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THERE IS NO “THEORY OF EVERYTHING” INSIDE E8

JACQUES DISTLER AND SKIP GARIBALDI

ABSTRACT. We analyze certain subgroups of real and complex forms of the Lie groupE8,
and deduce that any “Theory of Everything” obtained by embedding the gauge groups of
gravity and the Standard Model into a real or complex form ofE8 lacks certain representation-
theoretic properties required by physical reality. The arguments themselves amount to rep-
resentation theory of Lie algebras in the spirit of Dynkin’sclassic papers and are written
for mathematicians.

1. INTRODUCTION

Recently, the preprint [1] by Garrett Lisi has generated a lot of popular interest. It boldly
claims to be a sketch of a “Theory of Everything”, based on theidea of combining the local
Lorentz group and the gauge group of the Standard Model in a real form ofE8 (necessarily
not the compact form, because it contains a group isogenous to SL(2,C)). The purpose of
this paper is to explain some reasons why an entire class of such models—which include
the model in [1]—cannot work, using mostly mathematics withrelatively little input from
physics.

The mathematical set up is as follows. Fix a real Lie groupE. We are interested in
subgroupsSL(2,C) andG of E so that:

(ToE1) G is connected, compact, and centralizesSL(2,C)

We complexify and then decomposeLie(E) ⊗ C as a direct sum of representations of
SL(2,C) andG. We identifySL(2,C) ⊗R C with SL2,C × SL2,C and write

(1.1) Lie(E) =
⊕

m,n≥1

m⊗ n⊗ Vm,n

wherem andn denote the irreducible representation ofSL2,C of that dimension andVm,n

is a complex representation ofG⊗R C. (Physicists would usually write2 and2̄ instead of
2 ⊗ 1 and1 ⊗ 2.) Of course,

m⊗ n⊗ Vm,n ≃ n⊗m⊗ Vm,n

and since the action ofSL(2,C) · G on Lie(E) is defined overR, we deduce thatVm,n ≃
Vn,m. We further demand that

Vm,n = 0 if m+ n > 4, and(ToE2)

V2,1 is a complex representation ofG.(ToE3)

We recall the definition of complex representation and explain the physical motivation for
these hypotheses in the next section. Roughly speaking, (ToE1) is a trivial requirement
based on trying to construct a Theory of Everything along thelines suggested by Lisi,
(ToE2) is the requirement that the model not contain any “exotic” higher-spin particles, and
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(ToE3) is the statement that the gauge theory (with gauge groupG) is chiral, as required
by the Standard Model. In fact, physics requires slightly stronger hypotheses onVm,n, for
m+ n = 4. We will not impose the stronger version of (ToE2).

Definition 1.2. A candidate ToE subgroupof a real Lie groupE is a subgroup generated by
a copy ofSL(2,C) and a subgroupG such that (ToE1) and (ToE2) hold. AToE subgroup
is a candidate ToE subgroup for which (ToE3) also holds.

Our main result is:

Theorem 1.3. There are no ToE subgroups in (the transfer of) the complexE8 nor in any
real form ofE8.

Notation. Unadorned Lie algebras and Lie groups mean ones over the realnumbers. We
use a subscriptC to denote complex Lie groups—e.g.,SL2,C is the (complex) group of
2-by-2 complex matrices with determinant 1. We can view ad-dimensional complex Lie
groupGC as a2d-dimensional real Lie group, which we denote byR(GC). (Algebraists
call this operation the “transfer” or “Weil restriction of scalars”; geometers, and many
physicists, call this operation “realification.”) We use the popular notation ofSL(2,C) for
the transferR(SL2,C) of SL2,C; it is a double covering of the “restricted Lorentz group”,
i.e., of the identity componentSO(3, 1)0 of SO(3, 1).

1.4. Strategy and main results.Our strategy for proving Theorem 1.3 will be as follows.
We will first catalogue, up to conjugation, all possible embeddings ofSL(2,C) satisfying
the hypotheses of (ToE2). The list is remarkably short. Specifically, for every candidate
ToE subgroup ofE, the groupG is contained in the maximal compact, connected subgroup
Gmax of the centralizer ofSL(2,C) in E. The proof of Theorem 1.3 shows that the only
possibilities are:

(1.5)

E Gmax V2,1

E8(−24) Spin(11) 32
E8(8) Spin(5) × Spin(7) (4, 8)

E8(−24) Spin(9) × Spin(3) (16, 2)
R(E8,C) E7 56
R(E8,C) Spin(12) 32 ⊕ 32′

R(E8,C) Spin(13) 64

We then note that the representationV2,1 of Gmax (and hence, of anyG ⊆ Gmax) has a
self-conjugate structure. In other words, (ToE3) fails.

2. PHYSICS BACKGROUND

One of the central features of modern particle physics is that the world is described by
achiral gauge theory.

2.1.LetM be a four-dimensional pseudo-Riemannian manifold, of signature(3, 1), which
we will take to be oriented, time-oriented and spin. LetG be a compact Lie group. The
data of agauge theory onM with gauge groupG consists of a connection,A, on a principal
G-bundle,P → M , and some “matter fields” transforming as sections of vectorbundle(s)
associated to unitary representations ofG.

Of particular interest are thefermionsof the theory. The orthonormal frame bundle of
M is a principalSO(3, 1)0 bundle. A choice of spin structure defines a lift to a principal
Spin(3, 1)0 = SL(2,C) bundle. LetS± → M be the irreducible spinor bundles, asso-
ciated, via the defining two-dimensional representation and its complex conjugate, to this
SL(2,C) principal bundle.
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Thefermions of our gauge theoryare denoted

ψ ∈ Γ(S+ ⊗ V ), ψ ∈ Γ(S− ⊗ V )

whereV → M is a vector bundle associated to a (typically reducible) representationR of
G.

Definition 2.2. Consider,V , a unitary representation ofG overC—i.e., a homomorphism
G → U(V )—and an antilinear mapJ : V → V that commutes with the action ofG. The
mapJ is called areal structureonV if J2 = 1; physicists call a representation possessing
a real structurereal. The mapJ is called aquaternionic structureon V if J2 = −1;
physicists call a representation possessing a quaternionic structurepseudoreal.

Subsuming these two subcases, we will say thatV has a self-conjugate structureif
there exists an antilinear mapJ : V → V commuting with the action ofG and satisfying
J4 = 1. Physicists call a representationV that does not possess a self-conjugate structure
complex.

