed
gravitational waves are believed to be so-called pristine probes of the emitted signals, because
their interaction with matter is extremely weak. Eventually, we make qualitative predictions
regarding the effects of extra dimensions on the four-dimensional wave, which could in princi-
ple be observed.

Our starting point is D-dimensional General Relativity with a cosmological constant; fur-
ther contributions from other ingredients are considered in Appendix B. From there, we derive
the equation of motion for the linear metric fluctuation hMN on a generic background (in-
stead of the standard Minkowski flat metric), i.e. the general D-dimensional gravitational wave
equation. We then split space-time into 4 and N dimensions, and deduce the wave equations
for the three types of components, namely the four-dimensional wave hµν , the vectors hµn and
the scalars hmn, with µ (respectively m) being the four- (respectively N -) dimensional indices.
We finally study the equations describing four-dimensional gravitational waves, and look for
deviations from standard equations, i.e. for an effect due to the extra dimensions.

In general there can be three types of effects, given the differences with the standard four-
dimensional analysis. Starting with hMN (XP ) and focusing on hµν(x

π), there are two differ-
ences: first, there are other components hµn and hmn, and second, there are extra coordinates
that we denote ym. The first type of effect is due to a coupling between the various compo-
nents, i.e. hµn or hmn may enter the equations describing the four-dimensional gravitational
waves. The second type of effect, due to the ym, is that instead of a single four-dimensional
wave, one gets a Kaluza–Klein tower of modes hkµν(x

π), possibly coupled to each other. One of
these modes is a priori massless, the others being massive. In different contexts, e.g. missing
energy at the LHC, the latter would correspond to so-called Kaluza–Klein gravitons [22, 49].
However in the present work we consider them only classically, interpreting them as extra
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contributions to the four-dimensional gravitational wave. The third type of effect comes from
the non-triviality background: for example, having a warp factor could lead to differences with
respect to the standard situation with four-dimensional Minkowski. The focus of the present
work is to study realisations of these three types of effects.

More concretely, with the four-dimensional space-time being Minkowski, times an arbitrary
Ricci-flat compact manifold of dimension N , we find the following two signatures of extra
dimensions on four-dimensional gravitational waves:

1. Breathing mode: Due to the extra scalars, a massless breathing mode is present in gen-
eral, in addition to the usual cross and plus polarizations of the gravitational wave. It
is characterized by a homogeneous deformation of the two transverse directions.

2. High-frequency signals: Extra four-dimensional signals, verifying a massive dispersion
relation, add up to the standard massless gravitational wave. They are characterized by
a discrete set of higher frequencies, fixed by the Kaluza–Klein masses.

Along the way we derive the equations of motion for the three types of components in full
generality, allowing for an arbitrary background geometry with a warp factor. Although we
do not make a concrete prediction in the most generic case of a non-constant warp factor, we
comment on the general impact of the latter on the propagation of four-dimensional waves.
A more detailed summary of our results is relegated to Section 4, together with a discussion
on the observability of the above predictions.

The paper is organized as follows. In Section 2 we derive the linearized Einstein equations
with cosmological constant ΛD on the most general space-time of dimension D = 4+N with
non-trivial warp factor. We first obtain the D-dimensional equation in the de Donder gauge
in Subsection 2.1, and then split both the equation and the gauge condition according to
the 4 + N -dimensional structure of space-time in Subsection 2.2. An analogous derivation
in the Transverse-Traceless gauge is performed in Appendix A.1. In Section 3 we restrict to
the case of a Minkowski4 ×M space-time with an arbitrary compact and Ricci-flat manifold
M. We first study the equation of motion and gauge condition for the massless wave in
Subsection 3.1, where we unveil the presence of an additional breathing mode on top of the
two usual polarizations of General Relativity. We then focus on the extra four-dimensional
waves in Subsection 3.2, where we find they have all six polarization modes turned on with
high frequencies related to Kaluza–Klein masses. Finally, Section 4 contains a summary of
our results as well as an extended discussion on the observability of the two above effects.
Equations in the more involved cases of a non-constant warp factor, or additional content in
the D-dimensional Lagrangian, are discussed in Appendix A.2, and Appendix B, respectively.

2 Gravitational waves in a D-dimensional space-time

We start with General Relativity in dimension D, derive the linearized equations of motion,
and then split them according to a 4 +N -dimensional space-time.

2.1 Gravitational-wave equation in D dimensions

We derive the equation describing the propagation of gravitational waves in an empty D-
dimensional space-time. To that end, we consider the action for General Relativity in dimen-
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sion D ≥ 4, with a cosmological constant ΛD,

S =
1

2κD

∫

dDx
√

|gD| (RD − 2ΛD) , (2.1)

where |gD| denotes the absolute value of the determinant of the D-dimensional metric, with
components gD MN , RD denotes the corresponding Ricci scalar, RMN the corresponding
Ricci tensor, and κD is a constant.1 Even for a propagation in an empty four-dimensional
space-time, models with extra dimensions usually contain more terms in their action, given
e.g. by gauge fields and fluxes, branes, etc. A general Lagrangian accounting for such terms is
considered in Appendix B, where the following derivation of the gravitational-wave equation is
extended. For now, we restrict ourselves to (2.1), and derive the following Einstein equation:

RMN −
gD MN

2
(RD − 2ΛD) = 0 . (2.2)

Using its trace

RD =
2D

D − 2
ΛD , (2.3)

it can be rewritten as the following (trace-inversed) Einstein equation:

RMN −
2ΛD

D − 2
gD MN = 0 . (2.4)

To describe gravitational waves, we now decompose the D-dimensional metric gD MN as
the sum of a generic background gMN and a fluctuation hMN ,

gD MN = gMN + hMN , (2.5)

which enjoys a gauge transformation given by linearized diffeomorphisms,

hMN → h′MN = hMN + δhMN , δhMN = 2∇(M ξN) , (2.6)

where ξN is the infinitesimal gauge parameter. We will develop equations at linear order in
h. We denote with (0) and (1) quantities at zeroth order (i.e. background) and first order in
h. The Einstein equation (2.4) splits accordingly:

R
(0)
MN −

2ΛD

D − 2
gMN = 0 , (2.7)

R
(1)
MN −

2ΛD

D − 2
hMN = 0 , (2.8)

1The equations derived here, in particular the D-dimensional wave equation on a generic background, its
decomposition on the various components, and further the Kaluza–Klein modes, may have already appeared
in the context of dimensional reductions of supergravities, at least in some related forms. The reason is that
formally, the same objects are considered. For instance, Section 5.1 of the review [50] contains a D-dimensional
linearized Einstein equation, further decomposed into components, with however a different background (four-
dimensional anti-de Sitter, constant warp factor) and different gauge fixings. Section 5.1 of the review [51]
gives the wave equation of four-dimensional Kaluza–Klein modes, with the background being Minkowski times
a circle, and a specific gauge fixing. The focus of the present work is nevertheless different: while supergravity
dimensional reductions typically consider particular backgrounds with field Ansätze and make related rear-
rangements of the equations, we remain very general regarding the background and gauge conditions, trying
to capture all possible effects. In addition, we aim at interpretations in terms of (observable) four-dimensional
gravitational waves, which is a very different perspective. The supergravity literature remains certainly useful
in our context, at least on technical aspects.
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where we recall that ΛD is constant, and thus entirely captured by the background. Further,
one verifies

(g + h)(0)MN = gMN , (g + h)(1)MN = −gMPhPQg
QN . (2.9)

We now need to compute R
(1)
MN . The definitions of the relevant geometric quantities (with

Levi–Civita connection) are given e.g. in Appendix A of [52].
First, one can show for the connection coefficient that

ΓM
NP = Γ(0)M

NP +
1

2
gMQ

(

∇
(0)
N hQP +∇

(0)
P hQN −∇

(0)
Q hNP

)

, (2.10)

with the standard definition Γ(0)M
NP = 1

2g
MQ (∂NgQP + ∂P gQN − ∂QgNP ). Denoting the trace

hD = hQP g
PQ, the Ricci tensor is then given by

RMN = R
(0)
MN −

1

2
∇

(0)
P (gPQ∇

(0)
Q hMN ) +∇

(0)
P (gPQ∇

(0)
(MhN)Q)−

1

2
∇

(0)
N ∇

(0)
M hD . (2.11)

In view of a gauge fixing, we now make the following quantity appear:

GN ≡ ∇
(0)
P gPQhQN −

1

2
∇

(0)
N hD . (2.12)

This amounts to commuting covariant derivatives. Acting on a scalar they commute, while

∇
(0)
P ∇

(0)
M gPQhQN = ∇

(0)
M ∇

(0)
P gPQhQN +R

(0)
MP g

PQhQN + gNSR
(0)S

RPMgPQhQUg
UR . (2.13)

We deduce

R
(1)
MN = −

1

2
�

(0)
D hMN + gPQhQ(NR

(0)
M)P

+R(0)S
MNP gPQhQS +∇

(0)
(M

GN) , (2.14)

with �
(0)
D = gPQ∇

(0)
P ∇

(0)
Q , and R(0)S

RP (MgN)Sg
PQhQUg

UR = R(0)S
MNP gPQhQS thanks to

symmetries of the Riemann tensor. This expansion can now be used in the first order Einstein
equation (2.8). In the following, we assume that the background (i.e. zeroth order) equation

(2.7) is satisfied. Using it to replace R
(0)
MP , the first order Einstein equation becomes

−
1

2
�

(0)
D hMN +R(0)S

MNP gPQhQS +∇
(0)
(MGN) = 0 . (2.15)

Finally, we impose the standard de Donder gauge in D dimensions

GN = 0 , (2.16)

where GN is the de Donder operator defined in (2.12). This simplifies the first order Einstein
equation (2.15) to

−
1

2
�

(0)
D hMN +R(0)S

MNP gPQhQS = 0 . (2.17)

Note that the D-dimensional de Donder gauge (2.16) can always be reached locally whenever

the Klein–Gordon equation with a source can be solved, because varying (2.12) yields �
(0)
D ξM

(up to terms proportional to the cosmological constant).2 One may wonder whether there
could be (unusual) global obstructions to imposing the de Donder gauge in the case where the
extra dimensions are compact. Such potential global issues will however be ignored, since the
above equations of motion are local, as will be, essentially, the subsequent analysis.

