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INTRODUCTION 

 

In this article, with the help of tensor calculus and a little bit of general 

relativity, we shall try to find a genuine physical answer to the very basic question that 

“why the higher dimensions are necessary to work for”, while only three dimensions 

are visible. 

 

In what follows, we shall briefly mention the results from tensor calculus and general 

theory of relativity that are necessary for answering our basic question (For a detailed 

discussions of tensors and general relativity, the reader is referred, respectively, to the references 

[1] and [2]). 
In many areas of mathematical, physical and engineering sciences, it is 

often necessary to consider two types of quantities – namely scalars, which have 

magnitude only. Mass, length, volume, density, work, electric charge, time, 

temperature, etc. are the examples of scalars; and vectors, which have both 

magnitude and direction. Some of the examples of vectors are velocity, 

acceleration, force, momentum. Quite often the notion of vector is not sufficient 

to represent a physical quantity. For example  



(i) the stress at a point depends upon two directions; one normal to the 

surface and the other that represents the force creating stress and thus stress can 

not be described by a vector quantity alone. 

 (ii) the measurement of charge density will depend upon the four 

velocity of the observer and thus can be represented by a vector, while the 

measurement of electric field strength in some direction will not only depends 

upon this direction but also on the four velocity of the observer and thus such 

measurement can not be described by a vector quantity alone. 

 These and similar other examples led to the generalization of a vector 

quantity to a quantity known as tensor. 

 

The concept of tensors has its origin in the development of differential geometry by 

Gauss, Riemann and Christoffel. The systematic development of tensor calculus (also known as 

absolute calculus) as a branch of mathematics is due to Ricci and his pupil Levi-Civita who 

published the first memoir on this subject “Methods de calcul Differential Absolu et leurs 

Applications”. The principal aim of tensor calculus is to investigate the relations which remain 

valid when we move from one coordinate system to another. The laws of physics (or nature) can 

not depend upon the frame of reference which the physicists choose for the description of such 

laws. Tensor analysis become popular when Albert Einstein (1879-1955) used it in his general 

theory of relativity. With the tools of Riemannian geometry, Einstein was able to formulate a 

theory that predicts the behavior of objects in the presence of gravity, electromagnetism and 

other forces. Now a days tensors have many applications in most of the branches of theoretical 

physics and engineering, such as classical mechanics, fluid mechanics, elasticity, plasticity and 

electromagnetism etc. 

 

Transformation of coordinates 

The fundamental notion involved in tensor analysis is that of a geometrical point which is 

defined by means of its coordinates. Thus in plane Euclidean geometry, a point is specified by its 

two Cartesian coordinates (�, �) or its polar coordinates (
, �). Consider two set of variables 

(�, �, . . . , �) and (��, ��, . . . , ��) which determines the coordinates of a point in a � 



dimensional space in two different frames of reference. These two set of variables are related to 

each other by means of equation  

   �� =  ��(�, �, . . . , �), � =  1, 2, . . . , �                                      (1) 
where the functions �� are single-valued, continuous differentiable functions of the coordinates. 

They are also independent. We can solve equation (1) for the coordinates �  and we have 

      �  =  ��(��, ��, . . . , ��),    � =  1, 2, . . . , �                               (2) 

Equations (1) and (2) are said to define a coordinate transformation. If we take the differential 

of equation (1), then 
   ��� = ∑ ����

�� ��!� �� ,    (� = 1, 2, … … �)                                      (3) 

while the differential of equation (2) is 

   �� = ∑ ���
���  ��!� ��� ,   (� = 1, 2, … … �)                                      (4) 

 

Summation convention 

If any index in a term is repeated, then a summation with respect to that  index over the 

range 1, 2, . . . , � is implied. This convention is known as Einstein summation convention. 