Remark2.3. We sketch how to translate the above definition into the language of algebraic
groups and Galois descent as in [2] and [3,§X.2]. LetG be an algebraic group overR and
fix a representationρ : G ⊗ C → GL(V ) for some complex vector spaceV . Let J be an
antilinear mapV → V that satisfies

(2.4) ρ(g) = J−1ρ(g)J for g ∈ G(C).

We define real, quaternionic, etc., by copying the second andthird sentences verbatim from
Definition 2.2.

(In the special case whereG is compact, there is necessarily a positive-definite invariant
hermitian form onV andρ arises by complexifying some mapG → U(V ); this puts us
back in the situation of Def. 2.2. In the special case whereG is connected, the hypothesis
from Def. 2.2 thatJ commutes withG(R)—which is obviously implied by (2.4)—is ac-
tually equivalent to (2.4). Indeed, both sides of (2.4) are morphisms of varieties overC,
so if they agree onG(R)—which is Zariski-dense by [2, 18.2(ii)]—then they are equal on
G(C).)

If V has a real structureJ , then theR-subspaceV ′ of elements ofV fixed byJ is a real
vector space andV is canonically identified withV ′ ⊗ C so thatJ(v′ ⊗ z) = v′ ⊗ z for
v′ ∈ V ′ andz ∈ C; this is Galois descent. Becauseρ commutes with complex conjugation
(which acts in the obvious manner onG(C) and viaJ onV ), it is the complexification of
a homomorphismρ′ : G → GL(V ′) defined overR by [2, AG.14.3]. Conversely, if there
is a representation(V ′, ρ′) whose complexification is(V, ρ), then takingJ to be complex
conjugation onV = V ′ ⊗ C defines a real structure on(V, ρ).

If V has a quaternionic structureJ , then we define a real structurêJ on V̂ := V ⊕ V

via Ĵ(v1, v2) := (Jv2,−Jv1).
Finally, suppose thatG is reductive andV is irreducible (as a representation overC,

of course). Then by [4,§7], there is a unique irreducible real representationW whose
complexificationW ⊗ C containsV as a summand. By Schur,EndG(W ) is a division
algebra, and we have three possibilities:

• EndG(W ) = R,W ⊗ C ≃ V , andV has a real structure.
• EndG(W ) = H,W ⊗ C ≃ V ⊕ V , andV has a quaternionic structure.
• EndG(W ) = C,W ⊗ C ≃ V ⊕ V whereV 6≃ V , andV is complex.

We have stated this remark forG a group overR, but all of it generalizes easily to the case
whereG is reductive over a fieldF and is split by a quadratic extensionsK of F .
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Definition 2.5. A gauge theory, with gauge groupG, is said to bechiral if the representa-
tionR by which the fermions (2.1) are defined is complex in the abovesense. By contrast,
a gauge theory is said to benonchiral if the representationR in 2.1 has a self-conjugate
structure.

Note that whether a gauge theory is chiral depends cruciallyon the choice ofG. A
gauge theory might be chiral for gauge groupG, but nonchiral for a subgroupH ⊂ G.
That is, there can be a self-conjugate structure onR compatible withH , even though no
such structure exists that is compatible with the full groupG.

Conversely, suppose that a gauge theory is nonchiral for thegauge groupG. It is also
necessarily nonchiral for any gauge groupH ⊂ G.

GUTs. The Standard Model is a chiral gauge theory with gauge group

GSM := (SU(3) × SU(2) × U(1))/(Z/6Z)

Various grand unified theories (GUTs) proceed by embeddingGSM is some (usually sim-
ple) group,GGUT. Popular choices forGGUT areSU(5) [5], Spin(10), E6, and the Pati-
Salam group,(Spin(6) × Spin(4))/(Z/2Z) [6].

It is easiest to explain what the fermion representation ofGSM is after embeddingGSM

in GGUT := SU(5). LetW be the five-dimensional defining representation ofSU(5). The
representationR from 2.1 is the direct sum of three copies of

R0 = ∧2W ⊕W

Each such copy is called a “generation” and is 15-dimensional. One identifies each of the
15 weights ofR0 with left-handed fermions: 6 quarks (two in a doublet, each in three
colors), two leptons (e.g., the electron and its neutrino),6 antiquarks, and a positron. With
three generations,R is 45-dimensional.

Definition 2.6. As a generalization, physicists sometimes consider then-generation Stan-
dard Model, which is defined in similar fashion, but withR = R⊕n

0 . Then-generation
Standard Model is a chiral gauge theory, for any positiven. Particle physics, in the real
world, is described by “the” Standard Model, which is the casen = 3.

For the other choices of GUT group, the analogue of a generation (R0) is higher-
dimensional, containing additional fermions that are not seen at low energies. When de-
composed underGSM ⊂ GGUT, the representation decomposes asR0 + R′, whereR′ is
a real representation ofGSM. In Spin(10), a generation is the 16-dimensional half-spinor
representation. InE6, it is a 27-dimensional representation, and for the Pati-Salam group
it is the(4, 1, 2)⊕ (4, 2, 1) representation. In each case, these representations are complex
representations (in the above sense) ofGGUT, and the complex-conjugate representation
is called an “anti-generation.”

3. LISI’ S PROPOSAL FROM[1]

In the previous section, we have described a chiral gauge theory in a fixed (pseudo)
Riemannian structure onM . Lisi’s proposal [1] is to try to combine the spin connection
onM and the gauge connection onP into a single dynamical framework. This motivates
Definition 1.2 of a ToE subgroup.

More precisely, following [1], we fix subgroupsSL(2,C) andG— say, withG = GSM

— satisfying (ToE1) in some real Lie groupE. The action of the central element−1 ∈
SL(2,C) provides aZ/2Z-grading on the Lie algebra ofE. ThisZ/2Z-grading allows one
to define a sort of superconnection associated toE (precisely what sort of superconnection
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is explained in a blog post by the first author [7]). In the proposal of [1], we are supposed
to identify each of the generators ofLie(E) as either a boson or a fermion. (See Table 9 in
[1] for an identification of the 240 roots.)

The Spin-Statistics Theorem [8] says that fermions transform as spinorial representa-
tions ofSpin(3, 1); bosons transform as “tensorial” representations (representation which
lift to the double cover,SO(3, 1)). To be consistent with the Spin-Statistics Theorem, we
must, therefore, require that the fermions belong to the−1-eigenspace of the aforemen-
tionedZ/2Z action, and the bosons to the+1-eigenspace.

In fact, to agree with 2.1, we should require that the−1-eigenspace (when tensored with
C) decompose as a direct sum of two-dimensional representations (overC) of SL(2,C),
corresponding to “left-handed” and “right-handed” fermions, in the sense of 2.1.