2The existence of local solutions depends on the symbol of the operator, that is, on the term with the
highest number of derivatives in the equation of motion. A study of solutions to the Klein–Gordon equation
on curved space-times can be found e.g. in [53].
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2.2 Splitting dimensions and equations

The dimensions are now split into D = 4 + N , i.e. 4 “external” dimensions corresponding
to our extended space-time, and N extra space dimensions. The latter are gathered as a
manifold M and are dubbed “internal”, even though we do not restrict for now to compact
extra dimensions. The metric is decomposed accordingly. To that end, we consider for the
background the most general metric that allows for the four-dimensional space-time to be
maximally symmetric: this can be viewed as a physical requirement, as the four-dimensional
space-time is then homogeneous and isotopic, and preserves Lorentz invariance. This standard
metric [54,55] corresponds to a warped product of a four-dimensional space-time of coordinates
xµ with M of coordinates ym, meaning

Background : ds2 = e2A(y)g̃µν(x)dx
µdxν + gmn(y)dy

mdyn , (2.18)

where e2A is the warp factor and gµν = e2Ag̃µν . On the contrary, the fluctuation hMN does
not need to be Lorentz invariant, so it is decomposed into hµν , the “vectors” hµm and the
“scalars” hmn; its coordinate dependence is also generic. We introduce accordingly the traces
h4 = hµνg

νµ, h̃4 = hµν g̃
νµ and hN = hmng

nm.

We now implement this information about the background and the dimensions in the wave
equation (2.17). We first decompose the D-dimensional background connection coefficients:
the only non-zero ones are

ΓM=µ
NP=νπ = Γ̃µ

νπ , ΓM=m
NP=np = Γm

np ,

ΓM=µ
NP=νp = ΓM=µ

NP=pν =
1

2
δµν e

−2A∂pe
2A , ΓM=m

NP=νρ = −
1

2
g̃νρg

mn∂ne
2A ,

(2.19)

where Γ̃µ
νπ is the four-dimensional coefficient built from the unwarped metric g̃µν and Γm

np is
the internal one built from gmn. We then compute the D-dimensional background covariant
derivatives acting on h,

∇Q=ρ hMN=µν = ∇̃ρhµν + g̃ρ(µhν)mgmn∂ne
2A , (2.20a)

∇Q=ρ hMN=µn = ∇̃ρhµn +
1

2
g̃ρµhmng

mp∂pe
2A −

1

2
hµρe

−2A∂ne
2A , (2.20b)

∇Q=ρ hMN=mn = ∂ρhmn − e−2Ahρ(m∂n)e
2A , (2.20c)

where ∇̃ρ is the purely four-dimensional, background-covariant derivative built from Γ̃µ
νπ, and

∇Q=q hMN=µν = ∂qhµν − hµνe
−2A∂qe

2A , (2.21a)

∇Q=q hMN=mν = ∇qhmν −
1

2
hmνe

−2A∂qe
2A , (2.21b)

∇Q=q hMN=mn = ∇qhmn , (2.21c)

where ∇q is the purely internal, background-covariant derivative built from Γm
np. Let us now

compute the components of �
(0)
D hMN , where we recall that �

(0)
D = gPQ∇P∇Q is built from

the background metric. With �̃4 = g̃µν∇̃µ∇̃ν , and the internal Laplacian ∆M = gpq∇p∇q,
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we obtain

�
(0)
D hMN=µν = e−2A�̃4hµν +∆Mhµν − hµν∆M ln e2A (2.22a)

− e−2A∇̃(µhν)mgmn∂ne
2A − e−2Ag̃µνhmng

mrgnp∂re
2A∂pe

2A ,

�
(0)
D hMN=µn = e−2A�̃4hµn +∆Mhµn + e−2Agpq∇phµn∂qe

2A (2.22b)

−
3

2
e−4Ahµmgmp∂pe

2A∂ne
2A − e−4Ahµng

pq∂pe
2A∂qe

2A −
1

2
hµn∆M ln e2A

− e−4Ag̃πρ∇̃πhµρ∂ne
2A + e−2Agpq∂µhnp∂qe

2A ,

�
(0)
D hMN=mn = e−2A�̃4hmn +∆Mhmn + 2e−2Agpq∂pe

2A∇qhmn − 2e−4Agpq∂pe
2Ahq(m∂n)e

2A

− 2e−4Ag̃πρ∇̃πhρ(m∂n)e
2A +

e−4A

2
h4∂me2A∂ne

2A . (2.22c)

The components of the background Riemann tensor are also computed: they are given by

R(0)P
MN=µν S = δσSδ

P
π

(

R̃π
µνσ + 1

2e
−2Aδπ[σ g̃ν]µg

pq∂pe
2A∂qe

2A
)

(2.23a)

+ δsSδ
P
n

1
2 g̃µνg

np
(

∇s∂pe
2A − 1

2e
−2A∂pe

2A∂se
2A

)

,

R(0)P
MN=µm S = δσSδ

P
n

1
2 g̃σµg

np
(

−∇m∂pe
2A + 1

2e
−2A∂pe

2A∂me2A
)

, (2.23b)

R(0)P
MN=mn S = δsSδ

P
p R

p
mns (2.23c)

+ δσSδ
P
π

1
2δ

π
σ

(

∇n(e
−2A∂me2A) + 1

2e
−4A∂me2A∂ne

2A
)

.

The components MN of the wave equation (2.17) thus read

µν : e−2A�̃4hµν +∆Mhµν − hµν∆M ln e2A (2.24a)

− 2R̃π
µνσg

σρhρπ − 1
2e

−2Agpq∂pe
2A∂qe

2A
(

g̃νµh4 − hνµe
−2A

)

− e−2A∇̃(µhν)mgmn∂ne
2A − g̃µνhmng

mrgnp
(

∇r∂pe
2A +

1

2
e−2A∂re

2A∂pe
2A

)

= 0 ,

µn : e−2A�̃4hµn +∆Mhµn + e−2Agpq∇phµn∂qe
2A + e−2Ahµmgmp∇n∂pe

2A (2.24b)

− 2e−4Ahµmgmp∂pe
2A∂ne

2A − e−4Ahµng
pq∂pe

2A∂qe
2A −

1

2
hµn∆M ln e2A

− e−4Ag̃πρ∇̃πhµρ∂ne
2A + e−2Agpq∂µhnp∂qe

2A = 0 ,

mn : e−2A�̃4hmn +∆Mhmn + 2e−2Agpq∂pe
2A∇qhmn − 2e−4Agpq∂pe

2Ahq(m∂n)e
2A (2.24c)

− 2Rs
mnpg

pqhqs − 2e−4Ag̃πρ∇̃πhρ(m∂n)e
2A − h4∇n(e

−2A∂me2A) = 0 .

These equations have been obtained in the D-dimensional de Donder gauge (2.16). This last
condition also splits as follows:

e−2Ag̃πρ∇̃πhρν −
1

2
e−2A∇̃ν h̃4 −

1

2
∇νhN + gpq∇phqν + 2hpνg

pqe−2A∂qe
2A = 0 , (2.25a)

gpq∇phqr −
1

2
∇rhN −

1

2
e−2A∇rh̃4 + gπρ∇̃πhρr + 2hmrg

mpe−2A∂pe
2A = 0 . (2.25b)

In view of the above wave equations, let us make a first comment on the idea of getting
an amplitude damping. An exponential decrease of the wave amplitude along its propagation
would be due to a dissipative term in the four-dimensional wave equation (2.24a), i.e. a term
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of the form ∇̃µhπρ times an internal quantity. There is no such term in (2.24a);3 in fact,
with diffeomorphism invariance, linearization and the form of the background, one can show
that such a term cannot be present. In other words, extra dimensions do not lead to a
four-dimensional amplitude damping.

Before analysing further these equations in the next section, let us compute the cosmo-
logical constants using the above results. First, with the cosmological constant Λ4 = 1

4R̃4,
the Riemann tensor is fixed as follows by considering our four-dimensional space-time to be
maximally symmetric:

R̃π
µνσ =

Λ4

3
(δπν g̃µσ − δπσ g̃µν) , (2.26)

giving for (2.24a)

R̃π
µνσg

σρhρπ = e−2AΛ4

3

(

hµν − h̃4 g̃µν

)

. (2.27)

Second, thanks to the components of the background Riemann tensor (2.23a), (2.23b) and

(2.23c), we compute the Ricci tensor, and scalar R
(0)
D = −gMNR(0)P

MNP . The D-dimensional
cosmological constant is then given by

2D

D − 2
ΛD = R

(0)
D = e−2AR̃4 +RM − e−4A(∂e2A)2 − 4e−2A∆Me2A , (2.28)

where (∂e2A)2 = gpq∂pe
2A∂qe

2A and RM is the purely internal background Ricci scalar built
from gmn. Computing in addition

gµνR
(0)
MN=µν = e−2AR̃4 − 2e−4A(∂e2A)2 − 2e−2A∆Me2A , (2.29)

we obtain the four-dimensional trace of equation (2.7). This eventually gives

4Λ4 = R̃4 =
4

D − 4
e2ARM + 2

D − 2

D − 4
e−2A(∂e2A)2 + 2

D − 8

D − 4
∆Me2A . (2.30)

The D-dimensional and 4-dimensional cosmological constants can then be compared: they
are given by different expressions, namely different combinations of internal quantities, and
further differ by an overall factor of e2A. Therefore, the two cosmological constants can
have different values: in particular, a small e2A would create a hierarchy between the two,
i.e. Λ4 << ΛD. This is the reason why the flat-space-time approximation usually made when
studying gravitational-wave propagation cannot be justified in this D-dimensional context.
Indeed, in four dimensions and for non-primordial gravitational waves, the typical length
scale of variation of the perturbation is much smaller than that of the background, so that
∂2hµν >> Λ4hµν and the equation of motion reduces to the one on Minkowski. In the present
D-dimensional setup, this reasoning breaks down if Λ4 << ΛD,4 so that we are to deal with the
complete D-dimensional equation of motion at first order, considering a generic background
as in (2.5) and (2.18).