According to this convention, instead of the expression   ∑ #�� ,��!�   we simply write #��  and 

equations (3) and (4) with this convention may, respectively, be expressed as  

                                       ��� = ����
�� ��  and �� = ���

��� ���  

Thus summation convention means the drop of summation symbol for the index 

appearing twice in the term. If a suffix (index) occurs twice in a term, once in the upper position 

and once in the lower position, then that suffix (index) is called a dummy suffix (index). Also 

#�&� = #�&� + #�&�+ . . . +#�&� 
and 

#�&� = #�&� + #�&� +  … +  #�&� 

Thus #�&� = #�&� ,  which shows that a dummy suffix can be replaced by another 

dummy suffix not already appearing in the expression. A suffix (index) which is not repeated is 

called a real suffix (index). For example, ( is a real suffix in #�&� . A real suffix can not be 

replaced by another real suffix as #�&� ≠ #�*�. 
 



Kronecker delta 

  The symbol +�� defined by 

+�� = ,1,     �-
 � = .0,   �-
 � ≠ . 0 
 

is called Kronecker delta and has the following properties: 

 
(i) If �, �, . . . , � are independent varaiables, then 

1�
1� = +�� 

(ii) +&� 2& = 2� . 
(iii) In � dimensions, +�� = �. 
 (iv) +��+&� = +&�  and ���

��� . ��� 
��3 = +&� . 

 
Scalar, contravariant and covariant vectors 

Scalars (invariant or tensor of rank zero):  Quantities which do not change under coordinate 

transformation. Thus two functions 4() and 4′(′) are said to define a scalar if they are 

reducible to each other by a coordinate transformation, where 4() is the value of a scalar in one 

coordinate system and 4′(′) is its value in another coordinate system. 

Vectors:  The set of � quantities 2�, which transform like the coordinate differentials  

A�� = 1��
1� 2� ,    �, . =  1, 2, . . . , � 

are called the components of a contravariant vector (contravariant tensor of rank one), while the 

set of � quantities 2�  are called the components of a covariant vector (covariant tensor of rank 

one), if they which transform like 

2�� = 1�
1�� 2�  ,    �, . =  1, 2, . . . , � 

 

 

 

 



Tensors of higher rank 

Consider a set of �� quantities 2&6  ((, 7 =  1, 2, . . . , �) in coordinate system � and let these 

quantities have the values 2��� in another coordinate system ��. If these quantities obey the law 

 2��� = 1��
1&

1��
16 2&6 

then the quantities 2&6 are said to be the components of a contravariant tensor of rank two. 

Similarly, the quantities 2&6 are said to the components  of a covariant tensor of rank two if 

2��� = 1&
1��

16
1�� 2&6 

If the �� quantities 26& and 2��� in the coordinate systems � and ��, respectively, are related to 

each other by the transformation law 

2��� = 1��
1&

16
1�� 26& 

then the quantities 26& are said to be the components of a mixed tensor of rank two.  

It may be noted that upper index of a tensor denotes the contravariant nature while the 

lower index indicates the covariant character of the tensor. The total number of upper and lower 

indices of a tensor is called the rank or order of the tensor. The rank of a tensor when raised as 

power to the number of dimensions gives the number of components of the tensor. Thus, a tensor 

of rank 
 in � dimensions has �8 components.  

We can define the tensors of much higher rank as follows: 

A set of quantities 2�9�:……..�; in a coordinate system �  are said to be the components of a 

contravariant tensor of rank 
 if they satisfy the transformation law 

 2��9�:…….�; = 1��9
1�9

1��:
1�: … … . . . 1��;

1�;  2�9�:……�; 
where  2��9�:…….�;   are the quantities in ��   coordinate system. Similarly, the quantities  2�9�:……..�; 

obeying the law 

2�9�:…….�;
� = 1�9

1��9
1�:
1��: … … . . . 1�;

1��;  2�9�: … … . . �8 
are said to form the components of a covariant tensor of rank 
. While, the quantities 2�9�:……�<

�9�:……�;  

satisfying the law 

2=9=:…..=<
�696:…….6; = >1�69

1�9
1�6:
1�: … … . . . 1�6;

1�;  ? > 1�9
1�=9

1�:
1�=: … … . . . 1@

1�=<  ? 2�9�:……�<
�9�:……�;  



are the components of a mixed tensor of rank (
 + A). 
 