Interpretations of Vm,n and (ToE2). In the notation of (1.1), theVm,n, withm+ n odd,
correspond to fermions; those withm + n even correspond bosons. In Lisi’s setup, the
bosons are 1-forms onM , with values in a vector bundle associated to the aforementioned
Spin(3, 1)0 principal bundle via them ⊗ n representation (withm + n even). TheVm,n

with m + n = 4 are special; they correspond to the gravitational degrees of freedom in
Lisi’s theory.(3⊗ 1)⊕ (1⊗ 3) is the adjoint representation ofSL(2,C); these correspond
to the spin connection. The 1-form with values in the2⊗ 2 representation is the vierbein1.

It is a substantial result from physics (see sections 13.1, 25.4 of [9]) that a unitary
interacting theory is incompatible with massless particles in higher representation (m+n ≥
6). Our hypothesis (ToE2) reflects this and also forbids gravitinos (m + n = 5). In §10,
we will revisit the possibility of admitting gravitinos.

Explanation of (ToE3). Our hypothesis (ToE3) says that the candidate “Theory of Ev-
erything” one obtains from subgroupsSL(2,C) andG as in (ToE1) must bechiral in the
sense of Definition 2.5.2

In private communication, Lisi has indicated that he objects to our condition (ToE3),
because he no longer wishes to identify all 248 generators ofLie(E) as particles (either
bosons or fermions). In his new—and unpublished—formulation, only a subset are to be
identified as particles. In particular,V2,1 is typically a reducible representation ofG and,
in his new formulation, only a subrepresentation corresponds to particles (fermions). This
is not the approach followed in [1], where all 248 generatorsare identified as particles and
where, moreover, 20-odd of these are claimed to be new as-yetundiscovered particles—a
prediction of his theory. As recently as April 2009, Lisi reiterated this prediction in an
essay published in theFinancial Times, [11].

Our paper assumes that the approach of [1] is to be followed, and that all 248 generators
are to be identified as particles, hence (ToE3). In any case, even if one identifies only a
subset of the generators as particles, all the fermions mustcome from the(−1)-eigenspace,
which is too small to accommodate 3 generations, as we now show.

1In making this identification, we have tacitly assumed thatV2,2 is one-dimensional. This is, in fact, required
for a unitary interacting theory. We will not, however, impose this additional constraint. Suffice to say that it is
not satisfied by any of thecandidate ToE subgroups(per Definition 1.2) ofE8.

2Of course, there are many other features of the Standard Model that a candidate Theory of Everything must
reproduce. We have chosen to focus on the requirement that the theory be chiral for two reasons. First, it is “phys-
ically robust”: Whatever intricacies a quantum field theorymay possess at high energies, if it isnon-chiral, there is
no known mechanism by which it could reduce to achiral theory at low energies (and there are strong arguments
[10] that no such mechanism exists). Second, chirality is easily translated into a mathematical criterion—our
(ToE3). This allows us to study a purely representation-theoretic question and side-step the difficulties of making
sense of Lisi’s proposal as a dynamical quantum field theory.
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No-go based on dimensions.The fermions of Lisi’s theory correspond to weight vectors
in Vm,n, with m + n odd. In particular, the weight vectors inV2,1 andV1,2 correspond
(as in §2.1) to left- and right-handed fermions, respectively. Since there are3 × 15 =
45 known fermions of each chirality,V2,1 must be at least 45-dimensional, and similarly
for V1,2. Thus, the−1-eigenspace of the central element ofSL(2,C), which contains
(2 ⊗ 1 ⊗ V2,1) ⊕ (1 ⊗ 2 ⊗ V1,2), must have dimension at least2 × 2 × 45 = 180.

WhenE is a real form ofE8, the−1-eigenspace has dimension 112 or 128 (this is
implicit in Elie Cartan’s classification of real forms ofE8 as in [12, p. 518, Table V]),3 so
no identification of the fermions as distinct weight vectorsin Lie(E) (as in Table 9 in [1])
can be compatible with the Spin-Statistics Theorem and the existence of three generations.

These dimensional considerations do not, however, rule outthe possibility of accom-
modating a 1- or 2-generation Standard Model (per Definition2.6) in a real form ofE8.
That requires more powerful considerations, which are the subject of our main theorem.
We now turn to the proof of that theorem.

4. sl2 SUBALGEBRAS AND THEDYNKIN INDEX

4.1. In [15, §2], Dynkin defined theindexof an inclusionf : g1 →֒ g2 of simple complex
Lie algebras as follows. Fix a Chevalley basis of the two algebras, so that the Cartan
subalgebrah1 of g1 is contained in the Cartan subalgebrah2 of g2. The Chevalley basis
identifieshi with the complexificationQ∨

i ⊗ C of the coroot latticeQ∨
i of gi, and the

inclusionf gives an inclusionQ∨
1 ⊗ C →֒ Q∨

2 ⊗ C. Fix the Weyl-invariant inner product
( , )i onQ∨

i so that(α∨, α∨)i = 2 for short corootsα∨. Then theDynkin indexof the
inclusion is the ratio(f(α∨), f(α∨))2/(α

∨, α∨)1 whereα∨ is a short coroot ofg1. For
example, the irreducible representationsl2 → sln has index

(

n+1
3

)

by [15, Eq. (2.32)].

4.2. We now consider the caseg1 = sl2 and write simplyg andQ∨ for g2 andQ∨
2 .

The coroot lattice ofsl2 is Z and the image of 1 under the mapZ →֒ Q∨ is an element
h ∈ h called thedefining vectorof the inclusion. In§8 of his paper (or see [16,§VIII.11]),
Dynkin proved that, after conjugating by an element of the automorphism group ofg, one
can assume that the defining vectorh satisfies the strong restrictions:

h =
∑

δ∈∆

pδδ
∨ for pδ real and non-negative [15, Lemma 8.3],

where∆ denotes the set of simple roots ofg and further that

(4.3) δ(h) ∈ {0, 1, 2} for all δ ∈ ∆.

But note that for each simple rootδ, the fundamental irreducible representation ofg with
highest weight dual toδ∨ restricts to a representation ofsl2 with pδ as a weight, hencepδ

is an integer.
As a consequence of these generalities and specifically [15,Lemma 8.2], one can iden-

tify an sl2 subalgebra ofg up to conjugacy by writing the Dynkin diagram ofg and putting
the numberδ(h) from (4.3) at each vertex; this is themarked Dynkin diagramof the sl2
subalgebra.

