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An expression is derived for the radiation force on a sphere placed on the axis of an ideal acoustic
Bessel beam propagating in an inviscid fluid. The expression uses the partial-wave coefficients
found in the analysis of the scattering when the sphere is placed in a plane wave traveling in the
same external fluid. The Bessel beam is characterized by the cone angle � of its plane wave
components where �=0 gives the limiting case of an ordinary plane wave. Examples are found for
fluid spheres where the radiation force reverses in direction so the force is opposite the direction of
the beam propagation. Negative axial forces are found to be correlated with conditions giving
reduced backscattering by the beam. This condition may also be helpful in the design of acoustic
tweezers for biophysical applications. Other potential applications include the manipulation of
objects in microgravity. Islands in the �ka ,�� parameter plane having a negative radiation force are
calculated for the case of a hexane drop in water. Here k is the wave number and a is the drop radius.
Low frequency approximations to the radiation force are noted for rigid, fluid, and elastic solid
spheres in an inviscid fluid. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2361185�
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I. INTRODUCTION

There have been numerous theoretical investigations of
the acoustical radiation force of plane traveling waves �often
referred to as progressive waves� incident on spherical ob-
jects in an inviscid fluid.1–7 Some aspects of the radiation
force of focused acoustic beams on spheres have also been
calculated.7–11 Some research suggests the possibility of trap-
ping small objects �such as biological cells� near the focus of
a single traveling wave.10,11 The ability to either trap an ob-
ject or pull it back toward the source of a single beam of
sound may be a desirable alternative to the better known
form of “acoustic tweezers” based on counterpropagating
sound beams from a pair of transducers.9 Such single-beam
acoustic tweezers may provide an alternative to “optical
tweezers” widely investigated for the purpose of trapping
biological cells or other small objects.12–15 In either the
acoustic or electromagnetic case an important property of
focused beams is that conditions have been predicted where
the radiation force is in the opposite direction of the beam
propagation even in the absence of significant dissipation.
For plane wave illumination of spheres having isotropic
properties in situations where dissipation can be neglected,
the radiation force is directed along the direction of propa-
gation for the reasons reviewed below in Sec. III.

The purpose of this paper is to calculate the radiation
force caused by an acoustic Bessel beam16–19 in an inviscid
ideal fluid incident on a sphere having isotropic material
properties in the case where the sphere is centered on the
Bessel beam. As an example, the force is calculated for the
case of a spherical drop of a hydrocarbon liquid in water. For
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an appropriate choice of frequency and Bessel beam param-
eters, the force is predicted to be opposite the direction of the
beam propagation.

Scalar wave acoustic Bessel beams are an axisymmetric
solution of the Helmholtz equation for the complex velocity
potential of the form20

�B�x,y,z� = �0 exp�i�z�J0�� � �x2 + y2�� , �1�

where �0 determines the beam amplitude, z and �x ,y� denote
the axial and transverse coordinates, � and � denote the axial
and radial wave numbers, J0 is a zero-order Bessel function,
and �2+�2=k2= �� /c0�2, where c0 denotes the phase veloc-
ity of the fluid. Here and in subsequent discussions of
first order quantities the complex time factor of the form
exp�−i�t� has been separated from the spatial dependence
of complex functions. The complex first order acoustic
velocity and pressure are uB=��B and pB= i��0�B where
�0 is the density of the surrounding fluid. The radiation
force calculation uses Marston’s solution21 for the scatter-
ing of an ideal Bessel beam by a sphere centered on the
beam. Relevant aspects of that solution are noted here in
Appendix A.

