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Abstract

We study a supersymmetric SO(10) gauge theory in six dimensions compactified

on an orbifold. Three sequential quark-lepton families are localized at the three

fixpoints where SO(10) is broken to its three GUT subgroups. Split bulk multiplets

yield the Higgs doublets of the standard model and as additional states lepton

doublets and down-quark singlets. The physical quarks and leptons are mixtures of

brane and bulk states. The model naturally explains small quark mixings together

with large lepton mixings in the charged current. A small hierarchy of neutrino

masses is obtained due to the different down-quark and up-quark mass hierarchies.

None of the usual GUT relations between fermion masses holds exactly.

http://arxiv.org/abs/hep-ph/0304142v1


The explanation of the masses and mixings of quarks and leptons remains a challenge

for theories which go beyond the standard model [1, 2]. In principle, grand unified theories

(GUTs) appear as the natural framework to address this question. However, as much work

on this topic has demonstrated, all simple GUT relations for fermion mass matrices are

badly violated and, within the conventional framework of four-dimensional (4d) unified

theories, a complicated Higgs sector is needed to achieve consistency with experiment.

In this paper we shall address the flavour problem in the context of a supersymmetric

SO(10) GUT in six dimensions compactified on an orbifold [3, 4]. A new ingredient of

orbifold GUTs is the presence of split bulk multiplets whose mixings with complete GUT

multiplets can significantly modify ordinary GUT mass relations [5, 6]. This extends the

well know mechanism of mixing with vectorlike multiplets [7]. Several analyses of the

flavour structure of orbifold GUTs have already been carried out (cf., e.g., [8]-[12]). In

5d theories large bulk mass terms can lead to a localization of zero modes at one of the

two boundary branes, which can explain fermion mass hierarchies [13]. In this way a

realistic ‘lopsided’ structure of Yukawa matrices can be achieved [14].

‘Lopsided’ fermion mass matrices, mostly based on an abelian generation symme-

try [15], have received much attention in recent years (cf. [16]-[21]). In the context of

SU(5) GUTs they introduce a large mixing of left-handed leptons and right-handed down

quarks, which leads to small mixings among the left-handed down-quarks. In this way

the observed large mixings in the leptonic charged current can be reconciled with the

small CKM mixings in the quark current. The mechanism of flavour mixing, which we

describe below, is also based on large mixings of left-handed leptons and right-handed

down quarks. However, these mixings do not respect SU(5) and they are not controlled

by a single hierarchy parameter. In this way a different pattern of mixings is achieved

with several characteristic predictions for the neutrino sector.

Let us now consider SO(10) gauge theory in 6d with N = 1 supersymme-

try compatified on the orbifold T 2/(ZI
2 × ZPS

2 × ZGG
2 ) [3, 4]. The theory has

four fixed points, OI , OGG, Ofl and OPS, located at the four corners of a ‘pil-

low’ corresponding to the two compact dimensions (cf. fig. 1). At OI only su-

persymmetry is broken whereas SO(10) remains unbroken. At OGG, Ofl and OPS

SO(10) is broken to its three GUT subgroups GGG=SU(5)×U(1)X , flipped SU(5),

Gfl=SU(5)’×U(1)’, and GPS=SU(4)×SU(2)×SU(2), respectively. The intersection of all

these GUT groups yields the standard model group with an additional U(1) factor,

GSM ′= SU(3)×SU(2)×U(1)Y×U(1)X , as unbroken gauge symmetry below the compact-

ification scale. B−L, the difference of baryon and lepton number, is a linear combination

of Y and X .

The field content of the theory is strongly constrained by the required cancella-
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Figure 1: The three SO(10) subgroups at the corresponding fixpoints of the orbifold

T 2/(ZI
2 × ZPS

2 × ZGG
2 ) .

tion of irreducible bulk and brane anomalies [22]. Motivated by the embedding of all

field quantum numbers into the adjoint representation of E8 [23], we have 6 10-plets,

H1, . . . , H6, and 4 16-plets, Φ,Φc, φ, φc as bulk hypermultiplets, accompanied by 3 16-

plets ψi, i = 1 . . . 3, of brane fields. Vacuum expectation values of Φ and Φc break B−L.