3Such a term is present, through a divergence, in the off-diagonal equation (2.24b). hµn being also present
in (2.24a), one may wonder whether this component mixing could not eventually generate a dissipative term
in (2.24a). The number of derivatives is however not the right one for this to happen.

4Note also that hMN varies also along the extra dimensions, leading a priori to different length scales, so
that the comparison of scales is not as simple as in four dimensions.
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3 Equation analysis and effects in four dimensions

We have derived the wave equations (2.24) describing the propagation of gravitational waves
on the general background (2.18), which is the warped product of a four-dimensional space-
time with N extra dimensions. In the present section, we analyse them and determine the
impact of extra dimensions on the four-dimensional wave.

For the sake of simplicity, the warp factor is taken constant from now on, and we relegate
the study of the non-constant case to Appendix A.2. We then set A = 0, since a constant A
can always be recovered by rescaling the four-dimensional metric. Accordingly, we drop the
tilde notation introduced in (2.18) and below, i.e. we identify for instance g̃µν with gµν , etc.
Equations (2.24) then boil down to

µν : �4hµν +∆Mhµν = 2Rπ
µνσg

σρhρπ , (3.1a)

µn : �4hµn +∆Mhµn = 0 , (3.1b)

mn : �4hmn +∆Mhmn = 2Rs
mnpg

pqhqs . (3.1c)

These equations were obtained in the D-dimensional de Donder gauge (2.25), which reads as
follows when A is set to zero:

gπρ∇πhρν + gpq∇phqν −
1

2
∇νh4 −

1

2
∇νhN = 0 , (3.2a)

gπρ∇πhρr + gpq∇phqr −
1

2
∇rh4 −

1

2
∇rhN = 0 . (3.2b)

These gauge conditions together with equations (3.1) will be the starting point for the next two
subsections. As a side remark, note that starting rather with the D-dimensional Transverse-
Traceless gauge discussed in Appendix A.1, one would obtain the same equations of motion
(3.1), but different gauge conditions. The results of the following two subsections would
however remain the same.

Turning to the extra dimensions, we focus on the case of a compact M (without boundary).
The internal Laplacian then admits a discrete orthonormal basis of eigenfunctions denoted
{ωk(y)} of discrete label k, such that ∆M ωk = −m2

k ωk with a real mk. By convention,
m0 = 0. As an example, for M being a flat torus TN , ωk(y) = eik·y and {k} is a set of
N -dimensional real vectors isomorphic to ZN ; another example can be found in [56] with M
being a nilmanifold. The general wave is then developed on this basis as

hMN (x, y) =
∑

k

hkMN (x)ωk(y) , (3.3)

where hkMN are the Kaluza–Klein modes. Indeed, hµν is a scalar from the internal perspective,
and each component of the internal tensors hmν and hmn can be viewed as a function too,
and all of them can then be decomposed on this basis.

Before proceeding further with this mode expansion, we first indicate a few useful proper-
ties of the various modes, starting with the zero-mode. Harmonic functions f on a compact
manifold are constant, as can be viewed by integrating f∆Mf . As a consequence, ω0 is con-
stant and unique. More precisely, the zero-mode is always the constant part of hMN (with
respect to ym). Another manner of obtaining the zero-mode of a function is to integrate it
over M. Indeed, integrating an expansion over the basis {ωk} only leaves the zero-mode
because any ωk 6=0 integrates to zero; the latter can be seen by integrating to zero the total
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derivative ∆M ωk = −m2
k ωk. As a consequence, any total derivative ∇mXm has a vanishing

zero-mode since it integrates to zero (by the Gauss theorem). This property will be useful in
the following.

More generally, to extract the k-mode of a function or a scalar equation, one uses the
orthonormality of the basis, namely multiplying an expansion by ω∗

k and integrating over M.
For instance, using the expansion (3.3) for hµν in (3.1a) and the orthonormality, one gets for
each mode

�4h
k
µν −m2

k h
k
µν = 2Rπ

µνσg
σρhkρπ . (3.4)

We will proceed analogously in the coming subsections. This mode decomposition leads to
a splitting of the above equations of motion and gauge conditions into an infinite tower of
equations and gauge conditions. In the next subsection we focus on the zero modes, whereas
subsection 3.2 will deal with the higher, Kaluza–Klein modes. The former will be understood
as massless modes, while the latter will correspond to massive ones.

Finally, another background specification, to be made in the coming subsections, will be
to consider the four-dimensional space-time to be Minkowski. This can be understood as a
physical approximation, which suits the currently observed gravitational waves: in short, on
the distances probed, the curvature of our universe is negligible; see also the discussion below
(2.30). Considering Minkowski will in addition yield various technical simplifications. We now
turn to the study of the various modes.

3.1 Massless mode as a modified four-dimensional gravitational wave

Let us address the zero-modes, that is, we study the equations of motion (3.1) and the
gauge conditions (3.2) for the ym-independent contributions, following the procedure described
above.

It is useful to analyse the gauge conditions first. Thanks to the previously discussed
properties, the conditions (3.2) are greatly simplified on the zero modes. From (3.2a), we
obtain

gπρ∇πh
0
ρν −

1

2
∇νh

0
4 =

1

2
∇νh

0
N , (3.5)

and we will come back to (3.2b). It is crucial to note that the four-dimensional zero-mode
h0µν fails to satisfy the four-dimensional de Donder gauge condition in (3.5), because of the
presence of h0N ≡ (gmnhmn)

0, the zero-mode of the internal trace. In spite of the system of
equations (3.1) being diagonal regarding the various hMN components, those actually mix
and are related to each other through the above gauge conditions. This is the source of the
effect which we unveil in this subsection, namely, the four-dimensional gravitational wave h0µν
is modified by the presence of h0N .

To identify the effect clearly we now approximate, as mentioned previously, the four-
dimensional space-time to be Minkowski. We set gµν = ηµν so that, in particular, the right-
hand side of equation (3.1a) vanishes. Combining the background equations (2.7), (2.28) and
(2.30), one sees that the restriction to Minkowski forces the background internal geometry to be
Ricci flat, i.e. Rmn = 0. Interestingly, this Ricci tensor appears when tracing equation (3.1c)
by a contraction with gmn: the resulting right-hand side then vanishes. Thus we can focus
only on the wave h0µν together with the internal trace h0N , since they decouple completely
from the rest. The components h0µν and h0N can also be checked not to appear in (3.2b),
which justifies why the study of this second gauge condition can be omitted. As the internal
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Laplacian term has no zero mode in equations (3.1), we are left with the following system:

�4h
0
µν = 0 ,

�4h
0
N = 0 ,

(3.6)

(3.7)

together with (3.5). One recognises the usual equations of motion for a free massless graviton
(as for a standard gravitational wave) along with a free massless scalar field on Minkowski
space-time. However, as we will now detail, the gauge condition (3.5) will crucially change
the polarization properties of the gravitational wave h0µν .

Before proceeding any further, it is instructive to perform the counting of degrees of
freedom and determine the residual gauge invariance for the zero modes. We will only discuss
the system formed by h0N together with h0µν . Firstly, it is easy to see that the former is a
scalar field. Indeed, from the transformation rule (2.6) for the generic wave, one sees that the
internal trace hN transforms according to hN → hN +2gmn∇mξn, which implies that the zero
mode h0N does not transform: δh0N = 0 (as explained after (3.3), ∇m(gmnξn) has a vanishing
zero-mode). For h0µν , taking the zero-mode of the full transformation rule δhµν = 2∂(µξν)
shows that h0µν transforms as a spin-2 field with infinitesimal gauge parameter ξ0ν :

δh0µν = 2∂(µξ
0
ν) . (3.8)

However, since the gauge condition (3.5) deviates from the usual de Donder gauge condition
in four dimensions, one may ask whether the components h0µν , although they transform as
a graviton and obey the standard equation (3.6), really are to be regarded as a graviton.
The key observation is that, since h0N does not transform, the condition (3.5) leaves one with
the exact same residual gauge freedom as when imposing the usual de Donder gauge in four
dimensions, that is, �4ξ

0
µ = 0. This is seen by taking a gauge variation of (3.5) following

(3.8): the right-hand side of (3.5) does not transform and yields zero, while the left-hand side
yields �4ξ

0
µ. Note that the residual gauge condition �4ξ

0
µ = 0 ensures that the equation of

motion (3.6) is gauge invariant, as it should.