An important parameter in the characterization of a
Bessel beam is the cone angle � which describes the angle of
the planar wave components of the beam relative to the z
axis.20–23 That angle is related to the parameters in Eq. �1� by

� = arccos��/k� = arcsin��/k� . �2�

That angle is illustrated in Fig. 1 for the problem under con-
sideration. The other important parameters in the evaluation
of the radiation pressure are the wave-number-radius product
ka of the sphere and the sphere’s material properties relative
to those of the surrounding fluid. As discussed in Sec. III, the
usual plane wave limit5,6 is recovered for the general radia-

tion force expression Eq. �10� for the case �=0. As a con-
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sequence of the finite width of all sources, Bessel-like beams
only retain their form over a finite propagation distance.16–23

The incident wave considered here is an ideal Bessel beam.
In addition to extending the understanding of situations

where radiation forces are negative relative to the axis of a
beam and related aspects of acoustic tweezers, some other
potential applications of this analysis include the manipula-
tion of fluid objects �such as liquid drops,24,25 localized gas
clouds,26 or flames27� in reduced gravity �associated with
space flight� where small forces acting over a long time du-
ration can significantly affect the dynamics and positioning
of objects. In addition since the analysis is sufficiently gen-
eral to allow for the sphere to be metallic or ceramic there
may be applications to the measurement of the acoustic in-
tensity of approximate realizations of Bessel beams16,18,22,23

as has long been the case for approximate realizations of
plane waves.3,4

The present analysis completely ignores the complica-
tions resulting from thermal-viscous effects and from acous-
tic streaming. Analytical studies by Doinikov28–30 indicate
that there are numerous situations where such corrections to
the radiation force may be especially significant for the case
of traveling waves. For situations where the fluids used have
sufficiently small viscosities, experiments have given satis-
factory agreement with the inviscid radiation force of a trav-
eling wave. Examples include low viscosity hydrocarbon liq-
uid drops in water as well as the case of various solid spheres
illuminated by quasiplane waves.3,4 The thickness of the os-
cillating viscous external boundary layer �and in the liquid
drop case, the thickness of oscillating internal boundary
layer� must be much less than both the wavelength and the
sphere radius a. It is assumed that this condition holds for the
situation considered here. It is noteworthy that Doinikov30

has predicted that as a consequence of viscous corrections a
bubble may be attracted to a source of sound, however the
mechanism in that case differs from the inviscid radiation
force illustrated here for liquid drops.

II. RADIATION FORCE ON A SPHERE
IN A BESSEL BEAM

It is convenient to evaluate the radiation force by using

FIG. 1. Geometry of the radiation force calculation. The sphere is located on
the axis z of an ideal Bessel beam. As explained in Refs. 20–22, the beam
may represented by a superposition of plane waves having a cone angle �.
The scattering angle relative to the beam axis is denoted by �.
the farfield scattering summarized in Appendix A. The analy-
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sis of radiation forces based on farfield properties27,31–33 is an
alternative to the nearfield approach of King1 and Yosioka
and Kawasina.2 The analysis is facilitated by the property of
the radiation stress tensor27,33 ST for an ideal fluid that
� •ST=0. As a consequence, by application of the divergence
theorem, the integral for the radiation force on the object can
be transformed to a surface located at a large distance from
the object.27,33 In the present case this surface is taken to be
a spherical surface of radius r with kr�1. Let Re and Im
designate real and imaginary parts of a complex quantity.
The axial radiation force on the sphere is33

Fz = − ��0k2�I1 + I2 − I3� , �3�

I1 = ��0a/2�2�
−1

1

�F�ka,w,b��2wdw , �4�

I2 = ��0ra/2��
−1

1

Re��B
*F�ka,w,b�eikr�wdw , �5�

I3 = ��0ra/2k��
−1

1

Im����B/�z�*F�ka,w,b�eikr�dw , �6�

where w=cos �, � is the scattering angle shown in Fig. 1,
b=cos �, and * denotes complex conjugation. Equations
�3�–�6� follow from Eq. �6� of Ref. 33 after expressing the
scattering with the normalization used in Eq. �A1� in which
the amplitude F is dimensionless. The expression has been
simplified by taking the amplitude factor �0 to be real and by
omitting two terms proportional to �0