Algebra of tensors 

In tensor algebra only those operations are allowed which when performed on tensors 

give rise to new tensors, Some of the algebraic operations on tensors are as follows: 

 

Addition and subtraction.  A linear combination of tensors of same type and same rank is a 

tensor of same type and same rank. Thus, if 2�� and B�� are second rank covariant tensors and 

C and D are scalars, then E�� = C2�� ± DB�� is also a second rank covariant tensor. 

 

Equality of tensors. Two tensors � and � are said to be equal if their components are equal. 

That is ��&� = ��&�  -
 �&�� = �&��
 for all values of the indices. 

 

Inner and outer products.  Let 2� be a contravariant vector and B� a covariant vector then the 

product 2�B� is a scalar. This scalar product is called the inner product (of a contravariant vector 

with a covariant vector). While on the other hand, the quantity 2�B� is called outer product of 

two vectors. The outer product is defined for any type of tensors, the total rank of the resulting 

tensor is the sum of the individual ranks of the tensors. For example, the product of 2&��
 and B=6   

produces a tensor of rank five. It may be noted that the product of a tensor by a scalar 

(multiplication of each component by the scalar) is again a tensor. 

 

Contraction.  The process of summing over a covariant and a contravariant index of a tensor to 

get another tensor such that the rank of this new tensor is lowered by two. For example, consider 

a mixed tensor 2�&6 � . Put 7 = � we get the tensor 2�&��  whose rank is lowered by two as � appears 

as a dummy suffix. Moreover, contraction of a second rank mixed tensor 2�� on setting . =  �, 
leads to 2��� = 2** . This is an invariant, called the trace of 2�� and has the same value in all 

coordinate systems. 

 

The quotient law.  In tensor analysis, we often come across quantities about which we are not 

certain whether they are tensor or not. The direct method requires to find the appropriate 



transformation law and in practice this is not an easy job. However, we do have a criterion which 

tells us about the tensorial nature of a set of quantities; it is known as quotient law and is stated 

as  

“a set of quantities, whose inner product with an arbitrary covariant (or contravariant) tensor is a 

tensor, is itself a tensor”. 

 

Riemanian Space and Metric Tensor 

Consider a Euclidean plane in which rectangular Cartesian coordinates exist. If (, G) and 

( + �, G + �G) are two neighbouring points in this plane, then by Pythagoras theorem the 

distance �A between two points is 

                               �A� = �� + �G�. 
This formula is called the metric of the Euclidean plane; when the polar coordinates (
, �) are 

used, this metric takes the form 

  �A� = �
� + 
����, 
while for three dimensional case, we have 

  �A� = �� + �G� + �H�, 
and 

  �A�  =  �
� + 
���� + 
� sin� �  �4�. 
Another way of defining the distance is  

  �(, G)  = |  −  G | (the usual metric). 

Now we may move on to the general case of n-dimensional space. One way is to extend 

the dimensionality of this space from two/three to n, and a point in such a space will have 

coordinates (�, �, . . . , �). For the other way, we assume that the distance between two 

neighboring points is given by 

  �A� = N������ , 
where �, . =  1, 2, . . . , � and the summation convention is used. Here N��’A are the functions of 

the coordinates and may vary from point to point. This equation is called the metric equation and 

�A is the interval or line-element. The space which satisfies this equation is called the 

Riemannian space. Our three dimensional Euclidean space is a special case of Riemannian 

space. The function N��’A are �� in number, real and need not be positive but are 

such that their determinant 



  N = det N�� = |N��| ≠ 0. 

Since �� and ��  in  �A� = N������are contravariant vectors and �A� is an invariant for any 

arbitrary choice of �� and ��  , from quotient law, it follows that N�� is a covariant tensor of 

rank two. This tensor is known as metric tensor or fundamental tensor. In addition to the metric 

tensor there are two more fundamental tensors N�� and +�� which are defined as 

                       N�� = RSTURVSW ST X�  YZ [\V X� 
[\V X�  , 

This N�� is called the conjugate or reciprocal tensor of N��.  Also   

                     N��N�& =  +�&. 