Here is an alternative formula for computing the index of ansl2 subalgebra from its
marked Dynkin diagram. Writeκg andm∨ for the Killing form and dual Coxeter number

3Alternatively, Serre’s marvelous bound on the trace from [13, Th. 3] or [14, Th. 1] implies that for ev-
ery elementx of order 2 in a reductive complex Lie groupG, the −1-eigenspace ofAd(x) has dimension
≤ (dim G + rank G)/2. In particular, whenG is a real form ofE8, the−1-eigenspace has dimension≤ 128.
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of g. We have:

(4.4) (Dynkin index) =
1

2
(h, h) =

1

4m∨
κg(h, h) =

1

2m∨

∑

positive rootsα of g

α(h)2,

where the second equality is by, e.g., [17,§5], and the third is by the definition ofκg. One
can calculate the numberα(h) by writing α as a sum of positive roots and applying the
marked Dynkin diagram forh.

Lemma 4.5. For every simple complex Lie algebrag, there is a unique copy ofsl2 in g of
index1, up to conjugacy.

This is (equivalent to) Theorem 2.4 in [15]. We give a different proof for the conve-
nience of the reader.

Proof. The index of ansl2-subalgebra is(h, h)/2, where the defining vectorh belongs to
the coroot latticeQ∨. If g is not of type B, then the coroot lattice is not of type C, and the
claim amounts to the statement that the vectors of minimal length in the coroot lattice are
actually coroots. This follows from the constructions of the root lattices in [18,§12.1].

Otherwiseg has type B and isson for some oddn ≥ 5. The conjugacy class of ansl2-
subalgebra is determined by the restriction of the naturaln-dimensional representation;
they are parameterized by partitions ofn (i.e.,

∑

ni = n) so that the evenni occur with
even multiplicity and someni > 1, see [19, 5.1.2] or [20,§6.2.2]. The index of the
compositionsl2 → son → sln is then

∑
(

ni+1
3

)

; we must classify those partitions such
that this sum equals the Dynkin index ofson → sln, which is 2. The unique such partition
is 2 + 2 + 1 + · · · + 1 > 0. �

In the bijection between conjugacy classes ofsl2 subalgebras and orbits of nilpotent
elements ing from [19, 3.2.10], the unique orbit of index 1sl2’s corresponds to the minimal
nilpotent orbit described in [19, 4.3.3].

If g has type C,F4, or G2, then the argument in the proof of the lemma shows that
there is up to conjugacy a unique copy ofsl2 in g with index 2, 2, or 3 respectively. For
g of typeBn with n ≥ 4, there are two conjugacy classes ofsl2-subalgebras of index 2.
This amounts to the fact that there are vectors in theCn root lattice that are not roots but
have the same length as a root—specifically, sums of two strongly orthogonal short roots,
cf. Exercise 5 in§12 of [18].

5. COPIES OFsl2,C IN THE COMPLEX E8

We now prove some facts about copies ofsl2,C in the complex Lie algebrae8 of type
E8. Of course, the 69 conjugacy classes of such are known—see [15, pp. 182–185] or [21,
pp. 430–433]—but we do not need this information.

Fix a pinning fore8; this includes a Cartan subalgebrah, a set of simple roots∆ :=
{αi | 1 ≤ i ≤ 8} (numbered

(5.1)
1 3 4 5 6 7 8

2

as in [22]), and fundamental weightsωi dual toαi. As all roots of theE8 root system have
the same length, we can and do identify the root system with its coroot system (also called
the “inverse” or “dual” root system).
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Example 5.2. Taking any root ofE8, one can generate a copy ofsl2,C in e8 with index 1.
Doing this with the highest root gives ansl2,C with marked Dynkin diagram

index 1:
0 0 0 0 0 0 1

0

Every index 1 copy ofsl2 in e8 is conjugate to this one by Lemma 4.5.

Example 5.3. One can find a copy ofsl2,C × sl2,C in e8 by taking the first copy to be
generated by the highest root ofE8 and the second copy to be generated by the highest
root of the obviousE7 subsystem. If you embedsl2,C diagonally in this algebra, you find
a copy ofsl2,C with index 2 and marked Dynkin diagram

index 2:
1 0 0 0 0 0 0

0

Proposition 5.4. The following collections of copies ofsl2,C in e8 are the same:

(1) copies such that±1 are weights ofe8 (as a representation ofsl2,C) and no other
odd weights occur.

(2) copies such that every weight ofe8 is in {0,±1,±2}.
(3) copies such that the inclusionsl2,C ⊂ e8 has Dynkin index1 or 2.
(4) copies ofsl2,C conjugate to one of those defined in Examples 5.2 or 5.3.

Proof. One easily checks that (4) is contained in (1)–(3); we prove the opposite inclusion.
For (3), we identifyh with the complexificationQ⊗ C of the (co)root latticeQ, hence

h with
∑

αi(h)ωi. By (4.4), the index ofh satisfies:

1

60

∑

α

α(h)2 =
1

60

∑

α

(

∑

i

αi(h)〈ωi, α〉

)2

≥
∑

i

(

αi(h)
2
∑

α

〈ωi, α〉
2

60

)

where the sums vary over the positive roots. We calculate foreach fundamental weightωi

the number
∑

α 〈ωi, α〉
2
/60:

(5.5)
2 7 15 10 6 3 1

4

As the numbersαi(h) are all 0, 1, or 2, the numbers (5.5) show thath for an sl2,C with
Dynkin index 1 or 2 must beω1 (index 2) orω8 (index 1).

For (2), the highest root̃α of E8 is α̃ =
∑

i ciαi, wherec1 = c8 = 2 and the otherci’s
are all at least 3. As̃α(h) is a weight ofe8 relative to a given copy ofsl2,C, we deduce that
ansl2,C as in (2) must haveh = ω1 or ω8, as claimed.

Suppose now that we are given anh for a copy ofsl2,C as in (1). As±1 occur as
weights, there is at least one 1 in the marked Dynkin diagram.

But note that there cannot be three or more 1’s in the marked Dynkin diagram forh.
Indeed, for every connected subsetS of vertices of the Dynkin diagram ofE8,

∑

i∈S αi is
a root [22,§VI.1.6, Cor. 3b]. If the number of 1’s in the marked diagram ofh is at least
three, then one can pickS so that it meets exactly three of theαi’s with αi(h) = 1, in
which case

∑

i∈S αi(h) is odd and at least 3, violating the hypothesis of (1).
For sake of contradiction, suppose that there are two 1’s in the marked diagram forh,

say, corresponding to simple rootsαi andαj with i < j. For eachi, j, one can find a root
β in the list of roots ofE8 of large height in [22, Plate VII] such that the coefficients of αi

andαj in β have opposite parity and sum at least 3. (Merely takingβ to be the highest root
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suffices for many(i, j).) This contradicts (1), so there is a unique 1 in the marked diagram
for h, i.e.,αi(h) = 1 for a uniquei.