2 �shown in Ref. 33�
which do not contain F. The sum of the omitted terms van-
ishes. �The radiation force Fz vanishes when the scatterer is
removed from the volume considered27 so that then there is
no scattering and F=0.� The integrals in Eqs. �4�–�6� may be
evaluated in the limit of large kr by using the partial-wave
representations of F and �B given in Eqs. �A2�, �A4�, and
�A6� and by using properties of the Legendre polynomials
listed in Appendix B. The partial wave coefficients 	n and �n

are related by Eqs. �A3� and �A4� to the partial wave expan-
sion of the scattering for plane wave incidence. The integrals
reduce to

I1 = �2�0/k�2�
n=0




�n + 1��	n	n+1 + �n�n+1�Pn�b�Pn+1�b� ,

�7�

I2 = ��0/k�2�
n=0




�n + 1��	n + 	n+1�Pn�b�Pn+1�b� , �8�

I3 = − ��/k���0/k�2�
n=0




�2n + 1�	nPn
2�b� . �9�

Notice that � /k=cos �= P1�b�. Using Eq. �B3�, gives I3=
−I2. The acoustic intensity �in W/m2� along the axis of the
Bessel beam is I0= ��0c0 /2���k�0

2�= ��0c0 /2��k�0�2 cos �.
The axial radiation force on the sphere becomes

2
Fz = ��a ��I0/c0��1/cos ��YP�ka,cos �� , �10a�
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YP = − �2/ka�2�
n=0




�n + 1�

��	n + 	n+1 + 2�	n	n+1 + �n�n+1��

�Pn�cos ��Pn+1�cos �� , �10b�

where the normalization of the dimensionless function YP

was selected for ease of comparison with standard results for
plane traveling waves.3–7 When � is 90° the product
Pn�cos ��Pn+1�cos �� vanishes for all n because either n or
n+1 is odd. Consequently YP vanishes in that limit as re-
quired by symmetry.

III. RADIATION FORCE IN THE PLANE-WAVE LIMIT

In the limit of a plane traveling wave, cos �=1 and
Pn�cos ��=1 for all n. Consequently YP reduces to the stan-
dard expression given by Hasegawa et al.5,6 Notice that
while the present derivation uses the exp�−i�t� convention
and Hasagawa et al. use the exp�i�t� convention, the form of
YP is retained since the dependence on �n always appears as
the product �n�n+1. This limit also agrees with a result for YP

based on the exp�−i�t� convention.34 For plane waves, Eqs.
�8�, �9�, and �A2� give

I2 − I3 = − 2I3 = 2��0/k�2�
n=0




�2n + 1�	n

= − ka��0/k�2 Im�f�ka,1�� , �11�

where f�ka , cos ��=F�ka , cos � ,1� is the dimensionless
form function in the plane wave limit. In the case of a
scatterer having no dissipation, �sn � =1 and the optical
theorem35 gives for the imaginary part of the forward scat-
tering form function,

Im�f�ka,1�� = �ka/2��
0

�

�f �2 sin �d� . �12�

Combining Eqs. �3�, �4�, �10a�, �11�, and �12� gives in that
case,

YP = �1/2��
0

�

�f�ka,cos ���2�1 − cos ��sin �d� , �13�

which is non-negative. Equation �13� is equivalent to an
early result of Westervelt31 specialized to the case of no ab-
sorption and in the case of light scattering, an early result of
Debye.36,37 Inspection of Eq. �13� shows that the behavior of
�f �2 for � near � is significantly weighted in the evaluation of
YP. Reducing the scattering into the backward hemisphere
reduces the radiation force. For a perfectly reflecting sphere
having ka�1, except near a narrow forward diffraction
peak21,35 �f � 	1 and Eq. �13� gives YP	1. Including the
absorption of a sphere introduces a positive term,31 not in Eq.
�13�, which is proportional to the ratio of the absorption

2
cross section to the geometric cross section �a .
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IV. FORCE ON A RIGID SPHERE
IN A BESSEL BEAM