It is a mixed tensor of rank two. The three tensors N�� , N�� , +�� defined through above equations 

are called fundamental tensors and are of basic importance in general theory of relativity. 

The metric tensor and its conjugate can be used for raising and lowering the indices of a 

tensor (vector). Thus, for a contravariant vector 2&, the corresponding covariant vector is 

2� = N�&2& and for covariant vector B& the corresponding contravariant vector is B�  =  N�&B&. 

From a second rank tensor 2�� , we have 

                           2&� = N&�2�� , 2�& = N�*2&* = N�*N&�2*� , 
and so on. Tensors obtained as a result of raising and lowering operations with the metric tensor 

are called associated tensors. 

 

Christoffel symbols 

From the metric tensor N�� and its conjugate N��, we can construct two functions. These 

functions are not tensors but are used to define the differentiation of tensors. They are known as 

Christoffel symbols and are defined as 

]&�� = 1
2 >1N&�1�  + 1N�&1�  – 1N��1& ? , 

and 

]�&� = 1
2 N�= >1N�=1&  + 1N&=1� − 1N�&1=  ?  =  N�=]=�& . 

The symbols ]&��, ]�&�  are, respectively, called Christoffel symbols of first and second kind. Since 

N�� is symmetric, so are the Christoffel symbols, i.e., 



]&�� = ]&��, ]�&�  = ]&�� , 
Also    

(i) ]6�& +  ]�&6  = �X _
��3, 

(ii) ]�&�  = �
��3  log cN = �

√X
�√X
��3 , 

(iii) 
�Xef
��g  =  −N*�]�=h  – Nh�]�=.*

 

 
Equation of a Geodesic  

What we mean by a straight line in Euclidean space? One meaning implied by the 

adjective “straight”, is that its direction remain unchanged as we move along it. The other 

property associated with the straight line is that it represents the path of the shortest distance 

between any two given points. Here we shall find out what curves are implied by the later 

definition in a more general space - the Riemannian space (for the implication of the former 

definition, see [1]).  
The path of a particle between two points i and j is a geodesic and is determined by the 

condition that the interval between the two points i and j given by  k �Al
m  be stationary. In other 

words, a geodesic is defined by the condition that 

+ n �A = 0l
m

. 
where + denotes the variation from the actual path (world line) between the two points i and j 

on it, to any other path in the neighborhood of this line (actual path).  

To obtain the equation of geodesic, consider the metric of the Riemannian space, 

 i.e. , �A� = N������  and we have 

��o
�A� + ]��o

��
�A

��
�A = 0. 

This is the required condition for the given integral k �Al
m  to be stationary. The “straight 

line” given by this equation is the equation of geodesic. For p =  1, 2, 3, 4 the equation of 

geodesic gives four equations which determine the geodesic.  



Now since ds is an element of the world line, we can interpret these equations as the 

equations of motion of a particle which moves along a world line. When the components of the 

metric tensor are constant, then ]��o =  0 and equation of geodesic reduces to 

��o
�A� = 0, 

which shows that the particle is moving with uniform speed along a straight line. 

 

 

 

 

Covariant differentiation 

If 2� is a vector, then what is the nature of its derivative 
�q�
��  ? Will it be a tensor or not? 

Consider a contravariant vector 2� which transforms as 

2�� = 1��
1� 2� . 

Differentiate this equation partially with respect to �&, we get 

               
�q��
���3  = �

���3  r����
�� 2�  s, 

                     = �
��e  r����

t� 2�  s ��e
���3 , 

                     = ����
�� 

��e
���3

�q�
��e + �:���

��e�� 
��e
���3  2� . 

 

If  
�q��
���3  is a tensor then this equation should contain only the first term on the right hand 

side. But due to presence of the second term on the right hand side of this equation, the quantity 

�q��
���3 does not behave like a tensor. That is, the outcome of the differentiation of a tensor is not a 

tensor; and in tensor analysis only those operations are allowed which when performed on a 

tensor lead to a tensor. Thus, the quantity 
�q��
���3  will be a tensor only when the quantity  

�:���
��e��  

vanish, i.e., if the coordinates �� are linear function of the coordinates �  then this equation is 

the transformation law of a tensor.  