The electroweak gauge group is broken by expectation values of H1 and H2.

Compared to [23] we have added an additional pair of bulk 16-plets, φ and φc together

with two 10-plets, H5 and H6, to cancel bulk anomalies. This is still compatible with

the embedding in E8, and it corresponds to the largest number of bulk fields consistent

with the cancellation of anomalies. Note that both the irreducible and reducible 6d gauge

anomalies vanish.

The parities of H5, H6 and φ are listed in table 1. φc has the same parities as φ. The

corresponding zero modes are

L =


 ν4

e4


 , Lc =


 νc4
ec4


 , Gc

5 = dc4 , G6 = d4 . (1)

The zero modes of the fields Φ, Φc, H1 . . .H4 are given in [23]. They are the color triplets

and singlets Dc, N c, D, N , Hc
1, H2, G

c
3 and G4.

Fermion masses and mixings are determined by brane superpotentials. The allowed

terms are restricted by R-invariance and an additional U(1)X̃ symmetry [23]. The cor-

responding charges of the superfields are given in table 2. The fields H1, H2, Φ and Φc,

which aquire a vacuum expectation value, have vanishing R-charge. All matter fields have

R-charge one. Since ψi and φ have the same charges we combine them to the quartet
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SO(10) 10

GPS (1, 2, 2) (1, 2, 2) (6, 1, 1) (6, 1, 1)

GGG 5∗
−2 5+2 5∗

−2 5+2

Hc H Gc G

ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2

H5 − + − − + + + −

H6 − − − + + − + +

SO(10) 16

GPS (4, 2, 1) (4, 2, 1) (4∗, 1, 2) (4∗, 1, 2)

GGG 10−1 5∗
+3 10−1 5∗

+3, 1−5

Q L U,E Dc, N c

ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2 ZPS
2 ZGG

2

φ + − + + − − − +

Table 1: Parity assignments for the bulk hypermultiplets H5, H6 and φ.

(ψα) = (ψi, φ), α = 1 . . . 4. The most general brane superpotential up to quartic terms

is then given by

W = MdH5H6 +M l
αψαφ

c +M12H1H3 +M23H2H3

+
1

2
h
(1)
αβψαψβH1 +

1

2
h
(2)
αβψαψβH2 + fαΦψαH6 + f5Φ

cφcH5

+fDΦcΦcH3 + fGΦΦH4 +
1

2

hNαβ
M∗

ψαψβΦ
cΦc

+
k1
M∗

H2
1H

2
5 +

k2
M∗

H1H2H
2
5 +

k3
M∗

H2
2H

2
5 +

k4
M∗

ΦΦcH1H3

+
k5
M∗

ΦΦcH2H3 +
gdα
M∗

ΦcψαH5H1 +
guα
M∗

ΦcψαH5H2 +
gd

M∗

ΦφcH5H1

+
gu

M∗

ΦφcH5H2 +
kdα
M∗

ΦΦcψαφ
c +

klα
M∗

ΦΦcψαφ
c +

kl

M∗

ΦΦφcφc , (2)

where we chooseM∗ > 1/R5,6 ∼ ΛGUT to be the cutoff of the 6d theory, and the bulk fields

have been properly normalized. All the volume factors due to the 6d fields are absorbed

into the unknown couplings and we will not use them to explain the hierarchies. When

the bulk fields are replaced by their zero modes only 9 of the 23 terms appearing in the

superpotential remain. Although we have written the superpotential in terms of SO(10)

multiplets, on the different branes the Yukawa couplings h(1) and h(2) split into h(d), h(e)

4



H1 H2 Φc H3 Φ H4 ψi φc φ H5 H6

R 0 0 0 2 0 2 1 1 1 1 1

X̃ −2a −2a −a 2a a −2a a −a a 2a −2a

Table 2: Charge assignments for the symmetries U(1)R and U(1)X̃ .

and h(u), h(D), respectively. Some of these couplings are equal due to GUT relations on

the corresponding brane.