Consider now the case of a fixed rigid sphere placed on
the axis of a Bessel beam. In that case the sn are given by21

sn=−hn
�2��ka�� /hn

�1��ka��, where hn is a spherical Hankel func-
tion of the indicated kind and primes denote differentiation.
Figure 2 shows YP from Eq. �10b� for a plane wave �the
upper solid curve� and a Bessel beam having �=60° �the
dashed curve�. It was numerically found that the series in Eq.
�10� may be truncated for n somewhat in excess of ka. A
large value of � was selected so as to clearly show the re-
duction in YP. When ka is very small, less than approxi-
mately 0.3, the scattering is dominated by the monopole �n
=0� and dipole �n=1� terms of Eq. �A2�. Using
Mathematica® to obtain the leading order term in the small
ka expansion of YP, gives the following low frequency ap-
proximation:

YPLF�ka,cos �� = �ka�4�1 + �2/9�P2�cos ���P1�cos �� .

�14�

Only s0 and s1 were found to influence YP to this order of ka.
The lower solid curve in Fig. 2 shows YPLF when ka is small
for �=60°. Comparison with the dashed curve shows that
at small ka the result from Eq. �10b� is recovered. Taking
�=0 in Eq. �14� gives YP	�ka�4�11/9�, which is King’s
result1 for a massive rigid sphere.

V. FORCE ON AN IDEAL FLUID SPHERE
IN A BESSEL BEAM

In this case the sn are given in Appendix A. When ex-
pressing the relative fluid properties it is convenient to use
the dimensionless parameters of Yosioka and Kawasima2 and
of Lee and Wang38 which are �=ci /c0 and 
=�i /�0 for the
inner-to-outer fluid sound speed and density ratios. In the
plane wave case, the YP for several ka for a liquid drop
having �=1/1.15 and 
=1.005 were tabulated by Yosioka et
al.3 The numerical algorithm used here was found to agree
with the tabulated values of YP. Crum39 lists typical values of
these ratios for immiscible hydrocarbon liquid drops in water

FIG. 2. Dimensionless radiation force function YP from Eq. �10b� for a fixed
rigid sphere for an incident plane wave �upper solid curve� and an incident
Bessel beam having �=60°. The results are expressed in terms of the size
parameter ka for the sphere. The short lower solid curve is the low fre-
quency approximation from Eq. �14� for �=60°.
at near room temperature conditions. The example of a liquid
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drop in a Bessel beam considered in Fig. 3 is a hexane drop
for which �=0.719 and 
=0.656. Figure 3 shows YP for
several values of � including the plane wave case. It was
numerically found that the series in Eq. �10� may be trun-
cated for n somewhat in excess of ka.

The anomalous regions where YP is negative are dis-
cussed in Sec. VI. Consider here the reduction in YP with
increasing � when ka is less than 0.5. As reviewed in Sec. IV
when ka is small the scattering is dominated by the mono-
pole and dipole terms in Eq. �A2�. Only those partial waves
contribute to the leading order in the small ka expansion of
YP. By using Mathematica® the leading order term in the low
frequency approximation is found to be

YPLF = �4�ka�4/�2��G2 + �2/9��1 − 
�2P2�b��cos � ,

�15a�

G�
,�� = 
 − ��/3
�2� , �15b�

where �=1+2
 and b=cos �. The result of Yosioka and
Kawasima2 �also found by Lee and Wang38� is recovered
when �=0. Equation �15� shows that while the cos � factor
causes a reduction in YPLF with increasing �, the dependence
on � is complicated by the term involving P2�cos ��. The
low-frequency approximation for an incompressible �but
movable� sphere is found by taking the limit �2→
 in Eq.
�15b� so that G in Eq. �15a� is replaced by G=
 where 
 is
the density ratio. In the plane wave limit YPLF reduces to
�4�ka�4 /�2��
2+ �2/9��1−
�2� in agreement with King’s
analysis for a movable incompressible sphere.1 The fixed-
rigid sphere limit for a Bessel beam, Eq. �14�, is recovered
by taking 
→
 and �2→
 in Eq. �15�.