If αi(h) = 1 for somei 6= 1, 8, then we find a contradiction because there is a rootα of
E8 with αi-coordinate 3. Thereforeαi(h) = 1 only for i = 1 or 8 and not for both. By the
fact used two paragraphs above,β :=

∑

i αi is a root ofE8, soβ(h) =
∑

αi(h) is odd
and must be 1. It follows thath = ω1 or ω8. �

5.6. Centralizer for index 1. The sl2,C of index 1 in e8 has centralizer the obvious
regular subalgebrae7 of typeE7. (A subalgebra isregular if it is generated by the root
subalgebras corresponding to a closed sub-root-system [15, no. 16].) Indeed, it is clear that
e7 centralizes thissl2,C. Conversely, the centralizer ofsl2,C is contained in the centralizer
of h = ω8—i.e.,e7 ⊕ Ch—but does not containh.

5.7. Decomposinge8. Suppose we are given a copy ofsl2,C in e8 specified by a defining
vectorh. By applying the 240 roots ofe8 to h (and throwing in also 0 with multiplicity 8),
we obtain the weights ofe8 as a representation ofsl2,C and therefore also the decomposition
of e8 into irreducible representations ofsl2,C as in, e.g., [18,§7.2].

Extending this, suppose we are given a copy ofsl2,C × sl2,C in e8, where the two sum-
mands are specified by defining vectors inh. (Here we want the defining vectors to span
the Cartan subalgebras in the images of the twosl2,C’s. In particular, they need not be
normalized in the sense of (4.3).) Computing as in the previous paragraph, we can decom-
posee8 as a direct sum of irreducible representationsm ⊗ n of sl2,C × sl2,C. It is easy to
write code from scratch to make a computer algebra system perform this computation. We
remark that applying this recipe in the situation from the introduction gives the dimension
of Vm,n as the multiplicity ofm⊗ n.

6. INDEX 2 COPIES OFsl2,C IN THE COMPLEX E8

Lemma 6.1. The centralizer of the index 2sl2,C in e8 from Example 5.3 is a copy ofso13

contained in the regular subalgebraso14 of e8.

Proof. The centralizer of thesl2,C of index 2 ine8 is contained in the centralizer of the
defining vectorh; this centralizer is reductive with semisimple part the regular subalgebra
so14 of typeD7. The centralizer ofsl2,C contains the centralizer of thesl2,C × sl2,C from
Example 5.3, which is the regular subalgebraso12 of typeD6, as can be seen by the recipe
from [15, pp. 147, 148]. Computing as in 5.7, we see that the centralizer of sl2,C has
dimension 78 (as is implicitly claimed in the statement of the lemma), so it lies properly
between the regularso12 and the regularso14.

For concreteness, let us suppose that the structure constants fore8 are as in [23]. Define
a copy ofsl2,C by sending( 0 1

0 0 ) to the sum of the elements in the Chevalley basis ofe8
spanning the root subalgebras corresponding to−α8 and the highest root in the obviousD7

subdiagram. This copy ofsl2,C has defining vectorα2 +α3 +2α4+2α5+2α6+2α7. One
checks using the structure constants that thissl2,C centralizes the index 2sl2,C we started
with, and that together withso12 it generates a copy ofso13. In particular, the coroot lattice
of thisso13 has basisβ∨

1 , . . . , β
∨
6 , embedded in the (co)root lattice ofe8 as in the table:

(6.2)
so13 β∨

1 β∨
2 β∨

3 β∨
4 β∨

5 β∨
6

e8 α3 α4 α5 α6 α7 −α2 − α3 − 2α4 − 2α5 − 2α6 − 2α7
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We remark that the numbering of the corootsβ∨
1 , . . . , β

∨
6 corresponds to a numbering of

the simple roots ofso13 as in the diagram

β1 β2 β3 β4 β5 β6
>r r r r r r

Dimension count shows that thisso13 is the centralizer. �

The claim of the lemma is already in [24, p. 125]. We gave the details of a proof because
it specifies an inclusion ofso13 in e8 and a comparison of the pinnings of the two algebras
as in (6.2).

The index 2sl2 and the copy ofso13 give ansl2 × so13 subalgebra ofe8. We now
decomposee8 into irreducible representations ofsl2 × so13. We can do this from first
principles by restricting the roots ofe8 to the Cartan sublagebras ofsl2 (using the marked
Dynkin diagram from Example 5.3) andso13 (using (6.2)). Alternatively, we can read
the decomposition off the tables in [25] as follows. As in theproof of Lemma 6.1,sl2 is
contained in the regular subalgebrasl2 × sl2 × so12 of e8, and the tables on pages 301 and
305 of ibid. show thate8 decomposes as a sum of

(6.3) the adjoint representation,2 ⊗ 1 ⊗ S+, 1 ⊗ 2 ⊗ S−, and 2 ⊗ 2 ⊗ V,

whereS± denotes the half-spin representations ofso12 andV is the vector representation.
We can restrict the representations ofsl2 × sl2 to the diagonalsl2 subalgebra to obtain a
decomposition ofe8 into representations ofsl2 × so12. Consulting the tables in ibid. for
restricting representations from typeB6 to D6 allows us to deduce the decomposition

(6.4) 1 ⊗ so13,C ⊕ 2 ⊗ (spin) ⊕ 3 ⊗ 1 ⊕ 3 ⊗ (vector)

of e8 as a representation ofsl2 × so13. From this it is obvious thatso13,C is the Lie algebra
of a copy ofSpin13 in E8.

The main result of this section is the following:

Lemma 6.5. Up to conjugacy, there is a unique copy ofSL2,C × SL2,C in E8,C so that
each inclusion ofSL2,C in E8,C has index 2. The centralizer of thisSL2,C × SL2,C has
identity componentSp4,C × Sp4,C.