The process of obtaining tensors through the process of partial differentiation is known as 

covariant differentiation. We have  

covariant derivative of a contravariant vector: 

2   ;*� = 12�
1* + ]h*�  2h , 

covariant derivative of a covariant vector: 

2�;& = 12�1& – ]�&* 2*, 
covariant derivative of a covariant tensor of rank two: 

2��;* = 12��1*  – ]�*&2&� − ]*�& 2�&, 
covariant derivatives of contravariant and mixed tensors of rank two are defined through the 

following equations 

2   ;*�� = 12��
1* + ]*&� 2&� + ]*&� 2�&, 

and 

2�;*� = 12��1*  + ]*&� 2&� −  ]*�& 2&.�  

Covariant derivative of tensors of higher rank : 

The process of covariant differentiation can be applied to tensors of higher ranks and in 

general, for a mixed tensor of rank (v +  w), the covariant derivative is defined as 

2�9�:….�f;3
�9�:….�x = 12�9�:….�f

�9�:….�x

1&  + ]=&�9 2�9�:….�f
=�:….�x + ]=&�: 2�9�:….�f

�9=�y…..�e+. . . +]=&
�e 2�9�:….�f

�9�:….�xz9=
 

  

                                −]�9&= 2{|:….|}
�9�:….�e − ]�:&= 2|9{….|}

�9�:….�e −  … − ]�f&= 2|9|:….|}z9 {
�9�:….�e

. 

 

 

Remarks 

(i) The covariant differentiation is denoted by a semi-colon (; ) while the partial 

differentiation is denoted by a comma (, ). 



(ii) It may be noted that the covariant derivative is an operator which reduces to 

partial derivative in flat space (where N�� are constant) with Cartesian 

coordinates but transforms as a tensor on an arbitrary manifold. 

(iii) For a vector 2�, the covariant derivative 2     ;�� , for each direction ., will be 

given by the partial derivative operator 
�

��   plus a correction specified by ]�&� . 
(iv) From the defining equations of covariant derivatives, it may be noted that 

through the process of covariant differentiation, we get tensors of higher rank. 

Thus, the rank of a tensor can be raised by differentiating it covariantly, while 

the rank of the tensor is lowered by the process of contraction. 

 

Rules for covariant differentiation 

1. The covariant derivative of a linear combination of tensors, with constant coefficients, equals 

to the linear combination of these tensors after the covariant differentiation was performed. Thus, 

for example if 2�� and B�� are two mixed tensors of rank two and # and ~ are scalars then 

� #2�� ± ~B�� �;&  = #2�;&� ± ~B�;&�  
2. The covariant derivatives of outer and inner products of tensors obey the same rules as that of 

the usual derivatives. For example 

�2�B�&�;* = 2;*� B�& +  2�B�&;=  
 �2�B��;& = 2;�� B� + 2�B�;�  

4;� = 14
1� . 

3. The fundamental tensors are covariantly constant. That is the covariant derivative of 

fundamental tensors is zero. 

 

Divergence of a vector field 

Let 2� be a contravariant vector and 2;�&  be its covariant derivative, then 2;�� , a unique 

scalar (invariant), is called the divergence of a vector field 2� and is defined by 

                             2;�� = div 2� = �
√X

�
���  (2�√N). 