We conclude that h0µν obeying (3.6) is indeed a four-dimensional spin-2 field, which is
however coupled to the scalar field h0N in an unusual way, namely, via the condition (3.5)
inherited from the higher-dimensional de Donder gauge imposed in (2.16). In particular it is
then clear that the four-dimensional wave carries 2 degrees of freedom. Indeed, the standard
counting goes through despite the non-trivial right-hand side in (3.5): the symmetric tensor
h0µν originally has 10 independent components, from which the condition (3.5) subtracts 4.5

The residual gauge invariance �4ξ
0
µ = 0 can be further used to remove 4 additional compo-

nents, yielding the usual 2 degrees of freedom of a massless graviton. In the following we will
perform this reduction explicitly.

We now show precisely how the presence of h0N in the condition (3.5) affects the polarization
properties of the gravitational wave h0µν . In order to do this we expand the four-dimensional
wave as well as the scalar h0N on a basis of real solutions to (3.6) and (3.7), namely plane-waves

5In the condition (3.5) the right-hand side may be viewed as a source: the left-hand side, instead of being
set to zero, is set to some non-zero, fixed quantity which does not transform. Setting this “source” to zero,
which is consistent with equation (3.7), turns (3.5) into the usual de Donder condition in four dimensions.
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with a wave vector kρ that is light-like

h0µν =

∫

d4k ekµν Re{e
ikρx

ρ

} , (3.9a)

h0N =

∫

d4k fk
N Re{eikρx

ρ

} , (3.9b)

with a sum over kρk
ρ = 0. The complex exponential is projected by Re on its real part. For

simplicity we do not consider the imaginary part and its coefficient, which forms another set
of independent basis elements: those would lead to a similar effect as the one we point-out.
Plugging the above expansion into condition (3.5) (which amounts to a Fourier transform),
we obtain for each kρ

ekµνk
µ −

1

2
ek4kν =

1

2
fk
Nkν , (3.10)

where ek4 ≡ ηµνekµν . Since the wave vector is light-like, we now choose kρ = (ω/c, 0, 0, k) with
the angular frequency ω = kc ≥ 0, which amounts to rotating our coordinate system so that
the wave h0µν propagates in the x3 direction. Note that we only consider the left-traveling
(or retarded) wave. For convenience let us set here c = 1, ω = 1, and drop the label k;
we will restore them later. We thus specify the third equation above for ν = 0, 1, 2, 3 with
kρ = (1, 0, 0, 1), which yields

e00 + e03 +
1
2e4 = −1

2fN , (3.11a)

e01 + e13 = 0 , (3.11b)

e02 + e23 = 0 , (3.11c)

e33 + e03 −
1
2e4 =

1
2fN . (3.11d)

We now fix the gauge further using the residual gauge invariance δh0µν = 2∂(µξ
0
ν) with

�4ξ
0
ν = 0. Thanks to the latter, we also expand the gauge parameter ξ0ν in real plane-

waves with light-like wave vectors kρ, as ξ0ν =
∫

d4k χk
ν Im{eikρx

ρ
}, where Im projects on the

imaginary part. The h0µν transformation rule then reads δekµν = 2k(µχ
k
ν) for each kρ, where χk

ν

is arbitrary. We drop again the k labels from now on. By inspection of this transformation
rule one sees that χν can always be fixed so as to set e0ν = 0. The conditions (3.11) above
then imply that e3i = 0 for i = 1, 2, 3, as well as e4 = e11 + e22 = −fN . The polarization
matrix eµν eventually reads

eµν =









0 0 0 0
0 e11 e12 0
0 e12 −e11 − fN 0
0 0 0 0









, (3.12)

where the gauge is now completely fixed. Note that this result was mentioned in [40], in the
simplest setup where M is a circle. We now provide in the following further interpretation of
this effect.

To start with, the plane-wave can be rewritten as

h0ab(t, x
3) =

(

h+ − 1
2fN h×

h× −h+ − 1
2fN

)

ab

cos(ω(t− x3/c)) ≡ h×ab + h+ab + h#

ab (3.13)
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where a, b = 1, 2 and we have restored the speed of light c and the angular frequency ω. This is
the modified gravitational wave in a gauge analogue to the Transverse-Traceless gauge. How-
ever since the field is obviously not traceless, we refer to the above gauge as the Transverse-
Trace-fixed gauge, the trace being fixed and given by −fN . As anticipated, this gravitational
wave carries 2 degrees of freedom, the two free constants h+ and h×, while fN is a fixed, inde-
pendent quantity. The latter gives rise to a so-called breathing mode h#

ab, which is transverse
and exists on top and independently of the two standard polarization modes h×ab and h+ab.
Generating a breathing mode is an effect that has been noticed before in other contexts, for
instance in alternative theories of gravity. A review on this topic can be found in [57].6 In our
setup the presence of this extra mode is a consequence of having extra compact dimensions
in the universe.

The effect of the breathing mode h#

ab is most easily understood by looking at the stretching
and shrinking of space in the transverse plane induced by the above gravitational wave, with
fN 6= 0. The standard textbook derivation remains formally the same, using the well-known
equation for the geodesic deviation in the proper detector frame:

Ëa =
1

2
ḧ0abE

b , (3.14)

where dots denote time-derivatives and Ea = xa0+∆xa is the transverse-plane deviation of one
test-point geodesic with respect to another (we refer to [58] for details). From the above matrix
(3.13), the equation (3.14) tells us that the breathing mode yields the following deformation
of distances in the transverse plane x3 = 0:

∆x1(t) = −1
4fN x10 cos(ωt) , (3.15a)

∆x2(t) = −1
4fN x20 cos(ωt) . (3.15b)

We further comment on the observability of this effect in Section 4.

3.2 Massive modes as high-frequency signals

Let us now turn to the four-dimensional higher modes hk 6=0
µν . We study the equations of motion

(3.1) and the gauge conditions (3.2) for the higher Kaluza–Klein modes of the expansion (3.3),
and restrict again the external space-time to be Minkowski, gµν = ηµν . In line with the analy-
sis of the massless wave, where the gauge conditions are non-trivial, we will first comment on
the conditions obeyed by the higher modes and show that they indeed correspond to standard
massive fields. We will then discuss the interpretation of these modes in terms of gravitational
waves.

The equation of motion for the four-dimensional modes reads, from (3.4),

�4h
k
µν −m2

kh
k
µν = 0 . (3.16)

This is the equation for a standard, transverse and traceless graviton of mass mk on Minkowski
space-time, where we set the speed of light c and the reduced Planck constant ~ to 1. However,

6The only theories having a breathing mode as the only extra massless mode with respect to General
Relativity seem to be scalar-tensor gravities [57]. These theories however differ from our setup in many ways.
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the gauge conditions (3.2), when written in terms of hkµν , do not immediately imply that hkµν
is Transverse-Traceless. Rather, (3.2a) reads

∂νhkµν −
1
2∂µh

k
4 = −(gmn∇mhnµ)

k + 1
2∂µh

k
N , (3.17)

and the second gauge condition (3.2b) is left out, anticipating that it will not play any
role. Again note that gmn may generically depend on the internal coordinates ym, so that
(∇mgmnhnµ)

k includes in general different modes hnmν .

It is evident from (3.17) that hkµν does not satisfy a priori a de Donder condition, even less

so a Transverse-Traceless condition. This is to be expected, since in fact hkµν and the other
components enjoy non-trivial gauge variations, namely

δhkµν = 2∂(µξ
k
ν) , (3.18)

obtained as the k-mode projection of the generic gauge variation (2.6), and analogously for
the variations of hkmν and hkmn. The crucial difference with the massless case studied in the
previous subsection is that, in (3.17), the right-hand side now also transforms under a gauge
variation (2.6) of the fields, while in (3.5) the right-hand side did not transform. Actually, the
four-dimensional mode hkµν is massive but it is cast in a Stueckelberg-like formalism [59–61].
In the latter, gauge invariance is introduced for a massive field, which in principle has no
corresponding gauge parameter, and its trace and divergence are non-zero. It is well known
in this setup that one can completely fix the gauge freedom back so as to obtain the usual
formulation of a massive field, that is, a Transverse-Traceless field obeying equation (3.16)
and enjoying no gauge invariance. This is what we prove now.

The first step is to determine the residual gauge invariance allowed by the condition (3.17).
It is sufficient to consider only the latter, as we are interested in hkµν , which will eventually
decouple from the rest. The gauge variation of equation (3.17) reads

�4ξ
k
µ = m2

kξ
k
µ . (3.19)

Note that one can use (3.19) to check that the equation of motion (3.16) is left invariant, as
it should. Now, we are going to fix the above residual freedom completely, by imposing the
Transverse-Traceless condition on hkµν , that is,7

∂νhkµν = 0 , hk4 = 0 . (3.20)

Taking the variation of these equations, it is easy to see that gauge parameters which preserve
the above conditions need to satisfy

�4ξ
k
µ + ∂µ∂

νξkν = 0 , ∂νξkν = 0 . (3.21)

Combining these conditions with one another obviously yields �4ξ
k
ν = 0. This in turn makes

the condition (3.19) boil down to m2
kξ

k
µ = 0, which fixes ξkν to vanish. It is then clear that the

transverse and traceless conditions (3.20) completely fix the four-dimensional gauge freedom,
so that the massive field hkµν no longer enjoys a gauge transformation. Thereby we recover
the familiar formulation of a massive spin-2 field, obeying the conditions (3.20) and satisfying

7One can check straightforwardly that the gauge (3.20) is reachable by a residual gauge transformation
with a parameter obeying (3.19).
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the equation of motion (3.16).