Proof. As in the proof of Lemma 4.5 (or by the method used to prove Prop. 5.4), there are
two index 2 copies ofsl2 in so13, coresponding to the partitions

(a) 3 + 1 + 1 + · · · + 1 and (b) 2 + 2 + 2 + 2 + 1 + 1 + · · · + 1

of 13. The recipe in [19,§5.3] gives defining vectors for thesesl2’s, which we can rewrite
in terms of theE8 simple roots using (6.2):

(6.6)
(a) 2β∨

1 + 2β∨
2 + 2β∨

3 + 2β∨
4 + 2β∨

5 + β∨
6 = −α2 + α3

(b) β∨
1 + 2β∨

2 + 3β∨
3 + 4β∨

4 + 4β∨
5 + 2β∨

6 = −2α2 − α3 − 2α4 − α5

We can pair each of (a) and (b) with the copy ofsl2 from Example 5.3 to get ansl2 × sl2
subalgebra ofe8 where bothsl2’s have index 2. Clearly, these represent the only two
E8-conjugacy classes of such subalgebras. With (6.6) in hand,we can calculate the multi-
plicities of the irreducible representations ofsl2 × sl2 in e8 as in 5.7.

In case (a), every irreducible summandm ⊗ n hasm + n even. Therefore, this copy
of sl2 × sl2 is the Lie algebra of a subgroup ofE8 isomorphic to(SL2 × SL2)/(−1,−1).
(An alternative way to see this is to note that the simple roots with odd coefficients are the
same in (6.6a) and the defining vector in Example 5.3.)
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In case (b), we have the following table of multiplicities for m⊗ n:

(6.7)

1 2 3 m
1 20 20 6

n 2 20 16 4
3 6 4 0

In particular, it is the Lie algebra of a copy ofSL2 × SL2 in E8. The centralizer of (b) in
Spin13 has been calculated in [26, IV.2.25], and the identity component isSp4 × Sp4, as
claimed. �

We can decomposee8 into a direct sum of irreducible representations of thesl2 × sl2 ×
sp4 × sp4 subalgebra from Lemma 6.5 by combining the decomposition ofe8 into irre-
ducible representations ofsl2 × so13 from (6.4) with the tables in [25]. Specifically, we
restrict representations fromso13 to ansp4×so8 subalgebra and then fromso8 to sp4×sl2,
where thissl2 also has index 2. Recall thatsp4 has two fundamental irreducible represen-
tations: one that is 4-dimensional symplectic and another that is 5-dimensional orthogonal;
we denote them by their dimensions. With this notation and 1.1, we find:

(6.8) V2,1 ≃ 5⊗4, V1,2 ≃ 4⊗5, V2,3 ≃ 1⊗4, V3,2 ≃ 4⊗1, and V2,2 ≃ 4⊗4.

7. COPIES OFSL(2,C) IN A REAL FORM OF E8

Suppose now that we have a copy ofSL(2,C) inside a real Lie groupE of type E8.
Over the complex numbers, we decomposeLie(E) ⊗ C into a direct sum of irreducible
representations ofSL(2,C) ⊗ C ≃ SL2,C × SL2,C; each irreducible representation can be
written asm⊗ n wherem andn denote the dimension of an irreducible representation of
the first or secondSL2,C respectively. The goal of this section is to prove:

Proposition 7.1. Maintain the notation of the previous paragraph. IfLie(E)⊗C contains
no irreducible summandsm ⊗ n with m + n > 4, then the identity componentZ of the
centralizer ofSL(2,C) in E is a subgroup isomorphic to

(1) Spin(7, 5) if E is split; or
(2) Spin(9, 3) or Spin(11, 1) if the Killing form ofLie(E) has signature−24.

In either case,Lie(Z) ⊗ C is the regularso12 subalgebra ofLie(E) ⊗ C.

Proof. Complexifying the inclusion ofSL(2,C) in E and going to Lie algebras gives an
inclusion ofsl2,C × sl2,C in the complex Lie algebrae8. The hypothesis on the irreducible
summandsm⊗ n implies that each of the twosl2,C’s has index 1 or 2 by Proposition 5.4.
As complex conjugation interchanges the two components, they must have the same index.

Suppose first that bothsl2’s have index 2. When we decomposee8 as in 1.1, we find the
representation2⊗ 3 with positive multiplicity 4 by (6.7), which violates our hypothesis on
theSL(2,C) subgroup ofE.

Therefore bothsl2’s have index 1. Lemma 4.5 (twice) gives that thissl2 × sl2 is con-
jugate to the one generated by the highest root ofE8 from Example 5.2 (so the second
sl2 belongs to the centralizer of typeE7) and by the highest root of theE7 subsystem and
makes up the first two summands of ansl2 × sl2 × so12 subalgebra, the same one used to
find (6.3). That is,so12 centralizessl2 × sl2. Conversely, the centralizer of the defining
vectors of the two copies ofsl2 has semisimple partso12; it follows that Lie(Z) ⊗ C is
isomorphic toso12.

From this and the decomposition (6.3), we see thatZ is a real form ofSpin12. As
Lie(E) is a real representation ofZ, we deduce thatV is also a real representation ofZ
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butS+ andS− are not; they are interchanged by the Galois action. The firstobservation
shows thatZ is Spin(12 − a, a) for some0 ≤ a ≤ 6. The second shows thata must be 1,
3, or 5, as claimed in the statement of the proposition.

It remains to prove the correspondence betweena and the real forms ofE8. Fora = 5,
this is clear: the subgroup generated bySL(2,C) andSpin(7, 5) has real rank 6, so it can
only be contained in the split real form.

Now suppose thata = 3 or 1 and thatSL(2,C) is in the splitE8; we will show that
the Killing form of E has signature−24. OverC, SL(2,C) is conjugate to the copy of
SL2,C × SL2,C in E8,C generated by the highest root ofE8 and the highest root of the
natural subsystem of typeE7. Writing out these two roots in terms of theE8 simple roots,
we see thatα3 andα5 are the only simple roots whose coefficients have different parities.
It follows that the element−1 ∈ SL(2,C)—equivalently,(−1,−1) ∈ SL2 × SL2—is
hα2

(−1)hα3
(−1) in the notation of [27], wherehαi

: C
× → E ⊗ C is the cocharacter

corresponding to the corootα∨
i . Now, α2 andα3 are the only simple roots with odd

coefficients in the fundamental weightω1, so the subgroup ofE ⊗ C fixed by conjugation
by this−1 is generated by root subgroups corresponding to rootsα such that〈ω1, α〉 is
even. These roots form the naturalD8 subsystem ofE8, and in this way we seeSL(2,C) ·
Spin(12 − a, a) as a semisimple subgroup of maximal rank in a copy of a half-spin group
H in 16 dimensions—the identity component of the centralizerof −1.