VI. NEGATIVE AXIAL RADIATION FORCES
IN A BESSEL BEAM

Inspection of Fig. 3 reveals for �=45° and 60°, there are
ka regions where YP becomes negative. When YP is negative
the radiation force is directed opposite the direction of beam
propagation. To understand the reversal in the direction of
the force, recall from the plane-wave example discussed in

FIG. 3. Dimensionless radiation force function YP from Eq. �10b� for a
sphere of ideal fluid having the relative properties of a liquid hexane drop in
water for four values of � :0° �upper solid curve�, 30° �upper dashed curve�,
45° �lower dashed curve�, and 60° �lower solid curve�. For �=45° and 60°
there are regions where YP is negative so that the radiation force is directed
opposite to the propagation direction of the Bessel beam.
Sec. III that the backscattering amplitude strongly influences
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YP. Figure 4 shows the backscattering form function magni-
tude �F�ka ,−1 ,cos ��� for �=45° and 60° for the fluid
sphere considered in Fig. 3. Inspection of Fig. 4 shows that
there are prominent minima in �F� for the regions where YP is
negative. This property is also evident by comparing the �
dependence of �F�ka , cos � , cos ��� for ka at or near the cen-
ter of the regions where YP is negative with the case where
�=0. Figure 5 shows this comparison for a hexane sphere
with ka=3.17 in a beam with �=45°. The scattering in the
entire backward hemisphere is suppressed in the Bessel beam
case relative to the plane-wave case. Since ka is not large
only a few partial waves contribute significantly to the scat-
tering in Eq. �A2� and �F� is found to be a slowly varying
function of � in comparison to large ka examples for rigid
and soft spheres shown in Ref. 21. Inspection of Fig. 5 and
Eq. �B2� suggests that scattering into the backward hemi-
sphere is suppressed because the factor Pn�cos �� affects the
significant partial waves. Figure 6 shows a similar compari-
son for �=60° and ka=2 which corresponds to a region
where YP is negative. In that case, however, fewer partial
waves are significant. The most negative value of YP for the
example in Fig. 3 is YP=−0.081 at ka=2.03 for �=60°. For
�=45° the most negative YP value is −0.0297 which is at

FIG. 4. Dimensionless form function magnitude from Eq. �A2� calculated
for backscattering for the fluid sphere considered in Fig. 3 for �=45° �solid
curve� and �=60° �dashed curve�. The regions where YP is negative in Fig.
3 are associated with reduced backscattering.

FIG. 5. The solid curve is the angular distribution of the scattering ampli-
tude �F� from Eq. �A2� for the liquid drop considered in Fig. 3 for a condi-
tion where YP is negative: ka=3.17 and �=45°. The dashed curve is for
ka=3.17 with phase wave incidence ��=0° �. The comparison shows that
the scattering into the backward hemisphere is significantly depressed in the

Bessel beam case.
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ka=3.17. For �=60° the small local maximum in YP in Fig.
3 at ka=2.86 corresponds to a local maximum in �F� at ka
=2.85 in Fig. 4.

To search for other regions having negative radiation
force, YP from Eq. �10b� was evaluated for a sphere having
the properties of an ideal hexane drop in water ��=0.719,

=0.656� for a dense grid of points on the region 0�ka
�6, 0° ���90°. Negative values were found only in the
part with 1�ka�6, 40° ���90°. Figure 7 shows that YP

is negative on islands within that subregion. From symmetry
and from the form of Eq. �10�, YP vanishes when �=90°. For
�=30° with this � and 
, YP was computed to be non-
negative for ka�20.

A systematic search for regions of negative YP in the
four parameter domain �ka, �, 
, �� was beyond the scope of
this investigation. Restricting attention to � of 45° and 60°,
examples giving negative YP are easy to find even for
spheres having different properties than hexane spheres in
water. For a carbon tetrachloride sphere in water39 �

=1.587, �=0.619� there are negative YP peaks at �ka, �, YP�
of �2.98, 45°, −0.0269� and �2.29, 60°, −0.0309�. For a ben-

FIG. 6. Like Fig. 5 except that for the solid curve ka=2 and �=60° and the
dashed curve is ka=2 and �=0°.