 



Curl of a vector field 

Using the definition of the covariant derivative of a covariant vector, we have 

2�;� −  2�;� = �12�1� − ]��= 2=� − >12�1�  –  ]��= 2=? = 12�1�  – 12�1�  

This difference is, of course, a tensor and does not involve Christoffel symbols. This 

tensor is skew symmetric and is known as the curl or rotation of the vector 2�. The curl 

operation is not applicable to contravariant vectors or tensors of higher rank. That is 

2;��  –  2;�� =  >12�
1� +  ]*��  2* ? − >12�1� + ]*�� 2*?  ≠ 12�

1� − 12�
1�  

 

The Riemann Curvature Tensor 

For a covariant vector field 2�, using the definition of covariant differentiation, we have 

2�;�;6 −  2�;6;� =  ���6& 2&  (Ricci Identity) 
where 

���6& = �
��  ]�6& − �

��_  ]��&  + ]�6= ]=�& −  ]��= ]=6&                                            (5) 
The rank four mixed tensor ���6&  is known as the Riemann curvature tensor or simply the 

Riemann tensor, and was first discovered by Riemann (1826 − 1866) and then after many years 

by Christoffel (1829 − 1900). This tensor plays a central role in the geometric structure of a 

Riemannian space. It may be noted, this tensor vanishes for Euclidean space. The Riemann 

curvature tensor is not only important in describing the geometry of the curved space, but also 

from this tensor we can construt other tensors which give a complete description of the 

gravitational field.  

The covariant form of Riemann tensor is given by 

����6 = 1
2 > 1�N�61�1�  + 1�N��161�  − 1�N�61�1�  − 1�N��161�?  +  N&=(]��&]�6= – ]�6&]��=) 

 
The Riemann tensor satisfies the following properties: 

 

(i) ���6�  and ����6  is antisymmetric in the last two indices, i.e., 

                                     ���6� = −��6��  and   ����6 =  −���6�. 



(ii)����6 is antisymmetric in the first two indices ℎ and �, i.e.,             

����6  =  −����6 . 
(iii) ����6 is symmetric with respect to an interchange of the first pair of indices 

(ℎ�) and second pair of indices (.7), without changing the order of the indices in 

each pair,  i.e., 

                                       ����6  =  ��6��.       

(iv)    ���6& + ��6�& +  �6��& = 0,  ����6 +  ���6� + ��6�� =  0. 
(v) The Riemann tensor also satisfies the identities 

����&;6 +  ���&6;� +  ���6�;&  =  0. 
���&;6� +  ��&6;�� + ��6�;&� =  0. 

These equations are known as Bianchi identities. 

The Riemann tensor can be used to obtain tensors of lower rank. Since Riemann tensor, 

defined by equation (5), is a mixed tensor of rank four, there are three possible contraction that 

can be performed on Riemann tensor; and we have 

(i) Putting ( = � in equation (5), we get ���6� =  0. 
(ii) Putting ( = . in equation (5), we get 

               ���6�  = ���_ ��  – ���  
��_  +  ]�6= ]=��  –  ]��=]=6�  =  −��6�� =  −��6                             (6) 

(iii) Putting ( =  7 in equation (5), we get 

                ���66 =  ���  = ���__��  – ��� _
��_  +  ]�6= ]=�6  – ]��=]=66                                                (7) 

Equation (7), obtained by the contraction of first contravariant index with the last covariant 

index of the Riemann tensor, defines a second rank tensor known as Ricci tensor, while equation 

(6) is just the negative of Ricci tensor. Further, from Ricci tensor we can construct a scalar as 

� =  N����� 
This scalar � is called the scalar curvature.  

Moreover, from the Bianchi identities, we have 

���� − 1
2 N����;� = 0 

If we take 



��� =  ���  − 1
2 N���, 

then 

��;�� = 0 
The tensor ��� is called the Einstein tensor; since it is obtained by contracting the Bianchi 

identities, it is some times also known as the contracted Bianchi identities. This tensor  ��� plays 

a fundamental role in the general theory of relativity. 

 

General Theory of Relativity 

General theory of relativity is the geometric theory of gravitation published by Albert Einstein. It 

generalizes special relativity and Newton’s law of universal gravitation, providing a unified 

description of gravity as a geometric property of space and time, or space-time. In particular, the 

curvature of space-time is directly related to the four-momentum (mass-energy and linear 

momentum) of whatever matter and radiation are present. The relation is specified by the 

Einstein field equations-a system of partial differential equations. Some predictions of general 

relativity differ significantly from those of classical physics, especially concerning the passage of 

time, the geometry of space, the motion of bodies in free fall, and the propagation of light. 