We claim thatH is isogenous toSO(12, 4). AsH is a half-spin group with a half-spin
representation defined overR, it is isogenous toSO(16 − b, b) for b = 0, 4, or 8 or it
is quaternionic; these possibilities have Killing forms ofsignature−120, −24, 8, or −8
respectively, as can be looked up in [28], for example. The adjoint representation ofH ,
when restricted toSL(2,C) · Spin(12− a, a), decomposes as the adjoint representation of
SL(2,C) · Spin(12 − a, a) and2 ⊗ 2 ⊗ V by (6.3). The Killing form onH restricts to a
positive multiple of the Killing form onSL(2,C) · Spin(12 − a, a) (as can be seen over
C by the explicit formula on p. E-14 of [26])—i.e., has signature−44 or −12 for a = 1
or 3—and a form of signature±2(12 − 2a) on2 ⊗ 2 ⊗ V ; the sum of these has signature
0, −24, or−64 sincea = 1 or 3. Comparing the two lists verifies thatH is isogenous to
SO(12, 4).

The Killing form onH has signature−24. The invariant bilinear form on the half-spin
representation is hyperbolic (becauseH is isogenous to spin of an isotropic quadratic form
of dimension divisible by 8, see [29, 1.1]). As a representation ofH , Lie(E) is a sum of
these two representations, and we conclude that the Killingform onLie(E) has signature
−24, as claimed. �

Remark7.2. We can determine the centralizer and the real form ofE8 also in the excluded
case in the proof where bothsl2’s have index 2. As in Lemma 6.5, the centralizer is a
real form ofSp4,C × Sp4,C. The decomposition (6.8) shows that complex conjugation
interchanges the twoSp4,C terms, so the centralizer isR(Sp4,C). Complex conjugation
interchanges the irreducible representations appearing in (1.1) in pairs (contributing 0 to
the signature of the Killing formκE of E), except for2 ⊗ 2 ⊗ V2,2, which has dimension
82. This last piece breaks up into a 36-dimensional even subspace, and a 28-dimensional
odd subspace, contributing 8 to the signature ofκE and proving that the resulting real form
of E8 is the split one.
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8. NO THEORY OFEVERYTHING IN A REAL FORM OF E8

In the decomposition (1.1) ofLie(E) ⊗ C, the integersm,n are positive, so (ToE2)
implies

(ToE2’) Vm,n = 0 if m ≥ 4 or n ≥ 4.

We prove the following strengthening of the real case of Theorem 1.3:

Lemma 8.1. If subgroupsSL(2,C) andG of a real formE of E8 satisfy (ToE1) and
(ToE2’), thenV1,2 is a self-conjugate representation ofG, i.e., (ToE3) fails.

Proof. As in the proof of Proposition 7.1, over the complex numbers we get two copies of
sl2 that embed inE8 with the same index, which is 1 or 2.

If the index is 1, we are in the case of that proposition. The−1-eigenspace inLie(E)
(of the element−1 in the center ofSL(2,C)) is a real representation ofSL(2,C) ·G, and
G is contained in a copy ofSpin(12 − a, a) for a = 1, 3, or 5. As in the proof of the
proposition, there is a representationW of SL(2,C)×Spin(12− a, a) defined overR that
is isomorphic to

(2 ⊗ 1 ⊗ S+) ⊕ (1 ⊗ 2 ⊗ S−)

overC. NowG is contained in the maximal compact subgroup ofSpin(12 − a, a), i.e.,
Lie(G) is a subalgebra ofso(11), so(9)×so(3), orso(7)×so(5). The restriction of the two
half-spin representations ofSpin(12 − a, a) to the compact subalgebra are equivalent [25,
p. 264], and we see that in each case the restriction isquaternionic. (To see this, one uses
the standard fact that the spin representation ofso(2ℓ+1) is real forℓ ≡ 0, 3 (mod 4) and
quaternionic forℓ ≡ 1, 2 (mod 4).) That is, the restrictions ofS+, S−, and their complex
conjugates to the maximal compact subgroup are all equivalent (overC), hence the same
is true for their further restrictions toG, and (ToE3) fails.

If the index is 2, thenG is contained in a real form ofSp4,C × Sp4,C by Lemma 6.5.
When we decomposee8 as in (1.1), we findV2,1 andV1,2 as in (6.8). As complex con-
jugation interchanges these two representations, it follows that complex conjugation in-
terchanges the twoSp4,C factors, i.e., the centralizer ofSL(2,C) has identity component
the transferR(Sp4,C) of Sp4,C. Its maximal compact subgroup is the compact form of
Sp4,C (also known asSpin(5)), all of whose irreducible representations are self-conjugate.
Therefore, (ToE3) fails. �

Remark8.2. It is worthwhile noting that, in each of the three cases in Proposition 7.1
(the three cases where (ToE2) holds), it is possible to embedGSM in the centralizer, thus
showing that (ToE1) is satisfied. Given such an embedding, a simple computation verifies
explicitly thatS+ has a self-conjugate structure as a representation ofGSM.

First considerSpin(11, 1). There is an obvious embedding ofGGUT := Spin(10).
Under this embedding,S+ decomposes as the direct sum of the two half-spinor represen-
tations, i.e., as a generation and an anti-generation.

For Spin(7, 5), there is an obvious embedding of the Pati-Salam group,GGUT :=
(Spin(6) × Spin(4))/(Z/2Z). Again,S+ decomposes as the direct sum of a generation
and an anti-generation.

Finally,Spin(3, 9) contains(SU(3)× SU(2)× SU(2)×U(1))/(Z/6Z) as a subgroup.
Under this subgroup,

S+ = (3, 2, 2)1/6 ⊕ (3, 2, 2)−1/6 + (1, 2, 2)−1/2 + (1, 2, 2)1/2

where the subscript indicates theU(1) weights, and the overall normalization is chosen
to agree with the physicists’ convention for the weights of the Standard Model’sU(1)Y .
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Embedding theSU(2) of the Standard Model in one of the twoSU(2)s, we obtain an
embedding ofGSM ⊂ Spin(3, 9) where, againS+ has a self-conjugate structure as a
representation ofGSM.

9. NO THEORY OFEVERYTHING IN COMPLEX E8

We now complete the proof of Theorem 1.3 by proving the following strengthening of
the complex case.

Lemma 9.1. If subgroupsSL(2,C) andG of R(E8,C) satisfy (ToE1) and (ToE2’), then
V1,2 is a self-conjugate representation ofG, i.e., (ToE3) fails.

First, recall the definition of the transferR(HC) of a complex groupHC as described,
e.g., in [30,§2.1.2]. Its complexification can be viewed asHC × HC, where complex
conjugation acts via

(h1, h2) = (h2, h1).

One can viewR(HC) as the subgroup of the complexification consisting of elements fixed
by complex conjugation.