FIG. 7. Islands where YP is computed by Eq. �10b� to be negative are shown
as dark patches that are bounded by a contour at YP=0. These are shown for
a hexane sphere in water. The examples where YP is negative in Fig. 3 are in

the leftmost islands.
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zene sphere in water39 �
=0.874, �=0.861� there are nega-
tive YP peaks at �ka, �, YP� of �3.75, 45°, −0.00455� and
�2.55, 60°, −0.0111�.

Inspection of Eq. �15� suggests that for small ka, YP

becomes negative when the fluid parameters 
 and � are
selected to give G�
 ,��=0. It is also necessary for � to lie
between 54.7346° and 90° so that P2�cos ���0 and cos �
�0. The condition G�
 ,��=0 gives �= ���1+2
� / �3
2��.
Figure 8 shows 104YP for 
=1.2 and �= ��3.4/4.32�
	0.887. Also shown is 104YPLF from Eq. �15�. Notice that
YP is negative as predicted but that when ka exceeds 1.52,
YP becomes positive. As noted in Sec. V, YPLF is influenced
by only the monopole and dipole scattering terms in Eq.
�A2�. Positive YP may be due to partial waves in Eq. �B2�
with n�1. The 104 prefactor was included in Fig. 8 because
of the very small magnitude of YP which is typically less
than 10−4 in this region.

VII. DISCUSSION AND CONCLUSIONS

The main result in Eq. �10� gives the radiation force for
an isotropic sphere centered on an ideal Bessel beam. The
partial wave coefficients 	n and �n are related by Eqs. �A3�
and �A4� to the partial wave expansion of the scattering for
plane wave incidence. The derivation of Eq. �10� was suffi-
ciently general to allow for the case where the absorption of
acoustic energy by the sphere cannot be neglected. This is
often the case for plastic or polymer spheres placed in
water.5,40 Including absorption causes �sn � �1 while the con-
nection with 	n and �n in Eq. �A4� remains applicable. In the
numerical examples for YP and the analytical approximations
of the low frequency behavior, Eqs. �14� and �15�, absorption
is neglected.

When absorption is negligible, the approximation in Eq.
�15� becomes applicable to a small solid elastic sphere by
taking the inner sound speed to be ci= ��cL

2 − �4/3�cT
2� where

cL and cT are the longitudinal and transverse wave velocities
of the elastic material. That replacement has been shown to
yield the proper monopole and dipole scattering contribu-
tions for the equivalent fluid sphere when ka is small in the
present case where the viscous properties of the outer fluid

41

FIG. 8. The solid curve is YP from Eq. �10b� for a fluid sphere with relative
fluid properties selected to give G�
 ,��=0 in Eq. �15� by taking 
=1.2 and
�= ��3.4/4.32�. The dashed curve is the low frequency approximation in
Eq. �15�. The solid curve YP is negative for ka between 0 and 1.52.
are neglected. For that replacement to be applicable it is
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necessary for ka to be much less than the ka of any low-
frequency resonance, including that of the n=2 partial
wave.40

The existence of conditions where YP becomes negative
suggests that it may be feasible to point a Bessel beam at a
sphere and use the acoustic radiation force to pull the sphere
back towards the source. This application is plausible in re-
duced gravity �space-based platforms� where small radiation
forces can significantly affect the motion of spheres over an
extended period of time. For a more definitive analysis, how-
ever, it would be necessary to analyze the transverse force on
the sphere for spheres displaced slightly from the axis of the
Bessel beam. That analysis is outside the scope of the present
discussion since Eqs. �10� and �A2� are only directly appli-
cable for a sphere centered on a Bessel beam.

The comparison of Fig. 3 with plots of the scattering
shown in Figs. 4–6 �and other results not shown here� indi-
cate that the regions where YP is negative with a significant
magnitude tend to occur where the backscattering amplitude
is suppressed as a consequence of the illumination by a
Bessel beam. It is plausible that this correlation with back-
scattering may be used to find regions of enhanced perfor-
mance of acoustic tweezers or other devices for biophysical
applications.9–11,42 When ka is small so that Eq. �15� is ap-
plicable, from the example in Fig. 8, negative YP appear
unfortunately to be small in magnitude.