The main idea to generate fermion mass matrices is now as follows. We consider the

case that the three sequential 16-plets are located on the three branes where SO(10)

is broken to its three GUT subgroups. As an example, we place ψ1 at OGG, ψ2 at Ofl

and ψ3 at OPS. The three ‘families’ are then separated by distances large compared to

the cutoff scale M∗. Hence, they can only have diagonal Yukawa couplings with the bulk

Higgs fields. Direct mixings are exponentially suppressed. However, the brane fields can

mix with the bulk zero modes for which we expect no suppression. These mixings take

place only among left-handed leptons and right-handed down-quarks. This leads to a

characteristic pattern of mass matrices which we shall now explore.

If B − L is broken, as discussed in [23], 〈Φc〉 = 〈Φ〉 = vN , and the bulk zero modes

N c, N , (D,Gc) and (Dc, G) aquire masses O(vN ). After electroweak symmetry breaking,

with 〈Hc
1〉 = v1, 〈H2〉 = v2, the remaining states have the following mass terms,

W = dαm
d
αβd

c
β + ecαm

e
αβeβ + nc

αm
D
αβνβ

+ucim
u
ijuj +

1

2
nc
iMijn

c
j . (3)

Here md, me and mD are 4× 4 matrices,

md =




hd11v1 0 0 gd1
vN
M∗

v1

0 hd22v1 0 gd2
vN
M∗

v1

0 0 hd33v1 gd3
vN
M∗

v1

f1vN f2vN f3vN Md




, (4)

me =




hd11v1 0 0 he14v1

0 he22v1 0 he24v1

0 0 hd33v1 he34v1

M l
1 M l

2 M l
3 M l

4




, (5)
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mD =




hD11v2 0 0 hD14v2

0 hu22v2 0 hD24v2

0 0 hu33v2 hD34v2

M l
1 M l

2 M l
3 M l

4




, (6)

whereas mu and mN are diagonal 3× 3 matrices,

mu =




hu11v2 0 0

0 hu22v2 0

0 0 hu33v2



, mN =




hN11
v2
N

M∗

0 0

0 hN22
v2
N

M∗

0

0 0 hN33
v2
N

M∗



. (7)

In the matrices md, me and mD we have neglected corrections O(vN/M∗). The diagonal

elements satisfy four GUT relations which correspond to the unbroken SU(5), flipped

SU(5) and Pati-Salam subgroups of SO(10).

The crucial feature of the matrices md, me and mD are the mixings between the six

brane states and the two bulk states. The first three rows of the matrices are proportional

to the electroweak scale. The corresponding Yukawa couplings have to be hierarchical

in order to obtain a realistic spectrum of quark and lepton masses. This corresponds to

different strengths of the Yukawa couplings at the different fixpoints of the orbifold. The

fourth row, proportional to Md, M l and vN , is of order the unification scale and, we

assume, non-hierarchical.

The mass matrices md, me and mD are of the form

m =




µ1 0 0 µ̃1

0 µ2 0 µ̃2

0 0 µ3 µ̃3

M̃1 M̃2 M̃3 M̃4




, (8)

where µi, µ̃i = O(v1,2) and M̃i = O(ΛGUT ). To diagonalize the matrix m it is convenient

to define a set of four-dimensional unit vectors as follows,

(M̃1, . . . M̃4) = M̃eT4 , eTαeβ = eTαγeβγ = δαβ . (9)