Examples of such differences include gravitational time dilation, gravitational lensing, the 

gravitational red shift of light, and the gravitational time delay. The predictions of General 

relativity have been confirmed in all observations and experiments to date. Although general 

relativity is not the only relativistic theory of gravity, it is the simplest theory that is consistent 

with experimental data. However, unanswered questions remain, the most fundamental being 

how general relativity can be reconciled with the laws of quantum physics to produce a complete 

and self-consistent theory of quantum gravity. 

 

Einstein’s theory has important astrophysical implications. For example, it 

implies the existence of black holes-regions of space in which space and time are 

distorted in such a way that nothing, not even light, can escape. There is ample 

evidence that such stellar black holes as well as more massive varieties of black hole 

are responsible for the intense radiation emitted by certain types of astronomical 

objects such as active galactic nuclei or microquasars. The bending of light by gravity 



can lead to the phenomenon of gravitational lensing, where multiple images of the 

same distant astronomical object are visible in the sky. General relativity also predicts 

the existence of gravitational waves, which have since been measured indirectly; a 

direct measurement is the aim of projects such as LIGO and NASA/ESA Laser 

Interferometer Space Antenna. In addition, general relativity is the basis of current 

cosmological models of a consistently expanding universe.  

General relativity has emerged as a highly successful model of gravitation and 

cosmology, which has so far passed every unambiguous observational and experimental test. 

Observational data that is taken as evidence for dark energy and dark matter could indicate the 

need for new physics. Even taken as it is, general relativity is rich with possibilities for further 

exploration. Mathematical relativists seek to understand the nature of singularities and the 

fundamental properties of Einstein’s equations. The race for the first direct detection of 

gravitational waves continues a pace, in the hope of creating opportunities to test the theory’s 

validity for much stronger gravitational fields than has been possible to date. More than ninety 

five years after its publication, general relativity remains a highly active area of research.  

To establish a correspondance between the laws of mechanics and electrodynamics, 

Einstein formulated his special theory of relativity in 1905; and attempts to formulate the law of 

gravitation in relativistic form have led Einstein to put forward his general theory of relativity in 

1915. The postulates and hypotheses of this theory denoted, respectively by i and �, are as 

follows:  

(i) Principle of Covariance. The laws of physics remain invariant under any spactime 

coordinate transformation. Since tensors are the quantities which remain invariant under 

coordinate transformation, the laws of physics can be expressed in terms of tensorial equations. 

(i) Principle of Equivalence. In the neighbourhood of a point it is always possible to choose a 

coordinate system such that the effects of gravity can be made negligible in the neighbourhood 

of that point. In other words, it is not possible to distinguish between the field (gravitational) 

produced by the attraction of masses and the field produced by accelerating the frame of 

references. 

(�) To describe an event, a 4 −dimensional spacetime is needed-the metric of which is 

�A�  =  N������ , �, . =  1, 2, 3, 4 
(�) The path of a particle is a geodesic whose equation is 
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�@ = 0. 

The path of a light ray is a null geodesic, that is the one for which �A =  0.  

(�) At large distances from the source, the line-element of general relativity reduces to the line-

element of special relativity. 

(�) Gravitation is a field phenomenon and the field equations, in the presence of matter, are 

                                               ��� − �
� N��� =  −(���                                                       (8) 

where ��� is the energy-momentum tensor. The left hand side of this equation describes the 

geometry of the spacetime, while the right hand side represents the physics of the spacetime. 

 

Now multiplying equation (8) by N��, we get � =  (� and equation (8) thus reduces to 

��� =  −((���  − 1
2 N���) 

so that when there is no matter (��� = 0), this equation reduces to 

                                             ��� = 0                                                                                 (9) 
which are the field equations for empty spacetime. The word ‘empty’ here means that there is no 

matter present and also no physical fields except the gravitational field. The gravitational field 

does not disturb the emptiness of the space. While the other fields do. For the space between the 

planets in the solar system, the condition of emptiness holds in good approximation and equation 

(9) is applied in such case. 