In the gauge (3.20) instead of (3.17), we recover a familiar, transverse and traceless massive
graviton hkµν obeying the equation of motion (3.16) and fully decoupled from the rest. We

now write hkµν as the general solution to the massive Klein–Gordon equation (3.16), i.e. given
in terms of plane-waves as

hkµν =

∫

d4pk e
pk
µν Re{e

ipkρx
ρ

} , (3.22)

where again we consider for simplicity only the real part, and the sum is over wave vectors
pρ
k
= (ωk, ~pk) satisfying the massive dispersion relation

ω2
k = m2

k + ~p 2
k , (3.23)

where ωk > 0 is the angular frequency of the wave. We recall that we have set c = ~ = 1.

Along the lines of the previous subsection, one can now determine the polarization matrix
eµν for each pk. First let us note that the above dispersion relation allows us to choose
pρ
k
= (ωk, 0, 0, 0). This amounts to picking a reference frame traveling along with the field,

so that it appears static. With this choice of pρ
k
, plugging the expansion (3.22) into the

conditions (3.20) implies e0ν = 0 and
∑

i eii = 0, so that the polarization matrix can be
written down as

eµν =









0 0 0 0
0 e11 e12 e13
0 e12 −e11 − e33 e23
0 e13 e23 e33









, (3.24)

which has 5 independent components, as it should. Together they account for the massive
wave hk 6=0

µν , which in the chosen reference frame is rewritten, for each ωk, as

hk 6=0
ij (t) =





h+ − 1
2h

l,# h× hl1
h× −h+ − 1

2h
l,# hl2

hl1 hl2 hl,#





ij

cos(mk c
2 t) (3.25)

where the angular frequency is given by mkc
2, by virtue of (3.23) with c restored. In the above,

h+ and h× are two purely transverse modes, while hl1 and hl2 are two purely longitudinal ones
(see [57] for the definition of the polarization modes). The fifth component, hl,#, is mixed; in
particular, in the plane transverse to x3 it gives rise to a breathing mode. All these massive
modes are part of the original four-dimensional wave hµν(x

µ, ym), and therefore add up to the
(modified) gravitational wave h0µν studied in the previous subsection. We further comment on
the characteristics and observability of these extra signals in Section 4; in particular, we will
see that mk is expected to dominate over |~pk| in (3.23), leading to signals of high frequency.

4 Summary and discussion

In this paper we have addressed the following question from a comprehensive perspective:
can extra dimensions induce unusual effects on gravitational waves in four dimensions, and
if so how are they characterized? In this section we present our results and discuss their
observability.

17



Results and comments

Starting from General Relativity with a cosmological constant in D = 4 + N dimensions on
the most generic, warped space-time geometry satisfying the background equations of motion,
we have derived the wave equations (2.24) for all components of hMN (xρ, ym) from the D-
dimensional linearized wave equation (2.17). We have done so by imposing the de Donder
gauge condition in dimension D and then performing the reduction; we comment on different
gauge choices here after.

In the case of a background with a constant warp factor, approximating the four-dimensional
geometry by Minkowski space-time (yielding a Ricci flat internal manifold), we have focused
on the four-dimensional gravitational wave hµν . This wave has a massless part given by its

zero-mode h0µν and a massive piece given by its non-zero modes hk 6=0
µν , and it differs from usual

gravitational waves obtained from four-dimensional General Relativity in two ways:

1. The massless wave h0µν generically has an extra polarization mode on top of the “plus”
and “cross” modes of General Relativity, namely a so-called breathing mode (3.13), whose
amplitude is determined by a specific scalar combination of the other components.

2. The massive tower hk 6=0
µν of extra waves (3.25) have all six polarization modes turned

on, only five of them being independent, and they add up to the massless wave with a
discrete spectrum of high frequencies.

We explicitly show the zero-mode h0µν to be a free massless spin-2 wave, while the Kaluza–

Klein higher modes hk 6=0
µν satisfy a standard massive equation of motion. The massless wave

being free, let us emphasize that the extra scalar h0N = (gmnhmn)
0 responsible for the mass-

less breathing mode is absent from its equation of motion. Rather, it appears in the gauge
conditions, which we analyze in great detail for both the massless and the massive modes. The
massless wave is found to propagate only two degrees of freedom, in spite of the extra scalar
which modifies its four-dimensional gauge conditions. This extra scalar does not transform
under a gauge transformation, and therefore cannot be removed. The massive waves hk 6=0

µν

propagate five independent degrees of freedom each, but have all polarization modes turned
on, with frequencies satisfying a massive dispersion relation.

Another important comment is that our results have been obtained by imposing the de
Donder gauge in D dimensions. However, as can be checked from the expressions of Ap-
pendix A.1, the above two results would remain unaltered if one starts with the D-dimensional
Transverse-Traceless gauge instead. One could also proceed without imposing any gauge choice
in D dimensions. This would lead, a priori, to more complicated equations of motion for the
zero-modes even in the Minkowskian, constant-warp factor case. Then imposing the four-
dimensional de Donder or Transverse-Traceless gauge would yield couplings among the fields
in the equations of motion, and in particular between h0µν and h0N . It would be interesting to
check that this leads to the same effect.

Finally, more involved cases have been studied, namely considering a non-constant warp
factor in Appendix A.2, or a more general D-dimensional Lagrangian going beyond General
Relativity in Appendix B. In both cases, the complete equations of motion have been derived,
and corresponding new effects and complications have been discussed. In particular, for a
non-constant warp factor, an interesting observation is that the four-dimensional Transverse-
Traceless gauge conditions emerge naturally from the extra equations of motion, if one sets
to zero the extra (vector and scalar) wave components. Despite the nice resulting framework,
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the four-dimensional equation remains difficult to solve: there is no simple decoupling of the
various Kaluza–Klein modes, not even of the zero-mode. We refer to the appendices for more
details. We now discuss to what extent the two above effects can be observed.

Observability of the effects

We now focus in more detail on the physics associated with the two effects mentioned above.
We explain why they could not have been detected so far, and discuss to what extent they
could be observed in the future.

As reported, the first effect consists in having a breathing mode in the massless four-
dimensional gravitational wave (3.13). This is one of the six possible polarization modes, and
one of the four that General Relativity does not predict, and is thus symptomatic of new
physics [57]. The breathing mode deforms the space in a specific manner described by (3.15),
giving a distinct signature. To observe it, one needs to disentangle it from the other two,
standard, transverse modes, which requires at least three, differently oriented detectors [57].
Currently, only the LIGO detector is active. In addition, its two sites have almost aligned
arms, which maximizes its sensitivity but allows to detect only one polarization mode. More
detectors should nevertheless be available in a near future.

Observing this breathing mode would also require its amplitude to be high enough. This
amplitude is given in (3.13) for each plane wave by fN , a quantity related to the four-
dimensional Fourier coefficient of h0N = (gmnhmn)

0. The latter is the zero-mode of the trace
along the extra dimensions, meaning the constant part or mean value of this trace with respect
to the extra coordinates. Then, for the breathing mode amplitude to be non-zero, one first
needs some non-zero hmn to be emitted. This depends on the physics of the source in the
extra dimensions, on which we have no control here. Assuming some non-zero hmn, one may
wonder about taking the trace, since one is used in four-dimensional General Relativity to
get traceless waves. The discussion of Section 3.1 makes it however clear that in our setup,
neither the above internal trace hN nor the four-dimensional one need to vanish; in particular
we showed that h0N cannot be gauged away. Finally, one may wonder about the consequences
of considering the zero-mode. If the internal metric gmn is constant as for a flat torus, one
considers the zero-mode of hmn itself in the trace h0N = δmnh0mn. Whether the latter vanishes
depends again on unknown physics of the source, but we may still draw an analogy with known
four-dimensional emissions, e.g. by currently observed black hole mergers. In standard models,
those produce a zero-mode of the four-dimensional wave. The latter is sometimes referred to
as the gravitational wave memory effect [62], which is less studied than the oscillatory part
of the wave, perhaps because it is currently not detectable. This analogy plays in favor of
an h0mn being produced. Overall, we conclude that there is no physical reason for h0N to be
vanishing, generically leading to a non-zero breathing mode. An estimate of its amplitude
remains however out of the scope of the present study.

We turn to the second effect, corresponding to extra four-dimensional waves, that have
several unusual features depicted through (3.25). First, they have all six polarization modes
turned on (even if only five of them are independent). More importantly, all these polarization
modes have in each plane wave the same angular frequency ω satisfying the massive dispersion
relation (3.23), where the label k is dropped in the following. While such a dispersion relation is
standard for a massive bosonic particle, it is unusual for a wave, even more so for a gravitational
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one; we will come back to the difference between the two.8 In our framework, we are going to
argue that the mass m is dominant in the dispersion relation (3.23), leading to signals of high
frequency fixed by m.

It is instructive to start by considering the background to be Minkowski times a flat torus
TN . From (2.17) where the Riemann tensor vanishes, the D-dimensional gravitational wave
hMN is then massless and can be decomposed into plane waves with D-dimensional light-like
wave vector kM = (ω,~k3, ~kN ), satisfying ω2 = ~k 2

N +~k 2
3 . Looking at the four-dimensional wave

hµν and comparing to (3.23), one gets that ~k23 = ~p2 while m2 = ~k 2
N . The latter can also be

obtained as described above (3.3) by considering the Laplacian eigenvalue of ei~kN ·~y. As for
a standard massless wave, the vector ~k3 corresponds to the Minkowski spatial components
of the wave vector, and is thus associated to four-dimensional physics. For instance, physics
of black hole mergers in four dimensions have typical length scales leading to gravitational
waves of specific wave length λ4. The latter enters the wave vector as |~k3| = 2π/λ4. In turn,
the vector ~kN can be viewed as an internal momentum, and it is quantized because the torus
is compact: each of its components along one circle of radius r is given by an integer times
2π/r. For an average radius rN , we get an estimate |~kN | ≃ 2π/rN , which then also holds
for the mass m. Considering more general backgrounds, these features remain true for m:
it is quantized, because the spectrum of the Laplacian on a compact manifold is discrete,9

and it is given by the inverse of a typical internal length, even though the precise expression
depends on the actual geometry. We conclude that the competition between m2 and ~p 2 in
the dispersion relation (3.23) amounts to a comparison between the wave length λ4, a typical
four-dimensional length scale, and the typical internal length rN . As we will confirm explicitly
below, rN ≪ λ4 so that m2 ≫ ~p 2. This implies that ω is fixed by m, and the corresponding
frequency is high compared to that associated with λ4, i.e. to the one of the massless wave.
In addition, the quantization of m, related to that of the Laplacian spectrum and thus to the
label k dropped so far, leads to a discrete set of frequencies.10 In summary, there is a discrete
set of extra signals hkµν , each of them dominated by a unique angular frequency ωk, which is
high compared to that of the massless wave, and fixed by the Kaluza-Klein mass mk.