Now consider an inclusionφ : SL(2,C) = R(SL2,C) →֒ R(E8,C). Complexifying, we
identifyR(SL2,C) ⊗ C with SL2,C × SL2,C and similarly forR(E8,C) and write outφ as

(9.2) φ(h1, h2) = (φ1(h1)φ2(h2), ψ1(h1)ψ2(h2))

for some homomorphismsφ1, φ2, ψ1, ψ2 : SL2,C → E8,C. As φ is defined overR, we
have:

φ(h1, h2) = φ(h2, h1) = (ψ1(h2)ψ2(h1), φ1(h2)φ2(h1)),

and it follows thatψ1(h1) = φ2(h1) andψ2(h2) = φ1(h2). Conversely, given any two
homomorphismsφ1, φ2 : SL2,C → E8,C (overC) with commuting images, the same equa-
tions define a homomorphismφ : SL(2,C) → R(E8,C) defined overR.

Proof of Lemma 9.1.Write Z for the identity component of the centralizer of the image
of the mapφ1 × φ2 : SL2,C × SL2,C → E8,C from (9.2). Clearly,G is contained in the
transferR(Z) of Z. In each of the cases below, we verify that

(9.3) Z is semisimple and−1 is in the Weyl group ofZ.

It follows from this that the maximal compact subgroup ofR(Z) is the compact real form
ZR of Z and thatZR is aninner form. Hence every irreducible representation ofZR is real
or quaternionic, hence every representation ofZR is self-conjugate. That is, (ToE3) fails,
which is the desired contradiction.

Case 1:φ1 or φ2 is trivial. Consider the easiest-to-understand case whereφ1 or φ2 is

the zero map, sayφ2. In the notation of (9.2),φ(h1, h2) = (φ1(h1), φ1(h2)), i.e.,φ is the
transfer of the homomorphismφ1 : SL2,C → E8,C. By Proposition 5.4,φ1 has index 1 or
2. If φ1 has index 1, thenZ is simple of typeE7 by 5.6, hence (9.3) holds. Ifφ1 has index
2, thenLie(Z) is isomorphic toso13,C by Lemma 6.1, and again (9.3) holds.

Case 2: Neitherφ1 norφ2 is trivial. Now suppose that neitherφ1 norφ2 is trivial. Again,
Proposition 5.4 implies thatφ1 andφ2 have Dynkin index 1 or 2.

If φ1 andφ2 both have index 1, then (overC) the homomorphismφ1 × φ2 is the one
from the proof of Proposition 7.1 andZ is the standardD6 subgroup ofE8,C and (9.3)
holds.

Now suppose thatφ1 andφ2 both have index 2. Asφ is an injection, it is not possible
thatφ1 andφ2 both vanish on−1 ∈ SL2,C, and it follows from the proof of Lemma 6.5
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thatφ1 × φ2 is an injection as in the statement of Lemma 6.5. In particular, Z has Lie
algebrasp4,C × sp4,C of typeB2 × B2 and (9.3) holds. Note that (ToE2) fails in this case
by (6.7).

Suppose finally thatφ1 has index 1 andφ2 has index 2. We conjugate so thatφ2(sl2) is
the copy ofsl2 from Example 5.3, and (by Lemma 4.5 for the centralizerso13 of φ2(sl2))
we can takeφ1(sl2) to be a copy ofsl2 generated by the highest root ofso13. Calculating as
described in 5.7 gives the following table of multiplicities for the irreducible representation
m⊗ n of sl2 × sl2 in e8:

(9.4)

1 2 3 m
1 39 18 1

n 2 32 16 0
3 10 2 0

In particular, theA1 × B4 subgroup ofSpin13 that centralizes the image ofφ1 × φ2 is all
of the identity componentZ of the centralizer inE8. Again (9.3) holds. (Of course, (9.4)
shows that (ToE2) fails.) �

10. RELAXING (TOE2) TO (TOE2’)

Combining Lemmas 8.1 and 9.1 gives a proof not only of Theorem1.3, but of the
following stronger statement.

Theorem 10.1.There are no subgroupsSL(2,C)·G satisfying (ToE1), (ToE2’), and (ToE3)
in the (transfer of the) complexE8 or any real form ofE8. �

We retained hypothesis (ToE2) in the introduction because that is what is demanded
by physics. Technically, it ispossiblefor V2,3 andV3,2 to be nonzero in an interacting
theory—so (ToE2) is false but (ToE2’) still holds—but only in the presence of local su-
persymmetry (i.e., in supergravity theories) [31]. Lisi’sframework is not compatible with
local supersymmetry, so we excluded this possibility above.

For real forms ofE8, weakening (ToE2) to (ToE2’) only adds the case ofE8(8), with
Gmax = Spin(5), where we find

(10.2) V3,2 ≃ V2,3 = 4, V2,1 ≃ V1,2 = 4 ⊕ 16

and we have indicated the irreducible representations ofSpin(5) by their dimensions. Be-
cause the gravitinos transform nontrivially underGmax and because of their multiplicity,
the only consistent possibility would be a gaugedN = 4 supergravity theory (for a re-
cent review of such theories, see [32]). Unfortunately, therest of the matter content (it
suffices to look atV2,1) is not compatible withN = 4 supersymmetry. Even if it were,
N = 4 supersymmetry would, of course, necessitate that the theory be non-chiral, making
it unsuitable as a candidate Theory of Everything.

To summarize the results of this section, the previous subsection, and Remark 7.2, weak-
ening (ToE2) to (ToE2’) adds only three additional entries to Table 1.5.

(10.3)

E Gmax V3,2 V2,1

E8(8) Spin(5) 4 4 ⊕ 16
R(E8,C) Spin(5) × Spin(5) (4, 1) ⊕ (1, 4) (4, 5) ⊕ (5, 4)
R(E8,C) SU(2) × Spin(9) (2, 1) (2, 9) ⊕ (2, 16)

In each case the fermion representations,V2,1 ≃ V1,2 andV3,2 ≃ V2,3, are pseudoreal
representations ofGmax.
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11. CONCLUSION

In paragraph 3 above, we observed by an easy dimension count that no proposed Theory
of Everything constructed using subgroups of a real formE of E8 has a sufficient number
of weight vectors in the−1-eigenspace to identify with all known fermions. The proof of
our Theorem 1.3 was quite a bit more complicated, but it also gives much more. It shows
that you cannot obtain achiral gauge theory foranycandidate ToE subgroup ofE, whether
E is a real form or the complex form ofE8. In particular, it is impossible to obtain even
the 1-generation Standard Model (in the sense of Definition 2.6) in this fashion.
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