Concerning the unresolved question of the transverse
stability of spheres on the axis of a Bessel beam, the follow-
ing observations are noteworthy. Liquid filled circular cylin-
drical acoustic levitators produce a standing wave pressure
distribution where the radial dependence of the pressure is
typically of the form J0����x2+y2�� as in the Bessel beam
case. Numerous examples have been demonstrated where
small drops and bubbles in water �or in other liquids� are
attracted to the axis of such cylinders.24,39,43,44 Much less is
known about the radial stability when ka is not small. The
mathematical existence of conditions for ideal spheres to
have transverse stability in acoustic Gaussian beams11 makes
it plausible that conditions can also be found for acoustic
Bessel beams. The existence of transverse stability of objects
trapped in light beams is also supportive.12–15 Ordinarily
transverse stability of gas bubbles in liquids subjected to the
optical radiation pressure of a laser beam requires that the
beam has an axial irradiance minimum.45 Stability of bubbles
in light beams of a different type was recently
demonstrated.46 If necessary the transverse stability of
spheres in acoustic Bessel beams could be altered by super-
posing a second acoustic beam �at a different frequency�
having an axial pressure minimum.47
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APPENDIX A: FARFIELD SCATTERING BY A SPHERE

For a sphere having isotropic material properties cen-
tered on the Bessel beam and placed at z=0, using the coor-
dinate system shown in Fig. 1, the farfield scattering is given
by

�s�r,�� = �a/2r��0Feikr, �A1�

where the partial wave series for the dimensionless form
function is found to be21

F�ka,cos �,cos �� = �− i/ka��
n=0




�2n + 1��sn − 1�

�Pn�cos ��Pn�cos �� . �A2�

The scattering angle relative to the z axis is denoted by �.
Here the coefficient �sn−1� is the same as the partial wave
coefficient for the dimensionless form function associated
with scattering caused by plane wave illumination35

f�ka,cos �� = �− i/ka��
n=0




�2n + 1��sn − 1�Pn�cos �� . �A3�

It is convenient for the purposes of the present paper to in-
troduce a normalized partial wave coefficient 	n+ i�n= �sn

−1� /2 where

	n = �Re�sn� − 1�/2, �n = Im�sn�/2 �A4�

and Re and Im designate real and imaginary parts. As re-
viewed in Ref. 21, the sn and the factors �sn−1� are known
for many types of spheres. When none of the incident acous-
tic energy is absorbed, the complex sn are unimodular.35 For
example in the case of an inviscid fluid sphere sn is given by
sn=−Dn

* /Dn where the denominator is48

Dn = �ikajn�ka/��hn
�1���ka� − �0�ka/��jn��ka/��hn

�1��ka� ,

�A5�

�i and �0 are the densities of the sphere and the surrounding
fluid and �=ci /c0 is the corresponding ratio of sound veloci-
ties. In Eq. �A5�, primes denote differentiation of spherical
Bessel and Hankel functions and * denotes complex conju-
gation.

The partial wave series for the incident wave, the Bessel
beam in Eq. �1�, is21

�B = �0�
n=0




in�2n + 1�jn�kr�Pn�cos ��Pn�cos �� . �A6�

APPENDIX B: PROPERTIES OF LEGENDRE
POLYNOMIALS

Properties of the Pn�w� used in the derivation of Eqs.
�7�–�10� include49

�1

Pm�w�Pn�w�dw = �2/�2n + 1���mn, �B1�

−1
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�
−1

1

wPm�w�Pn�w�dw = Imn, �B2�

where Imn=0 unless m=n±1, In+1n=2�n+1� / ��2n+1��2n
+3�� and In−1n=2n / ��2n−1��2n+1��. The following49 was
also used:

�n + 1�Pn+1�w� − �2n + 1�wPn�w� + nPn−1�w� = 0. �B3�

The following special cases are noteworthy: P0�w�=1,
P1�w�=w, P2�w�= �3w2−1� /2, and P2�cos ��=0 for �
=54.7356°.
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