Using the orthogonal matrices (α, β = 1 . . . 4, i = 1 . . . 3),

Vαβ = (eβ)α , Uαβ = δαβ −
1

M̃
δα4(e4iµi + e44µ̃i)δβi +O

(
v2

M̃2

)
, (10)
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we can now perform a change of basis which yields for the mass matrix,

m′ = UTmV =



m̂ 0

0 M̃


+O

(
v2

M̃2

)
, (11)

where the 3× 3 matrix m̂ is given by

m̂ =




µ1ê
T
1 + µ̃1ê

T
4

µ2ê
T
2 + µ̃2ê

T
4

µ3ê
T
3 + µ̃3ê

T
4



. (12)

Here the three-vectors êα, α = 1 . . . 4, are determined by the four-vectors ei, i = 1 . . . 3,

with (êα)i = (ei)α. Note that m̂ is composed of three row vectors of hierarchical length,

a structure familiar from lopsided fermion mass models.

The hierarchy of the row vectors suggests to perform a further change of basis such

that all remaining mixings are small. Three orthogonal three-vectors ei, e
T
i ej = eikejk =

δij, can be defined by writing the matrix m̂ in the following form

m̂ =




µ1(γe
T
1 + eT2 + βeT3 )

µ2(e
T
2 + αeT3 )

µ3e
T
3



. (13)

The parameters µi are O(µi, µ̃i) and therefore again hierarchical. With respect to this

new basis the matrix m has triangular form,

m =




µ1γ µ1 µ1β

0 µ2 µ2α

0 0 µ3



. (14)

For our discussion of mass eigenvalues and mixing angles we shall need the two matrices

mmT and mTm, which in the basis ei are both hierarchical,

mmT =




µ2
1(1 + β2 + γ2) µ1µ2(1 + αβ) µ1µ3β

µ1µ2(1 + αβ) µ2
2(1 + α2) µ2µ3α

µ1µ3β µ2µ3α µ2
3



, (15)

mTm =




µ2
1γ

2 µ2
1γ µ2

1βγ

µ2
1γ µ2

2 + µ2
1 µ2

2α + µ2
1β

µ2
1βγ µ2

2α+ µ2
1β µ2

3 + µ2
2α

2 + µ2
1β

2



. (16)
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Consider now the up-quark mass matrix. We concentrate on the case of large tanβ =

v2/v1 ≃ 50, such that hd33 ≃ hu33. The diagonal elements of the mass matrices (4), (5), (6)

and (7) are partially connected by the GUT relations which hold on the different branes.

For simplicity, we therefore assume universally,

µ1 : µ2 : µ3 ∼ mu : mc : mt . (17)

It is well known that the hierarchy of down-quark and charged lepton masses is substan-

tially smaller than the up-quark mass hierarchy. Given the scaling (17) of the diagonal

elements and the structure of md and me this implies that the down-quark and charged

lepton mass matrices must be dominated by the off-diagonal elements. Hence, we assume

again universally,

µ1 ≪ µ1 ∼ µ̃1 , µ2 ≪ µ2 ∼ µ̃2 , µ3 ∼ µ3 . (18)

The parameters µ1,2 of the matrix m are then dominated by the mixing terms µ̃1,2, i.e.

µ1,2 ∼ µ̃1,2.

Since the up-quark matrix mu is diagonal the CKM quark mixing matrix is given by

the matrix V which diagonalizes mdmdT . From eq. (15) one reads off for the two larger

masses

mb ≃ µ3 , ms ≃ µ̃2 , (19)

and for the mixing angles

Vus = Θc ∼
µ̃1

µ̃2
, Vcb ∼

µ̃2

µ̃3
, Vub ∼

µ̃1

µ̃3
. (20)

Using mb, ms and Θc ≃ 0.2 as input one obtains for the two remaining mixing angles

Vcb ∼
ms

mb

≃ 2× 10−2 , Vub ∼ Θc

ms

mb

≃ 4× 10−3 , (21)

in agreement with analyses of weak decays [24] up to a factor of two, which is beyond

the predictivity of our approach.