We now compute an estimate of these frequencies. We infer from above that such a
frequency is given by ν = ω/(2π) = mc2/(2π~) = c/rN , where we restored the dependence on
c and ~. We then need an estimate of the typical internal length rN ; a review on this topic can
be found in [21]. Current bounds from table-top experiments or missing energies in particle
accelerators are rN . 10−4 m. Naively, this seems a high value for an upper bound, with
respect to e.g. what would correspond to the LHC energy. But we recall that in the picture of
a three-brane, presented in the Introduction, only gravity would probe the extra dimensions,
while particles of the standard model would be confined to our four-dimensional space-time.
Both sectors are in addition weakly coupled to each other. This value gives a lower bound for
the frequency of ν ∼ 1012 Hz, which can still evolve according to the considered model. The
ADD models mentioned in the Introduction use n extra dimensions to explain the hierarchy
between the Planck mass Mp and another fundamental mass scale like the electroweak one

8Note that the bound on the graviton mass, recently improved by LIGO, does not apply to waves h
k6=0

µν

corresponding to Kaluza–Klein modes, as mentioned in [58]. Rather, it applies to our h
0

µν , which is massless
in our setup.

9Examples of spectra on Calabi–Yau manifolds can be found in [63].
10Such a relation between frequencies of gravitational waves and Kaluza–Klein masses was already mentioned

in [43] where a specific Randall–Sundrum setup was considered. We comment on the analysis, partially
numerical, of this paper at the end of Appendix A.2.
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M∗, through the formula (Mp/M∗)
2 = (M∗c/(2π~))

n rnN . For M∗ = 1TeV.c−2, one gets that
n = 1 extra dimension is excluded, n = 2 corresponds approximately to the above bound, and
n = 6, as in string compactifications with three-branes, gives rN ∼ 10−13 m, i.e. a frequency
ν ∼ 1021 Hz. In any case, these frequency values are much higher than the typical one of the
recently observed gravitational waves, around 150Hz. They are also much higher than the
upper sensitivity bound of LIGO, of the order of 103-104 Hz. In addition, future detectors
seem to be planned, rather, to probe lower frequencies. This disfavors the direct detection
of signals with such high frequencies, which would require a new type of apparatus. If such
a detector were available, however, one could hope for a very clean signal, since there is no
known astrophysical process emitting gravitational waves with frequencies much greater than
103 Hz. Such high frequencies may thus be clear symptoms of new physics.

Let us make some final comments. There is a crucial difference between the above extra
signals and a massive bosonic particle, preventing us from considering these gravitational
waves as Kaluza–Klein gravitons. Classically, a particle is a localized object, that would
be detected at a definite time whenever it arrives on Earth. This does not hold for waves,
which can be very spread-out objects. Realistic gravitational waves are emitted continuously
for a long time, by e.g. black hole binaries getting closer to each other, increasing the wave
amplitude. They are then detected only when their amplitude is high enough. This brings us
to comment on the amplitude of the extra signals. A priori, we have no knowledge about it, as
it depends on unknown physics. However we can still make the following remark. The energy
of a gravitational wave is proportional to its amplitude times its frequency. Emitting signals
of high frequency would then require an important energy, unless the amplitude is low. We
deduce that for physical waves, the higher ωk gets, the lower the amplitude is likely to be. In
principle, this does not prevent the first few modes hkµν from having a reasonable amplitude.
Observing such a discrete set of high frequency signals, in any polarization mode, would be a
very distinct signature.
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A Further analysis of the equations

A.1 Equations in the Transverse-Traceless gauge

In the main text, we have worked with the D-dimensional de Donder gauge (2.16). For
completeness, we present here a standard refinement of the latter, namely the D-dimensional
Transverse-Traceless (TT) gauge:

gPQ∇
(0)
P hQN = 0 , hD = 0 . (A.1)

To implement this D-dimensional gauge in the three wave equations (2.24a), (2.24b) and
(2.24c), we first compute, using formulas of Section 2.2,

hD = 0 ⇔ e−2Ah̃4 + hN = 0 , (A.2a)

gPQ∇
(0)
P hQν = 0 ⇔ e−2Ag̃πρ∇̃πhρν + gpq∇phqν + 2hνqg

qpe−2A∂pe
2A = 0 , (A.2b)

gPQ∇
(0)
P hQr = 0 ⇔ e−2Ag̃πρ∇̃πhρr + 2e−2Ahrqg

qp∂pe
2A −

1

2
h̃4e

−4A∂re
2A (A.2c)

+ gpq∇phqr = 0 .

Those conditions are the analogue to the de Donder ones (2.25a) and (2.25b). The three wave
equations then become, in the D-dimensional TT gauge,

µν : e−2A�̃4hµν +∆Mhµν − hµν∆M ln e2A (A.3a)

− 2R̃π
µνσg

σρhρπ − 1
2e

−2Agpq∂pe
2A∂qe

2A
(

g̃νµh4 − hνµe
−2A

)

− e−2A∇̃(µhν)mgmn∂ne
2A − g̃µνhmng

mrgnp
(

∇r∂pe
2A +

1

2
e−2A∂re

2A∂pe
2A

)

= 0 ,

µn : e−2A�̃4hµn +∆Mhµn + e−2Agpq∇phµn∂qe
2A + e−2Agpq∇phqµ∂ne

2A (A.3b)

+ e−2Ahµmgmp∇n∂pe
2A − e−4Ahµng

pq∂pe
2A∂qe

2A −
1

2
hµn∆M ln e2A

+ e−2Agpq∂µhnp∂qe
2A = 0 ,

mn : e−2A�̃4hmn +∆Mhmn + 2e−2Agpq∂pe
2A∇qhmn + 2e−4Agpq∂pe

2Ahq(m∂n)e
2A (A.3c)

− 2Rs
mnpg

pqhqs + 2e−2Agpq∇phq(m∂n)e
2A + e−2AhN∇n∂me2A = 0 .

The four-dimensional component hµν is not present in the two equations (A.3b) and (A.3c).
The dynamics of hµn and hmn thus seem to decouple; however, one should keep in mind the
coupling present through the gauge conditions (A.2a), (A.2b) and (A.2c). Still, the contribu-
tions of hµn and hmn can be viewed as source terms in the equations describing the dynamics
of hµν . As a side remark, note that further constraints on hµn and hmn seem obtainable by
tracing (A.3a).

A.2 The case of a non-constant warp factor

In the main text, we have considered the case of a constant warp factor. Let us come back here
to the study of the wave equations (2.24a), (2.24b) and (2.24c), obtained in the D-dimensional
de Donder gauge, without assuming a constant warp factor. They display an intricate mixing
of hµν with the vector and scalar components, making the system of equations involved. We
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are eventually interested in the four-dimensional dynamics, and hence in the following we
focus on a particular type of solutions, that is,

hµn = 0 , hmn = 0 . (A.4)

On top of the simplification, there are two reasons for considering (A.4). Firstly, imposing
this condition, the two equations of motion (2.24b) and (2.24c) boil down to

g̃πρ∇̃πhρν ∂ne
2A = 0 , (A.5a)

h̃4 ∇n∂m ln e2A = 0 . (A.5b)

Tracing the last equation yields ∆M ln e2A, and on a compact manifold this Laplacian vanishes
if and only if ln e2A is constant. Considering a non-constant warp factor then makes these
equations equivalent to

g̃πρ∇̃πhρν = 0 , h̃4 = 0 , (A.6)

i.e. the four-dimensional TT gauge. This is here equivalent to the D-dimensional TT gauge
(A.1), as the latter reduces to (A.6) when imposing (A.4). Remarkably, this TT gauge fixing
is enforced by the two extra equations of motion, while only the D-dimensional de Donder
gauge had been imposed.11 Eventually, we are left with only the four-dimensional equation
(2.24a).

Secondly, imposing (A.4) means that if one starts, rather, with equations (A.3a), (A.3b)
and (A.3c), where the D-dimensional TT gauge has been imposed, then hµn and hmn act as
sources for hµν , as pointed-out in Appendix A.1. Imposing (A.4) then amounts to considering
the four-dimensional equation (A.3a) without sources, which is a legitimate way to proceed;
consistently, the two equations (A.3b) and (A.3c) vanish when imposing the condition (A.4).