 

Why higher dimensions are necessary? 

Through his general theory of relativity, Einstein redefined gravity. From the 

classical point of view, gravity is the attractive force between massive objects in three 

dimensional space. In general relativity, gravity manifests as curvature of four 

dimensional space-time. Conversely curved space and time generates effects that are 

equivalent to gravitational effects. J.A. Wheelar has described the results by saying 

Matter tells spacetime how to bend and spacetime returns the complement by telling 

matter how to move.  

The general theory of relativity is thus a theory of gravitation in which gravitation 

emerges as the property of the space-time structure through the metric tensor N��. The metric 



tensor determines another object known as Riemann curvature tensor [��. , �w�#p�-� (5)]. At 

any given event this tensorial object provides all information about the gravitational field in the 

neighbourhood of the event. It may be interpreted as describing the curvature of the spacetime. 

The Riemann curvature tensor is the simplest non-trivial object one can build at a point; its 

vanishing is the criterion for the absence of genuine gravitational fields and its structure 

determines the relative motion of the neighboring test particles via the equation of geodesic 

deviation. These discussions clearly illustrates the importance of the Riemann curvature tensor in 

general relativity.  

Moreover, from the Riemann tensor and the metric tensor, we can construct another 4-

rank tensor E��&6, known as Weyl conformal curvature tensor. This tensor, (for � >  2), is 

defined by the equation  

���&6 =  E��&6 + 1
� − 2 �N�6��& +  N�&��6 – N�&��6  – N�6��&� 

                      − �
(� � �)�� – �� �N�6N�& –  N�&N�6�.                                                      (10) 

 
So that for � =  4, we have 

���&6 =  E��&6 + �
� �N�6��&  + N�&��6 − N�&��6 − N�6��&� − �

� �N�6N�& – N�&N�6�.                 (11) 
The Weyl tensor has the same symmetries as that of Riemann tensor except that 

E�=�=  =  0 =  N=�E��=�, 
that is, the Weyl tensor is trace-less. 

 

Also, for the empty spacetime ���&6 =  E��&6. Since ���&6characterize the gravitational 

field, therefore it is the Weyl tensor E��&6 which describe the true graviational fields in a vacuum 

region.  

Moreover, from the symmetries of Riemann tensor, the number of independent 

components of Riemann tensor in �-dimension is 

1
12 ��(��  −  1). 

Thus 

(i) if � = 1, ����&  =  0; 



         (ii) if � = 2, ����& has only one independent component which can be calculated from  

                          ���&6 = �
� �(N�&N�6 – N�6N�&) 

             and is     ����� = �
� N�; 

(iii) �� � = 3, ����& has six independent components. The Ricci tensor has also six independent 

components and thus ����& can be expressed in terms of ��� as 

����&  =  N����&  +  N�&���  – N�&���  – N����&  − 1
2 (N��N�& – N�&N��)� 

(iv) if � = 4, ����& has twenty independent components (ten of which are given by Ricci tensor 

and the remaining ten by the Weyl tensor E���&) and we have 

���&6 =  E��&6 + �
� (N�6��&  +  N�&��6  – N�&��6 –  N�6��&) – �

� (N�6N�& – N�&N�6). 
From these discussions, we have 

If ���  =  0 (empty spacetime), then for � =  1, 2, 3; ���&6 = 0 (no gravitational field) and for 

� =  4, ���&6 =  E��&6. 
 

Thus according to general relativity, we can easily state that  

    

                            “if we lived in a three dimensional Universe, gravity could not exist in a vacuum region”.“if we lived in a three dimensional Universe, gravity could not exist in a vacuum region”.“if we lived in a three dimensional Universe, gravity could not exist in a vacuum region”.“if we lived in a three dimensional Universe, gravity could not exist in a vacuum region”.    

So if there would be no gravity, the earth could not be going to move around the sun and 

therefore it had never been possible for me to write this article. Hence we have a genuine 

reason that why the higher dimensions are necessary to work for. 
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