The smallest eigenvalue vanishes in the limit µ1, µ2 → 0, since in this case two

vectors of the matrix m̂ become parallel, with β = α and γ = 0. Choosing, for simplicity,

µ1/µ̃1 < µ2/µ̃2, one has for non-zero µ1, µ2,

γ ∼
µ2

µ̃2
∼
mcmb

mtms

∼ 0.1 . (22)

This relation will also be important in our analysis of the neutrino masses. For the

down-quark mass one obtains

md

ms

∼
µ2

µ̃2

µ̃1

µ̃2
∼ Θc

mcmb

mtms

≃ 0.03 , (23)
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consistent with data [1].

The charged lepton mass matrix me is very similar to the down-quark mass matrix.

The main difference is that now there are large mixings between the ‘left-handed’ states

ei. To obtain the contribution of the charged leptons to the leptonic mixing matrix

we consider the matrix meTme as given in eq. (16) in the basis ei. For the two large

eigenvalues of me one has mτ ∼ µ3 ∼ mb and mµ ∼ µ2 ∼ ms. These relations are

consistent with data within our accuracy. A potential problem is the smallness of the

electron mass, i.e. me/mµ ≃ 0.1 md/ms. The smallest eigenvalue of me is again given by

me/mµ ∼ (µ2µ̃1/µ̃
2
2). However, in our model the usual SU(5) relations don’t hold for the

second row of the mass matrices. Hence, the electron mass is not determined by down

quark masses.

Using the diagonal and off-diagonal elements of the mass matrices as determined from

up- and down-quark mass matrices, we can now discuss the implications for neutrino

masses. The heavy Majorana neutrinos scale like up-quarks (cf. (7)),

M3 :M2 :M1 ∼ mt : mc : mu . (24)

The light neutrino masses are given by the seesaw relation

mν = −mDT 1

MN
mD . (25)

The structure of the charged lepton and the Dirac neutrino mass matrices (cf. (5),(6))

is the same. Both matrices lead to large mixings between the ‘left-handed’ states. In

order to determine the leptonic mixing matrix we discuss the Dirac neutrino matrix in

the basis ei where the remaining mixings of the left-handed charged leptons is small by

construction (cf. (16)).

The Dirac neutrino mass matrix can be written as (cf. (12)),

m̂D =




ρ1ê
T
1 + ρ̃1ê

T
4

ρ2ê
T
2 + ρ̃2ê

T
4

ρ3ê
T
3 + ρ̃3ê

T
4



. (26)

Here the parameters ρi, ρ̃i are expected to have the same hierarchy as µi, µ̃i. However, in

general these parameters will differ by factors O(1) since there the entries of me and mD

arise from different Yukawa couplings in the superpotential. This implies for the matrix

m̂D, with respect to the vectors ei,

m̂D =




ρ1(Ae
T
1 +DeT2 + eT3 )

ρ2(Be
T
1 + EeT2 + eT3 )

ρ3(Ce
T
1 + FeT2 + eT3 )



, (27)
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where ρi ≃ ρ̃i. Hence, with respect to the basis µi the matrix m̂D has no longer triangular

form,

mD =




Aρ1 Bρ1 ρ1

Cρ2 Dρ2 ρ2

Eρ3 Fρ3 ρ3



. (28)

Generically, the parameters A . . . F are all O(1). All we know is that for µ1,2 = ρ1,2 = 0

the first two row vectors are parallel, with A = B = C = 0 and D = E. For µ1,2, ρ1,2 6= 0

one has analogous to the charged lepton mass matrix (cf. (22)),

A,B,C,D −E ∼
ρ2
ρ̃2

∼
µ2

µ̃2

∼ γ ∼ 0.1 . (29)

From eqs. (25) and (28) one now obtains for the light neutrino mass matrix,

−mν = mDT 1

MN
mD = (30)