In either case, one is left only with the study of the following four-dimensional equation:

e−2A�̃4hµν +∆Mhµν − hµν

(

∆M ln e2A −
1

2
e−4A(∂e2A)2 +

2

3
e−2AΛ4

)

= 0 , (A.7)

where (∂e2A)2 = gpq∂pe
2A∂qe

2A and (2.27) has been used. Furthermore, using the relation
∆M ln e2A = e−2A∆Me2A − e−4A(∂e2A)2 and redefining the field as h̃µν = e−2Ahµν , the
perturbation with respect to g̃µν instead of gµν , the above equation reads

�̃4h̃µν + e2A∆Mh̃µν + 2gpq∂ph̃µν∂qe
2A + h̃µν

(

3

2
e−2A(∂e2A)2 −

2

3
Λ4

)

= 0 . (A.8)

Finally, the internal metric can be rescaled as gmn = e−2Ag̃mn. This is for the following
reason. The warp factor typically accounts for the backreaction of an extended object such as
a Dp-brane, often present in models with extra dimensions. The Dp-branes also correspond
to solutions of the equations of motion of ten-dimensional type II supergravities. So far,
the background equations were assumed to be satisfied: with a non-constant warp factor,
those would be solved by a Dp-brane solution. Thus we consider a D3-brane-like background
solution, where the brane fills the three external space dimensions, i.e. is transverse to M. This

11Suppose we do not impose the D-dimensional de Donder gauge, and keep the corresponding terms as in
(2.15). Imposing then (A.4), the µn and mn components of the first order Einstein equation do not give any
relevant condition: not a TT gauge nor a de Donder gauge.
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solution requires extracting the warp factor as gmn = e−2Ag̃mn [64]. Note that this solution also
requires ingredients beyond D-dimensional gravity, namely a 5-form flux F 10

5 , that contributes
to the Einstein equation. Such contributions are studied in Appendix B and shown not to affect
the discussion here below (see after (B.17)). Hence we will forego it, and simply rescale the
internal metric. The two corresponding internal Laplacians on a scalar ϕ are then related by

∆Mϕ = e2A∆̃Mϕ+ 1
2(4−D)g̃pq∂pe

2A∂qϕ. Denoting (∂̃e2A)2 = g̃pq∂pe
2A∂qe

2A = e−2A(∂e2A)2,
(A.8) becomes

�̃4h̃µν + e4A∆̃Mh̃µν +
8−D

2
e2Ag̃pq∂ph̃µν∂qe

2A + h̃µν

(

3

2
(∂̃e2A)2 −

2

3
Λ4

)

= 0 . (A.9)

Whether one considers (A.7), (A.8) or (A.9), the next step requires information on the
extra dimensions. We now restrict to M being compact. As presented in Section 3, this allows
one to expand, say h̃µν(x, y), as an infinite sum of Kaluza–Klein modes h̃kµν(x) on an internal
basis as in (3.3). This leads to a set of equations for these various modes. With a constant
warp factor as in Section 3, all the modes of the four-dimensional wave decouple, each one
of them described by independent equations. In particular the zero-mode corresponds to a
massless four-dimensional gravitational wave. Let us now discuss the case of a non-constant
warp factor.

In that case, the modes do not decouple in general. As we will show in detail, this
can be seen by noting the presence of ym-dependent combinations in equation (A.9) such as

(∂̃e2A)2, which prevent one from rewriting the equation as a tower of decoupled equations for
each Kaluza–Klein mode. If one insists in decoupling, considering for example the zero-mode
alone, i.e. a fluctuation h̃µν independent of the internal coordinates, the resulting equation is

�̃4h̃µν −
2

3
Λ4h̃µν = −

3

2
(∂̃e2A)2 h̃µν . (A.10)

The right-hand side is then forced to be ym-independent, meaning precisely that (∂̃e2A)2 has to
be constant. Note that this is very unlikely for a standard non-constant warp factor. However,
if this holds, the above equation would appear to describe a tachyonic field.12 Indeed, the
mass m on a maximally symmetric space-time is defined by the right-hand side of (A.10),

given by m2 h̃µν .
13 This could be taken as a hint that (∂̃e2A)2 being constant, and the above

decoupling, is not a sensible requirement. We now discuss this point in more detail.
For simplicity, let us consider M to be a warped flat torus TN , meaning g̃mn = δmn. The

internal radii of these N circles can be reintroduced by rescaling the ym. Having a compact M
constrains the coordinate dependence of functions, imposing specific “boundary conditions”
related to the compactness: for a torus, the functions have to be periodic. Therefore, they
can be written in full generality as Fourier series. In particular, we have

h̃µν(x, y) =
∑

k∈ZN

h̃kµν(x)e
ik·y . (A.11)

12Note that the same tachyonic behaviour appears when using, rather, (A.7) or (A.8), where for (A.7) we
recall that the Laplacian of a function on a compact manifold is negative or zero.

13With such an unphysical mass definition, unitary scalars on an anti-de Sitter space-time are allowed to
have negative m

2 by the Breitenlohner–Freedman bound (an analogue on de Sitter is discussed in [65, 66]).
However, it should be noted that it is not the case for massive spin-2 fields, which must have strictly positive
m

2, see e.g. the review [67].
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Each eik·y is also an eigenmode of the Laplacian, and this decomposition is the flat-torus
version of (3.3). One should now use the mode expansion (A.11) in (A.9). The result is
however involved and eventually, one cannot easily decouple the various modes. In order to
illustrate this non-decoupling, let us consider equation (A.10) for a field hµν depending on the
internal coordinates. With respect to the full equation (A.9) we are missing two terms, which
however would only complicate the analysis. Using the expansion (A.11), equation (A.10)
becomes

∑

k

eik·y

(

�̃4h̃
k
µν −

2

3
Λ4 h̃

k
µν

)

+
∑

k

h̃kµνe
ik·y 3

2
(∂̃e2A)2 = 0 . (A.12)

The fact that (∂̃e2A)2 is y dependent, i.e. not constant, makes the last term of (A.12) different
from the first two: it is not written as a Fourier series. To extract from it a Fourier coefficient,
we proceed as follows. We multiply (A.12) by e−in·y with a fixed n ∈ ZN , and integrate over
the torus. For a function f(x) depending on four-dimensional coordinates only, one has

∫

dy ei(k−n)·yf(x) = δ(k− n)f(x) . (A.13)

This applies to the first two terms of (A.12), where the δ-function in the sum over k fixes k

to n. We deduce that

�̃4h̃
n
µν −

2

3
Λ4 h̃

n
µν +

∑

k

h̃kµν F (k− n) = 0 ∀ n , (A.14)

where

F (k− n) =
3

2

∫

dy ei(k−n)·y (∂̃e2A)2 (A.15)

is the (k−n) Fourier coefficient of the quantity of interest. One can shift the sum to eventually
obtain the following equation for the nth mode, in terms of the Fourier coefficients F (k):

�̃4h̃
n
µν −

2

3
Λ4 h̃

n
µν +

∑

k

h̃n+k
µν F (k) = 0 . (A.16)

The non-decoupling is well-illustrated by the above equation: due to the last term therein, all

the Kaluza–Klein modes enter a priori all equations, so they are completely mixed. If (∂̃e2A)2

were constant, only F (0) would contribute, simplifying (A.16) to

�̃4h̃
n
µν −

2

3
Λ4 h̃

n
µν + h̃nµν F (0) = 0 . (A.17)

All modes would then decouple, and the zero-mode would be tachyonic as argued earlier.14

However, (∂̃e2A)2 is a priori non-constant, yielding other non-zero F (k), hence the mixing.
For instance, one has for the zero-mode and the nth mode

�̃4h̃
0
µν −

2
3Λ4 h̃

0
µν + h̃0µν F (0) + h̃nµν F (n) +

∑

k 6=0,n

h̃kµν F (k) = 0 , (A.18a)

�̃4h̃
n
µν −

2
3Λ4 h̃

n
µν + h̃nµν F (0) + h̃0µν F (−n) +

∑

k 6=0,−n

h̃n+k
µν F (k) = 0 . (A.18b)

14Non-zero modes would also appear tachyonic through (A.17), but for them one should consider the two
additional terms of (A.9).

25



One could consider a parity-invariant warp factor, so that F (n) = F (−n), and further build
interesting combinations of modes in order to try and diagonalize the system. It remains how-
ever very difficult to handle the overall mixing.15 To conclude, in the case of a non-constant
warp factor we seem to be unable to decouple the modes, or even to isolate one of them. Even
though nice features are indeed present, such as the natural appearance of the four-dimensional
TT gauge conditions (A.6), we believe that the case of a non-constant warp factor deserves a
deeper study, which we leave for future work.

Let us make a final comment on related works, considering as a background the RS1
model [14], discussed in the Introduction. These papers enter precisely the case described
here: the RS1 background fits with our metric (2.18), where the four-dimensional space-time
is Minkowski, there is N = 1 extra dimension, and an explicit, non-constant, warp factor.
The latter is unusual with respect to standard supergravity expressions and brane solutions,
but it remains appealing here. Indeed, A is essentially linear in the extra coordinate, making
the above (∂e2A)2 not constant but still related to the warp factor itself, which may simplify
the previous analysis. Motivated by a detection of Kaluza–Klein gravitons at the LHC, their
mass spectrum has been determined explicitly on this background in [68] (see [69] for a recent
presentation and further references). The method used is similar to the one described here,
namely one starts with the five-dimensional Einstein equation, considers only h̃µν fluctuations
as in (A.4), and looks at the resulting first order four-dimensional equation, which should
correspond to our (A.8) on Minkowski, and decomposes h̃µν in Kaluza–Klein modes. Further,
the authors of [68] find the right decomposition such that the modes decouple, from which
one deduces the Kaluza–Klein mass spectrum. We are nevertheless unable to reproduce their
analysis, because of a mismatch with our equation (A.8): indeed, the equations of [68] do
not include a (∂e2A)2 term. Another work, [43], is motivated by relating the Kaluza–Klein
spectrum to frequencies of gravitational waves. The procedure followed there appears to be
similar, even though it is now the third term in (A.8), i.e. the one with a single ∂e2A, which
seems to be missing. In addition, the spectrum is then determined partly numerically. Overall,
it is unclear to us that these related works solve the issue pointed out above, even for a concrete
background. We hope to come back to the case of a non-constant warp factor, which could
lead to further effects of extra dimensions on the four-dimensional gravitational waves.

B Completing the model

Models with extra dimensions often contain more than D-dimensional General Relativity with
a cosmological constant. In this appendix, we work-out the contributions of this additional
content. We start by considering the following general action:

S =
1

2κD

∫

dDx
√

|gD| (RD + L) , (B.1)

where L generically depends on gD MN , without containing any derivative of this metric. This
captures the previous (2.1) with a cosmological constant, but also e.g. a Yang–Mills term or
more generally standard supergravities in Einstein frame, recalling that field strengths are

15It is also tempting to consider the ansatz h̃
n6=0

µν = 0 and h̃
0

µν 6= 0. But this leads to F (n 6= 0) = 0 in (A.18b),

i.e. to (∂̃e2A)2 being constant.
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fully antisymmetrized tensors in which derivatives of the metric are absent thanks to the
Levi–Civita connection. We introduce the quantities

LMN =
∂L

∂gMN
D

, LD = gMN
D LMN . (B.2)

The no-derivative property allows to derive the Einstein equation without integration by parts,
giving

RMN + LMN −
gD MN

2
(RD + L) = 0 . (B.3)

As in Section 2, we use the trace

RD =
2D

D − 2

(

LD

D
−

L

2

)

, (B.4)

to rewrite the Einstein equation as

RMN + LMN −
gD MN

D − 2
(LD − L) = 0 . (B.5)

We proceed further as in Section 2 and write the above at zeroth and first order in hMN ,

R
(0)
MN + L

(0)
MN −

gMN

D − 2

(

L
(0)
D − L(0)

)

= 0 , (B.6)

R
(1)
MN + L

(1)
MN −

gMN

D − 2

(

L
(1)
D − L(1)

)

−
hMN

D − 2

(

L
(0)
D − L(0)

)

= 0 , (B.7)

where
L
(1)
D = gMNL

(1)
MN − gPQhQRg

RSL
(0)
PS . (B.8)

We now read the Ricci tensor at first order from (2.14). There, we replace R
(0)
MP using the

background Einstein equation (B.6). The first order Einstein equation (B.7) becomes

−
1

2
�

(0)
D hMN +R(0)S

MNP gPQhQS +∇
(0)
(MGN) (B.9)

=
gMN

D − 2

(

L
(1)
D − L(1)

)

− L
(1)
MN + gPQhQ(NL

(0)
M)P .

Finally, the D-dimensional de Donder gauge (2.16), to be considered from now on, makes the
GN term disappear.

Constant warp factor

Let us specify here as in Section 3 to the case of a constant warp factor: we set A = 0 and
drop the tilde. The components µν and mn of (B.9) are then given by

−
1

2
�4hµν −

1

2
∆Mhµν +Rπ

µνσg
σρhρπ =

gµν
D − 2

(

L
(1)
D − L(1)

)

− L(1)
µν + gπρhρ(νL

(0)
µ)π , (B.10a)

−
1

2
�4hmn −

1

2
∆Mhmn +Rs

mnpg
pqhqs =

gmn

D − 2

(

L
(1)
D − L(1)

)

− L(1)
mn + gpqhq(nL

(0)
m)p

, (B.10b)

using that L
(0)
µn = 0. Let us now consider the trace of (B.10b). It involves the Ricci tensor

R
(0)
mn: the latter can be replaced using the background equation of motion (B.6), leading to

−
1

2
�4hN −

1

2
∆MhN = −gmnL(1)

mn +
N

D − 2

(

L
(1)
D − L(1)

)

+
hN

D − 2

(

L
(0)
D − L(0)

)

. (B.11)
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In Section 3, considering a Minkowski background forced us to restrict to a Ricci flat internal
manifold. Here, the additional content allows us to consider more general Minkowski back-
grounds: see e.g. [70] and references therein for explicit examples, and [71] for a whole class
of such backgrounds of type II supergravities. To pursue the same reasoning and get similar
effects as in Section 3, despite a more general background, a simple condition would be to
have the same starting equations. This implies that the right-hand sides of (B.10a) and (B.11)
should vanish. It would be interesting to check whether these two conditions hold, at least
for some example. In addition, note that a Minkowski background implies through (B.6) that

L
(0)
µν =

gµν
D−2(L

(0)
D − L(0)).

General remarks and non-constant warp factor

We now make general remarks on the new contributions to the four-dimensional equation.
As an illustration for those, we focus on the quantity LMN=µν , that gives rise to the term

−L
(1)
µν + gPQhQ(νL

(0)
µ)P in (B.9). A further motivation to analyse this term is that it could

provide a mass term, i.e. a term proportional to hµν , which would be of interest for the
discussion of Appendix A.2, where the warp factor is not constant.

The background quantities should preserve four-dimensional Lorentz invariance, since we
consider an empty space-time. As a consequence, the only non-trivial four-dimensional tensors
are the four-dimensional metric, its volume form, and derivatives thereof. LMN does not

contain derivatives of the metric, so that L
(0)
MN=µν must be proportional to gµν . In addition,

the only possible four-dimensional background fluxes must be forms of degree 4 (or higher),
proportional to the four-dimensional volume form. For instance, if L is a standard abelian

Yang–Mills term, L
(0)
MN=µν vanishes, because the four-dimensional 2-form field strength has

to vanish. We will make use of this general characterization.

We now consider the D-dimensional model to be a ten-dimensional type II supergravity;
for conventions, we refer to [72]. A reason to do so is that this framework provides background
solutions with non-constant warp factor. We will eventually focus on one of them, the D3-
brane. As explained in Appendix A.2, having a non-constant warp factor indicates the presence
of an extended object such as a brane, which in turn sources a flux. Type II supergravities
contain all such ingredients on top of gravity, and are thus suitable models here. Let us first
look at contributions from the Dp-branes and orientifolds Op-planes. Those are p-dimensional
extended objects, here along the three space directions of the four-dimensional space-time
and p − 3 internal dimensions; this property prevents them from breaking four-dimensional
Lorentz invariance. The part of their action that contributes to the Einstein equation is the
Dirac–Born–Infeld (DBI) action. With few assumptions, see e.g. [72], it can be written as

SDBI = constant×

∫

d10x e−φ
√

|g10|
δ(⊥)
√

|g⊥|
, (B.12)

where φ is the dilaton scalar field, g⊥ denotes the metric along the internal transverse directions
to the object and δ(⊥) localizes it in these directions. As a consequence, LMN=µν = 0 for
these ingredients.

The background solution of interest includes D3-branes and O3-planes. For those, the
dilaton is constant and given by eφ = gs. This way, it does not contribute to the Einstein
equation, and one avoids complications related to the string versus Einstein frame. The
only contributions left to study are thus those of fluxes. They enter LMN=µν through their
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components having at least one leg along the four dimensions. As explained previously, this
restricts them to be a form of degree 4 or higher. In type IIB supergravity with D3/O3,
the only appropriate flux is a 5-form denoted F 10

5 . This flux is a crucial ingredient of the
background solution, as being sourced by the D3/O3. It contributes as follows

L = −
g2s
4
|F 10

5 |2 , LMN = −
g2s

4 · 4!
F 10
5 MPQRSF

10 PQRS
5 N , (B.13)

where for a p-form Ap, we denote |Ap|
2 = ApM1...MpA

M1...Mp
p /p!, raising indices with gDMN .

Its background components are either proportional to the four-dimensional volume form, or

purely internal: F
10 (0)
5 = F 4

5 + F5, where F 4
5 = g−1

s vol4 ∧ f5 with an internal 1-form f5. In
the actual solution, f5 = e−4Ade4A = −gs ∗6 F5, even though we will not use this expression.
We deduce

L
(0)
MN=µν = −

|g4|

4 · 3!
εµρπσε

ρπσ
ν |f5|

2 = −
|g4|

4

gµν
g4

|f5|
2 =

1

4
gµν |f5|

2 , (B.14)

where indices are raised with gκλ.

Finally, we evaluate L
(1)
MN=µν , considering only first order fluctuations of the metric, mean-

ing that F 10
5 remains at its background value. Interested in the problem of Appendix A.2, we

also set from now on hµm = hmn = 0 as in (A.4), and get

L
(1)
MN=µν =

|g4|

4 · 2!
εµρπσε

πσ
ντ gρκhκλg

λτ |f5|
2 . (B.15)

Since 1
2εµρπσε

πσ
ντ = 1

g4
(gµνgρτ − gµτgρν), we conclude

L
(1)
MN=µν = −

1

4
(gµνh4 − hµν) |f5|

2 . (B.16)

We finally compute the relevant combination in (B.9) in four dimensions and obtain

− L(1)
µν + gPQhQ(νL

(0)
µ)P =

1

4
gµν h4 . (B.17)

The terms in hµν have been canceled! In this framework and with such a background, we
thus conclude that the additional content does not provide any four-dimensional mass term.
In addition, given the above discussion, it seems to be a fairly general result; in particular, a
similar result holds for an F4 flux.

For completeness, we considered as well first order fluctuations of the flux. For flux fluctu-

ations to contribute to L
(1)
MN=µν in the form of a mass term, they should produce hµν , meaning

be equal in value, as a solution to the first order equation. Despite interesting possibilities
from the flux components partially along four dimensions and along M, with a flux fluctuation
weighting the square root of the hµν fluctuation, we did not find any satisfying solution. Flux
fluctuations are subject to the flux equation of motion and Bianchi identity, which are too
constraining. It would be interesting to analyse further the new contributions to the Einstein
equation.
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