A2 ρ2
1

M1

+B2 ρ2
2

M2

+ C2 ρ2
3

M3

AD
ρ2
1

M1

+BE
ρ2
2

M2

+ CF
ρ2
3

M3

A
ρ2
1

M1

+B
ρ2
2

M2

+ C
ρ2
3

M3

AD
ρ2
1

M1

+BE
ρ2
2

M2

+ CF
ρ2
3

M3

D2 ρ2
1

M1

+ E2 ρ2
2

M2

+ F 2 ρ2
3

M3

D
ρ2
1

M1

+ E
ρ2
2

M2

+ F
ρ2
3

M3

A
ρ2
1

M1

+B
ρ2
2

M2

+ C
ρ2
3

M3

D
ρ2
1

M1

+ E
ρ2
2

M2

+ F
ρ2
3

M3

ρ2
1

M1

+
ρ2
2

M2

+
ρ2
3

M3



.

Using eq. (29) one immediately sees the order of magnitude of the different entries,

mν ∼




γ2 γ γ

γ 1 1

γ 1 1



m3 , (31)

where m3 is the largest neutrino mass, i.e. m1 ≤ m2 ≤ m3. It is well known that such a

matrix can account for all neutrino data. It has previously been derived based on a U(1)

family symmetry [16, 17] and also by requiring a compensation between the Dirac and

Majorana neutrino mass hierarchies [25, 26].

Consider now the parameters in the matrix (30). The mass matrices md, me and

mD have the same structure with large off-diagonal entries. For simplicity, we therefore

assume for the mass parameters µi and ρi have a similar hierarchy, approximately given

by the down-quark masses, i.e. ρ1 : ρ2 : ρ3 ∼ md : ms : mb. One then obtains

ρ22
M2

M3

ρ23
∼
m2

smt

m2
bmc

∼ 0.2 ,
ρ21
M1

M3

ρ23
∼
m2

dmt

m2
bmu

∼ 0.2 . (32)

This corresponds to the picture of sequential heavy neutrino dominance [27]. It yields

large 2-3 mixing, sin 2Θ23 ∼ 1. The largest neutrino mass is m3 ∼ m2
t/M3. Identifying m3

10



with
√
∆m2

atm ∼ 0.05 eV one obtains for the heavy Majorana masses M3 ∼ 1015 GeV,

M2 ∼ 3 × 1012 GeV and M1 ∼ 1010 GeV. The second neutrino mass is m2 ∼ 0.01 eV,

which is consistent with data within our accuracy.

Since the 2-3 determinant is small the matrix (30) can also account for the LMA

MSW-solution of the solar neutrino problem [20]. As all neutrino masses are rather close

to each other, with unknown coefficients O(1), a precise prediction of the mixing angle

Θ12 and the smallest neutrino mass is not possible. Generically, one has sin 2Θ12 ∼

γm3/m2 and m1 = O(γm3, m2). On the other hand, a definitive prediction of the matrix

(30) is a rather large 1-3 mixing angle, Θ13 ∼ γ ∼ 0.1.

Decays of the lightest right-handed neutrinos may be the origin of the baryon asym-

metry of the universe [28]. In addition to the massM1 ∼ 1010 GeV the relevant quantities

are the CP-asymmetry ε1 and the effective neutrino mass m̃ = (mD†mD)11/M1. One eas-

ily obtains ε1 ∼ 0.1 M1/M3 ∼ 10−6 and m̃1 ∼ 0.2 m3. These are the typical parameters

of thermal leptogenesis [29].

Starting from three sequential families located at three different fixpoints of an orb-

ifold, we have shown that the mixing with split bulk multiplets can lead to a characteristic

pattern of quark and lepton mass matrices which can account for small quark mixings

together with large lepton mixings in the charged current. Correspondingly, the quark

mass hierarchies are large whereas the small neutrino mass hierarchy follows from the

difference of down-quark and up-quark mass hierarchies. The dynamical origin of the

hierarchy of Yukawa couplings at the different branes remains to be understood.

We would like to thank A. Hebecker and D. Wyler for helpful discussions.
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